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Supplementary Discussion 
Inter-MCP interactions and structural plasticity of the 20 MCP conformers 

First recognized in HCMV1 and subsequently confirmed in HSV2-4, HHV-6B5, and 

KSHV6, the herpesvirus capsid floor is characterized by either type I, II, or III MCP-MCP 

interactions (Extended Data Fig. 3e-l). Type I interaction is intra-capsomeric while type 

II and type III are inter-capsomeric. Types I, II, and III interactions are formed between 

two or three adjacent MCP subunits by either β-strands in the N-lasso, E-loop in the 

Johnson-fold and dimerization domains (Extended Data Fig. 3g,i-j), or α-helices in the 

dimerization domains (Extended Data Fig. 3h) of the neighboring MCPs. The lasso 

action (type III) occurs only between hexon-hexon MCPs (Extended Data Fig. 3i-j) but 

not penton-hexon MCPs (Extended Data Fig. 3k,l); this is due to the flexibility of the 

penton MCP N-terminus, which causes P6 MCP to refold into a conformation that 

effectively eliminates its lassoing ability (Extended Data Fig. 3k). Additionally, the inter-

capsomeric interactions between α-helices in the dimerization domains (i.e., type II) also 

only occur between hexon-hexon MCPs because the dimerization domain of penton 

MCP adopts a configuration which makes it unable to form type II interactions with the 

dimerization domain of P1 hexon MCP, rendering the P1 dimerization domain flexible 

(Extended Data Fig. 3k,l).  

 In contrast to these conserved MCP domain organization and MCP-MCP 

interaction schemes, the structures among individual MCP subunits of the capsid exhibit 

an unprecedented level of variability which we refer to as structural plasticity 

(Supplementary Video 8). We identified 20 unique conformations among the MCP 

structures resolved in each EBV capsid (Fig. 3; Extended Data Fig. 4): 16 within an 

icosahedral asymmetric triangle (Fig. 3e), 2 portal proximal (Extended Data Fig. 4a, 

right panel), and 2 related to CATC binding (Extended Data Fig. 4a, middle panel). 

These MCPs show structural plasticity at different degrees depending on their 

surroundings. 16 MCPs within the asymmetric unit vary in their local structures 

throughout multiple domains, particularly at their floor regions (Fig. 3e-p). Compared 

with P1, P6 and Pen MCPs, the structures of C1-C6, E1-E3, and P2-P5 MCPs do not 

have dramatic changes. The alignment of these 13 MCP models highlights not only the 



2 
 

conformational changes at their N-lasso domains (Fig. 3j) and two fragments (a.a. 124-

172 and a.a. 1072-1091) in their Johnson-fold domains (Fig. 3k), but also the orientation 

switch (i.e., being “up” and “down”) of two MCP fragments (a.a. 1149-1169 and a.a. 

1256-1267) in their buttress domains (Fig. 3h,i). Each triplex adopts a unique direction, 

but still can be stabilized by interacting with three quasi-equivalent neighboring MCPs. 

Different interacting sites on the heterotrimeric triplexes (Supplementary Figs. 4-5) 

might be responsible for the multiple binding states found in the buttress sub-domains 

(Fig. 3h,i).  

Variations among MCP subunits can be observed in the floor regions of P1, P6 

and Pen MCPs, particularly in N-lasso (Fig. 3o) and dimerization (Fig. 3n) domains. N-

lasso of P1 MCP folds similarly with that of C1 MCP, but is completely different from 

those of P6 and Pen MCPs (Fig. 3o). Likewise, the fragment of a.a. 295-374 of P6 MCP 

folds in conformity with that of C1 MCP while differing vastly compared with those of P1 

and Pen MCPs (Fig. 3n). It is worth noting that the fragment a.a. 1277-1323 in the 

buttress domain of Pen MCP folds into a long helix instead of two short helices in those 

of other 15 MCPs (Fig. 3m). As shown in Fig. 3p, the spine helix in the Johnson-fold 

domain of Pen MCP tilts downward ~40º compared with the 15 hexon MCPs.  

