S1 Text: Existence of desired optimal basis.

James D. Brunner^{1*}, Nicholas Chia¹

1Department of Surgery, Center for Individualized Medicine Microbiome Program, Mayo Clinic, Rochester, MN, USA

* brunner.james@mayo.edu

Lemma 1. For a linear program with the form given in Eq. (12) with a basic optimal solution \boldsymbol{w} , there exists a basic index set \mathcal{I} such that Eq. (18) holds and $\dot{\boldsymbol{w}}$ is optimal over the possible choice of basic index sets for \boldsymbol{w} .

Proof. For convenience, we now restate Eq. (12):

$$\left\{\begin{array}{c} \max(\tilde{\boldsymbol{\phi}}\cdot\tilde{\boldsymbol{\gamma}})\\ \left[\tilde{A} \quad I\right] \begin{bmatrix} \tilde{\boldsymbol{\phi}}\\ \boldsymbol{s} \end{bmatrix} = \boldsymbol{c}\\ \tilde{\boldsymbol{\phi}}_i \geq 0, s_i \geq 0 \end{array}\right\}$$

where we write $(\tilde{\phi}, s) = w$.

We note that there is a finite number of basic index sets for \boldsymbol{w} , and so we need only show that there exists \mathcal{I} such that Eq. (18) holds. Then, the existence of an optimal such \mathcal{I} follows trivially.

If \boldsymbol{w} is not degenerate, then the unique choice of basic index set \mathcal{I} satisfies Eq. (18). To see this, simply note that if \boldsymbol{w} is non-degenerate, then for every $i \in \mathcal{I}, w_i > 0$. Thus, Eq. (18) only includes non-negativity constraints on \dot{w}_i if $i \notin \mathcal{I}$, and for any $i \notin \mathcal{I}$, $\dot{w}_i = 0$. Thus, the non-negativity constraints are enforced. The equality constraints are enforced by the definition of $\boldsymbol{w}_{\mathcal{I}}(\boldsymbol{a})$ given in Eq. (13), which implies that $[\tilde{A} \ I] \boldsymbol{w}_{\mathcal{I}}(\boldsymbol{a}) = \boldsymbol{a}$ for any vector $\boldsymbol{a} \in \mathbb{R}^n$.

In the case of a degenerate solution \boldsymbol{w} , we use the following procedure to choose a set of basic variables. Let $\mathcal{J} \subset \{1, ..., n\}$ be the indices of the n_1 slack variables such that $s_j = 0$ if $j \in \mathcal{J}$ (recalling that each s_i is a component of the vector \boldsymbol{w}). Then, let $\tilde{\mathcal{A}}_{\mathcal{J}}$ be the matrix with rows m_j of $\tilde{\mathcal{A}}$ for $j \in \mathcal{J}$. Next, let \mathcal{J}^* be the indices of the n_2 non-slack variables such that $\phi_j = 0$ and $I_{\mathcal{J}^*}$ the corresponding rows of the identity matrix I. Notice that we now have that

$$M\tilde{\boldsymbol{\phi}} = \begin{bmatrix} \tilde{A}_{\mathcal{J}} \\ -I_{\mathcal{J}^*} \end{bmatrix} \tilde{\boldsymbol{\phi}} = \begin{bmatrix} \boldsymbol{c}_{\mathcal{J}} \\ \boldsymbol{0} \end{bmatrix}.$$
 (1)

and that if $w_j = 0$ then either $j \in \mathcal{J}^*$ or $w_j = s_k$ where $k \in \mathcal{J}$ so that $\boldsymbol{m}_k \cdot \boldsymbol{\tilde{\phi}} = c_k$ (i.e. s_k is a slack variable and $s_k = 0$). Notice that because Eq. (12) has a bounded solution, then we can assume without loss of generality that if $M \in \mathbb{R}^{q \times r}$, then rank(M) = r (i.e. M is full rank) because \boldsymbol{w} must satisfy at least r linearly independent constraints. If this is not the case, then the problem can be projected onto a lower dimensional subspace.

Consider the linear program

$$\left\{ \begin{array}{c} \max(\boldsymbol{y} \cdot \boldsymbol{\gamma}) \\ \left[M \quad I \right] \begin{bmatrix} \boldsymbol{y}_{\tilde{\boldsymbol{\phi}}} \\ \boldsymbol{y}_{\boldsymbol{s}} \end{bmatrix} = \begin{bmatrix} \frac{d}{dt} \boldsymbol{c}_{\mathcal{J}} \\ \boldsymbol{0} \end{bmatrix} \\ y_{j} \ge 0 \end{array} \right\}.$$
(2)

