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SUMMARY
Human dendritic cells (DCs) comprise subsets with distinct phenotypic and functional characteristics, but the
transcriptional programs that dictate their identity remain elusive. Here, we analyze global chromatin acces-
sibility profiles across resting and stimulated human DC subsets by means of the assay for transposase-
accessible chromatin using sequencing (ATAC-seq). We uncover specific regions of chromatin accessibility
for each subset and transcriptional regulators of DC function. By comparing plasmacytoid DC responses to
IFN-I-producing and non-IFN-I-producing conditions, we identify genetic programs related to their function.
Finally, by intersecting chromatin accessibility with genome-wide association studies, we recognize DC
subset-specific enrichment of heritability in autoimmune diseases. Our results unravel the basis of human
DC subset heterogeneity and provide a framework for their analysis in disease pathogenesis.
INTRODUCTION

Dendritic cells (DCs) play pivotal roles in the activation of a wide

range of immune responses, which are mediated through a divi-

sion of labor among functionally specialized subsets. Functions

within each DC subset are enabled by programs coordinated by

the precise interactions of transcription factors (TFs) binding

genomic sites to control gene expression. Tight regulation of

these programs is essential to promote appropriate responses

against infection and cancer while avoiding autoimmunity.

Although several transcriptional programs dictating mouse DC

subset development and function have been described, tran-

scriptional regulation of human DC subsets remains elusive.

Furthermore, we lack a comprehensive and unbiased view of

the global chromatin landscape of human DCs. Revealing chro-

matin landscapes of primary human DCs in health is ultimately

essential to pinpoint altered programs in disease.

The human DC network is composed of two major subsets,

classical DCs (cDCs) and plasmacytoid DCs (pDCs) (Guilliams

et al., 2014; Merad et al., 2013). cDCs can be further divided

into cDC1 and cDC2, specialized in the activation of CD8+ and

CD4+ T cells, respectively. pDCs are known for their capacity

to produce large amounts of type I interferon (IFN-I) in response

to viral infection followed by their conversion into cDC-like cells

(Abbas et al., 2020; Leylek and Idoyaga, 2019; Reizis, 2019). Ad-

vances in molecular profiling allowed the characterization of hu-
Cel
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man blood DCs using single-cell RNA sequencing (scRNA-seq)

(See et al., 2017; Villani et al., 2017). This approach was powerful

to discern previously unappreciated heterogeneity of human

DCs and lead to the identification of transitional DCs (tDCs,

also known as AXL+ DCs or ASDCs), an evolutionarily conserved

DC population that shares transcriptomic and proteomic fea-

tures with pDCs and cDCs (Alcántara-Hernández et al., 2017;

Leylek et al., 2019). However, RNA-seq captures protein-coding

regions that account for <3% of the genome (ENCODE Project

Consortium, 2012). RNA expression is often preceded by

changes in the chromatin accessibility at gene promoters and

other distal regulatory elements such as enhancers. Thus, under-

standing human DC transcriptional regulation requires an evalu-

ation of the chromatin landscape, which can bemeasured in high

resolution with the assay for transposase-accessible chromatin

using sequencing (ATAC-seq) (Buenrostro et al., 2013). ATAC-

seq identifies genome-wide accessible regulatory regions (cis-

elements) and can infer the activity of TFs (Buenrostro et al.,

2013, 2015; Schep et al., 2017). The integration of ATAC-seq

data with genome-wide association studies (GWAS) of immune

cell-mediated diseases also allows the identification of cell-spe-

cific enrichment of disease-causing heritability traits. ATAC-seq

has been used to characterize the chromatin landscape of major

mouse and human immune lineages (Calderon et al., 2019; Cor-

ces et al., 2016; Granja et al., 2019; Satpathy et al., 2019; Yosh-

ida et al., 2019); however, a detailed study of primary human DC
l Reports 32, 108180, September 22, 2020 ª 2020 The Author(s). 1
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Figure 1. Analysis Workflow of Primary Human DC Chromatin Accessibility Profiles

(A) Left: experimental workflow. Human myeloid populations were sorted from peripheral blood of 7 healthy adult donors and analyzed by ATAC-seq. Technical

replicates were analyzed when not limited by cell number. Right: post-sort purity. The numbers indicate the frequency of parent gate. See Figure S1A for the full

gating strategy.

(B) PCA based on ATAC-seq signal in all cis-elements. Each point represents 1 sample.

(C) Genome tracks from 1 representative donor showing signal near known subset-specific genes. The bottom bar represents the gene and the arrow indicates

the start codon. The gray highlights indicate differentially accessible cis-elements.

(D) Top: heatmap of subset-specific cis-elements (fold change [FC] > 5 and adjusted p value [p-adj] < 0.05 in all pairwise comparisons). Color indicates Z score of

ATAC-seq signal. Bottom: number of subset-specific cis-elements.

(E) Left: scatterplots comparing ATAC-seq signal (read counts) between cDC2 and other subsets. Each point represents 1 cis-element. The colored points

indicate differentially accessible cis-elements (FC > 5 and p-adj < 0.05). The dark gray points indicate shared cis-elements (FC < 2 and average count > 10). Right:

(legend continued on next page)
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subsets, some of which represent <0.1% of peripheral blood

mononuclear cells (PBMCs), is lacking. Furthermore, the global

chromatin landscape changes that occur during DC activation

are unknown. These limitations pose a barrier to dissecting the

transcriptional mechanisms of DC dysfunction in disease and

designing DC-based therapeutics.

