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Lemma 1. For a linear program with the form given in Eq. (12) with a basic optimal
solution w, there exists a basic index set I such that Eq. (18) holds and ẇ is optimal
over the possible choice of basic index sets for w.

Proof. For convenience, we now restate Eq. (12):
max(φ̃ · γ̃)[

Ã I
] [φ̃
s

]
= c

φ̃i ≥ 0, si ≥ 0


where we write (φ̃, s) = w.

We note that there is a finite number of basic index sets for w, and so we need only
show that there exists I such that Eq. (18) holds. Then, the existence of an optimal
such I follows trivially.

If w is not degenerate, then the unique choice of basic index set I satisfies Eq. (18).
To see this, simply note that if w is non-degenerate, then for every i ∈ I, wi > 0. Thus,
Eq. (18) only includes non-negativity constraints on ẇi if i 6∈ I, and for any i 6∈ I,
ẇi = 0. Thus, the non-negativity constraints are enforced. The equality constraints are
enforced by the definition of wI(a) given in Eq. (13), which implies that
[Ã I]wI(a) = a for any vector a ∈ Rn.

In the case of a degenerate solution w, we use the following procedure to choose a
set of basic variables. Let J ⊂ {1, ..., n} be the indices of the n1 slack variables such
that sj = 0 if j ∈ J (recalling that each si is a component of the vector w). Then, let

ÃJ be the matrix with rows mj of Ã for j ∈ J . Next, let J ∗ be the indices of the n2
non-slack variables such that φj = 0 and IJ ∗ the corresponding rows of the identity
matrix I. Notice that we now have that

M φ̃ =

[
ÃJ
−IJ ∗

]
φ̃ =

[
cJ
0

]
. (1)

and that if wj = 0 then either j ∈ J ∗ or wj = sk where k ∈ J so that mk · φ̃ = ck (i.e.
sk is a slack variable and sk = 0). Notice that because Eq. (12) has a bounded solution,
then we can assume without loss of generality that if M ∈ Rq×r, then rank(M) = r (i.e.
M is full rank) because w must satisfy at least r linearly independent constraints. If this
is not the case, then the problem can be projected onto a lower dimensional subspace.

Consider the linear program
max(y · γ)[

M I
] [yφ̃
ys

]
=

[
d
dtcJ
0

]
yj ≥ 0

 . (2)
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Assume that there is some basic optimal solution to Eq. (2) with a basic index set Î
such that exactly r slack variables are non-basic, where again r = |φ| is the rank of the
matrix M . This implies that there are r linearly independent rows of M (which we
index by J †) which form an invertible matrix M̃ such that

M̃yφ̃ =

[
d
dtcJ †
0

]
(3)

and we can then determine ys by

ys =

[
d
dtcJ
0

]
−Myφ̃ (4)

and note that each (ys)i ≥ 0. We now rewrite ẇ = (ẇφ̃, ẇs) from Eq. (18) and define
ẇφ̃ = yφ̃ and

ẇs =
d

dt
c−Mẇφ̃ (5)

and conclude that this satisfies the constraints of Eq. (18). Next, we take φ̃ to be the
unique solution to

M̃ φ̃ =

[
cJ †
0

]
(6)

and s = c− Ãφ̃.
Finally, we take I = (Î \ J ∗) ∪ J c and note that this basis set enforces exactly the

same r linearly independent constraints as M̃1.

We now prove that there is some basic optimal solution to Eq. (2) with a basic index
set Î such that exactly r slack variables are non-basic, where r is the rank of the matrix
M .

First we note that for any basic optimal solution, if there are r∗ > r slack variables
which are non-basic, then there are r∗ rows of BÎ which are non-zero only in the
columns of M . Therefore, BÎ is not invertible. We can conclude that the number of
non-basic slack variables is at most r.

Next, suppose ẇ∗ is a basic optimal solution with basis I∗ such that there are
r∗ < r slack variables which are non-basic.

We would like to assume that there are at least r slack variables s∗k corresponding to

r linearly independent constraints such that s∗k = 0. Recall that Ã was formed with
repeated (negated) columns in order write the problem in standard form (the
non-negativity bounds of Eq. (12) are artificial). Therefore, we can find some vector x
in the kernel of the matrix formed by the rows of Ã corresponding to zero slacks which
also has x · γ = 0. We can therefore find a vector y in the kernel of[

ÃJ I 0
−IJ ∗ 0 I

]
which has yk = 0 if sk = 0 and yj 6= 0 if sj 6= 0 and sj corresponds to a constraint that
is not a linear combination of the constraints corresponding to the sk = 0. There is at
least one such constraint as long as the 0 slack variables correspond to constraints with
span less than dimension r, and so we can take ẇ + λy for some λ and so increase the
number of non-zero slack variables. We can therefore assume without loss of generality
that there are at least r slack variables s∗k corresponding to r linearly independent
constraints such that s∗k = 0, as was desired.

1In practice, we may simply use M̃ to find φ̃
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We can finally choose some linearly independent set of r constraints which
correspond to 0 slack variables, and call the matrix whose rows are these constraint
vectors M∗. Now, because there are r∗ < r non-slack basic variables, there is some
non-slack, non-basic variable vj such that the column m∗j of M∗ (and mj of M) is
linearly independent from the columns corresponding to the r∗ non-slack basic variables.
We can conclude that if

BI∗λ = mj (7)

then there is some λk 6= 0 where k corresponds to the index of a slack variable with
sk = 0. We can remove k from the basic index set and add j without changing ẇ∗, and
therefore preserving optimality and feasibility. We have then increased the number of
non-basic slack variables, and we can repeat if necessary to form Î with exactly r
non-basic slack variables.
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