 There are also variations in the P1 (and P6) MCP structures in the CATC-absent 

vertex (Extended Data Fig. 4a, left panel), CATC-binding vertex (Extended Data Fig. 4a, 

middle panel), and portal vertex (Extended Data Fig. 4a, right panel). Among these 

three, the portal vertex displays the greatest level of structural plasticity (P1 in Extended 

Data Fig. 4b-e; P6 in Extended Data Fig. 4f,g). Such structural variations may result 

from differences in capsid-bindings by CATC and portal proteins. For instance, fragment 

a.a. 80-96 of P1 MCP in the portal vertex flips up rather than down as those in the P1 

MCPs of CATC-absent and CATC-binding vertices (Extended Data Fig. 4d). Fragments 

of a.a. 305-340 and a.a. 1146-1168 are missing in P1 MCP (Extended Data Fig. 4c,e) 

while a.a. 26-63 is invisible in P6 MCP (Extended Data Fig. 4g) in the portal vertex 

reconstruction. These variations in hexons MCPs, particularly P1 and P6 MCPs, and 

penton MCP reveal the intrinsic plasticity of MCP structure in EBV; the folding of 

individual domains is preserved with gradual structural changes spreading out across 
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different domains, rather than through an abrupt large-scale conformational switch (Fig. 

3e-p). Despite remaining consistent with its role in organizing the three types of MCP-

MCP interactions (Extended Data Fig. 3e-l), the greatest structural changes were 

observed in N-lasso areas. Taken together, the 20 unique conformers of MCP—16 

MCPs within an asymmetric unit, 2 P1 and 2 P6 MCPs in CATC-binding penton and 

portal vertexes—unveil a remarkable level of structural plasticity of MCP not previously 

reported for any herpesviruses. 

Supplementary Tables 
Supplementary Table 1. Statistics of cryoEM imaging, data processing and model 
refinement. 

Supplementary Table 2. Model building statistics.  

Supplementary Table 3. RMSD statistics for MCP and Tri1. 
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Supplementary Figure 1. A representative cryoEM micrograph containing one EBV virion
particle. Two types of particles can be seen: virion containing a nucleocapsid (marked by a green box,
middle) and virus-like vesicles39 (upper left). Zoomed-in in the right panel is the nucleocapsid showing
fingerprint-like pattern, characteristic of dsDNA.
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Supplementary Figure 3. Resolution assessment of 3D reconstructions. (A) Local resolution
evaluation of sub-particle reconstructions by ResMap59. Color bar represents resolution range. (B)
“Gold-standard” Fourier shell correlation (FSC) curves of the 3D reconstructions. The resolutions of
the icosahedral reconstruction and C5 whole virus reconstruction are 5.6 Å and 7.8 Å, respectively;
those for the other sub-particles are as follow: 3.0 Å (C6 hexon sub-particle reconstruction), 3.4 Å (C2
2-fold sub-particle reconstruction), 3.4 Å (C3 3-fold sub-particle reconstruction), 3.5 Å (C5 penton
vertex sub-particle reconstruction), 4.0 Å (CATC-binding sub-particles reconstruction), 4.1 Å (C1 3-
fold sub-particles reconstruction), 3.5 Å (CATC-absent penton sub-particle reconstruction) and 4.4 Å
(C5 portal vertex sub-particles reconstruction). All resolutions are based on the 0.143 FSC criterion 51.
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Supplementary Figure 4. Schematic diagram of plasticity of triplex interactions with MCP buttress domain shown in
Figure 3h,i.
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Supplementary Figure 5. Details of plasticity of triplex interactions with MCP buttress domain shown in Figure
3h,i. (A) Distribution of triplexes Ta, Tb, Tc, Td, and Te in the MCP network. (B-F) Magnified profile views of the regions
surrounding triplexes Ta (B), Tb (D), Tc (C), Td (E), and Te (F) as viewed from the outside of the capsid. Away from the
capsid floor, triplex Ta is dominantly stabilized by two long loop-containing segments (a.a. 1149-1169 and a.a. 1256-
1267) from the buttress domains of P1 MCP (purple), P6 MCP (orange), and Pen1 MCP (green) (B). Tb (D), Tc (C), Td
(E), and Te (F) triplexes are stabilized by their surrounding MCPs in an architecturally similar but locally different manner.
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