Assume that there is some basic optimal solution to Eq. (2) with a basic index set \mathcal{I} such that exactly r slack variables are non-basic, where again $r = |\phi|$ is the rank of the matrix M. This implies that there are r linearly independent rows of M (which we index by \mathcal{J}^{\dagger}) which form an invertible matrix \tilde{M} such that

$$\tilde{M}\boldsymbol{y}_{\tilde{\boldsymbol{\phi}}} = \begin{bmatrix} \frac{d}{dt}\boldsymbol{c}_{\mathcal{J}^{\dagger}} \\ \boldsymbol{0} \end{bmatrix}$$
(3)

and we can then determine y_s by

$$\boldsymbol{y}_{\boldsymbol{s}} = \begin{bmatrix} \frac{d}{dt} \boldsymbol{c}_{\mathcal{J}} \\ \boldsymbol{0} \end{bmatrix} - M \boldsymbol{y}_{\tilde{\boldsymbol{\phi}}}$$
(4)

and note that each $(\boldsymbol{y}_s)_i \geq 0$. We now rewrite $\dot{\boldsymbol{w}} = (\dot{\boldsymbol{w}}_{\tilde{\phi}}, \dot{\boldsymbol{w}}_s)$ from Eq. (18) and define $\dot{\boldsymbol{w}}_{\tilde{\phi}} = \boldsymbol{y}_{\tilde{\phi}}$ and

$$\dot{\boldsymbol{w}}_{\boldsymbol{s}} = \frac{d}{dt}\boldsymbol{c} - M\dot{\boldsymbol{w}}_{\tilde{\boldsymbol{\phi}}} \tag{5}$$

and conclude that this satisfies the constraints of Eq. (18). Next, we take $\tilde{\phi}$ to be the unique solution to

$$\tilde{M}\tilde{\boldsymbol{\phi}} = \begin{bmatrix} \boldsymbol{c}_{\mathcal{J}^{\dagger}} \\ \boldsymbol{0} \end{bmatrix}$$
(6)

and $\boldsymbol{s} = \boldsymbol{c} - \tilde{A} \boldsymbol{\tilde{\phi}}$.

Finally, we take $\mathcal{I} = (\hat{\mathcal{I}} \setminus \mathcal{J}^*) \cup \mathcal{J}^c$ and note that this basis set enforces exactly the same r linearly independent constraints as \tilde{M}^1 .

We now prove that there is some basic optimal solution to Eq. (2) with a basic index set $\hat{\mathcal{I}}$ such that exactly r slack variables are non-basic, where r is the rank of the matrix M.

First we note that for any basic optimal solution, if there are $r^* > r$ slack variables which are non-basic, then there are r^* rows of $B_{\hat{\mathcal{I}}}$ which are non-zero only in the columns of M. Therefore, $B_{\hat{\mathcal{I}}}$ is not invertible. We can conclude that the number of non-basic slack variables is at most r.

Next, suppose $\dot{\boldsymbol{w}}^*$ is a basic optimal solution with basis \mathcal{I}^* such that there are $r^* < r$ slack variables which are non-basic.

We would like to assume that there are at least r slack variables s_k^* corresponding to r linearly independent constraints such that $s_k^* = 0$. Recall that \tilde{A} was formed with repeated (negated) columns in order write the problem in standard form (the non-negativity bounds of Eq. (12) are artificial). Therefore, we can find some vector \boldsymbol{x} in the kernel of the matrix formed by the rows of \tilde{A} corresponding to zero slacks which also has $\boldsymbol{x} \cdot \boldsymbol{\gamma} = 0$. We can therefore find a vector \boldsymbol{y} in the kernel of

$$\begin{bmatrix} \tilde{A}_{\mathcal{J}} & I & 0\\ -I_{\mathcal{J}^*} & 0 & I \end{bmatrix}$$

which has $y_k = 0$ if $s_k = 0$ and $y_j \neq 0$ if $s_j \neq 0$ and s_j corresponds to a constraint that is not a linear combination of the constraints corresponding to the $s_k = 0$. There is at least one such constraint as long as the 0 slack variables correspond to constraints with span less than dimension r, and so we can take $\dot{\boldsymbol{w}} + \lambda \boldsymbol{y}$ for some λ and so increase the number of non-zero slack variables. We can therefore assume without loss of generality that there are at least r slack variables s_k^* corresponding to r linearly independent constraints such that $s_k^* = 0$, as was desired.

¹In practice, we may simply use \tilde{M} to find $\tilde{\phi}$

We can finally choose some linearly independent set of r constraints which correspond to 0 slack variables, and call the matrix whose rows are these constraint vectors M^* . Now, because there are $r^* < r$ non-slack basic variables, there is some non-slack, non-basic variable v_j such that the column m_j^* of M^* (and m_j of M) is linearly independent from the columns corresponding to the r^* non-slack basic variables. We can conclude that if

$$B_{\mathcal{I}^*}\boldsymbol{\lambda} = m_j \tag{7}$$

then there is some $\lambda_k \neq 0$ where k corresponds to the index of a slack variable with $s_k = 0$. We can remove k from the basic index set and add j without changing $\dot{\boldsymbol{w}}^*$, and therefore preserving optimality and feasibility. We have then increased the number of non-basic slack variables, and we can repeat if necessary to form $\hat{\mathcal{I}}$ with exactly r non-basic slack variables.