Here, we applied ATAC-seq to measure chromatin accessi-

bility in primary DC subsets in resting and activated states. We

correlated the chromatin landscape with TF activity, RNA

expression, protein expression, and the function of each DC

subset. This approach allowed us to unmask features of the

chromatin landscape associated with cell subsets or activation

states and discover previously undescribed TFs that regulate

DC function. By integrating these data with autoimmune disease

GWAS, we found evidence for candidate single-nucleotide poly-

morphisms (SNPs) in a pDC-specific enhancer that explained

trait heritability in systemic sclerosis. Our data constitute a

comprehensive analysis of the epigenomic profiles among func-

tionally distinct but closely related human DC subsets and pro-

vide a valuable resource for future comparisons of these cells

in different tissues in health and disease.

RESULTS

Approach to Analyze the Chromatin Accessibility
Landscape of Primary Human DC Subsets
We set out to generate a DC map of chromatin accessibility by

performing ATAC-seq on purified primary human subsets (i.e.,

cDC1, cDC2 and pDCs) obtained from 7 healthymale and female

donors. For comparison, we included CD14+ monocytes in our

analysis (Figures 1A and S1A). cDC2s were purified as CD14�

BDCA1high to exclude most CD32� inflammatory DC3 (Fig-

ure S1A; Dutertre et al., 2019; Villani et al., 2017). Our ATAC-

seq data were of high quality (i.e., the samples had a median

transcription start site [TSS] enrichment score of 23.7, and repli-

cates were highly reproducible) (Figures S1B and S1C). After

filtering the data, we identified 94,328 genome-wide ATAC-seq

peaks (cis-elements) (p < 0.01). Analysis of these cis-elements

by principal-component analysis (PCA) showed that each

DC subset has a distinct chromatin signature (Figure 1B). Cell

type made up >97% of the variance between samples, while

sex and individual differences made minimal contributions

(Figure S1D).

Open chromatin at known DC subset-specific genes vali-

dated our analysis (Figure 1C). pDCs had higher accessibility

at cis-elements neighboring CLEC4C and GZMB, genes that

encode the surface marker BDCA2 and granzyme B, respec-

tively. cDC1 showed higher accessibility within CADM1 encod-

ing CADM1/NECL2 and SNX22, a sorting nexin expressed by

mouse and human cDC1 (Brähler et al., 2018; Villani et al.,

2017). We found that cDC2 and monocytes shared higher

accessibility at CD1C and ITGAX, which encode BDCA1 and

CD11c, respectively. Monocytes had higher accessibility at
heatmap of cis-elements shared between cDC2 and other subsets. The color indic

accessible cis-elements in each pairwise comparison.

(F) Genome tracks for select shared cis-elements from (E).

See also Figure S1 and Table S1.
cis-elements neighboring CD14 and the macrophage-inducible

C-type lectin CLEC4E.

We next unbiasedly queried cis-elements accessible in each

subset (Figure 1D). Of the 94,328 cis-elements, >7,000 were

only accessible in pDCs. Similarly, 2,901 and 2,050 were solely

accessible in cDC1 and monocytes, respectively. However,

only 26 cis-elements were uniquely accessible in cDC2, sug-

gesting that the chromatin landscape of cDC2 is shared with

other DCs. The regions that were more accessible in cDC2

were also more accessible in either pDCs, cDC1, or monocytes

(Figures 1E and S1E). For instance, cDC2 and pDCs shared 909

cis-elements, including regions near DENND1B and ALCAM,

genes involved in endocytosis and leukocyte adhesion, respec-

tively (Figure 1F). Similarly, cDC2 and cDC1 shared 3,463 cis-el-

ements neighboring genes associated with the induction of T cell

responses (e.g., CCR7, CD59). Finally, cDC2 had a greater de-

gree of overlap with monocytes, sharing accessibility at 6,134

cis-elements such as CFP and CD58, 2 myeloid cell activation

genes. The lack of cis-elements unique to cDC2 may reflect

further heterogeneity in our purified population. This could arise

from current limitations in the ability to distinguish cDC2 from

DC3, given their continuum of phenotypes (Dutertre et al.,

2019). Of note, the 26 cDC2-specific cis-elements surrounded

genes of unknown function (e.g., the long non-coding RNA

LINC007000 and lymphocyte expansion molecule LEXM) (see

Table S1 for the complete list). Collectively, our approach allows

analysis of chromatin accessibility in primary human DCs.

ATAC-Seq Uncovers a pDC-Specific TF, ZBTB18
We leveraged ATAC-seq to infer the activity of 870 human TFs

using chromVAR, which calculates a TF activity score based

on the enrichment of known binding motifs within cis-elements

(Schep et al., 2017). PCA and hierarchical clustering based on

TF activity showed that pDCs and monocytes were quite

distinct, whereas cDC1 and cDC2 were similar to each other

(Figures 2A and 2B). We next analyzed the activity of TFs known

to be involved in the development and function of mouse DC

subsets (Figure 2C). pDCs showed higher activity scores for

TCF4 and RUNX2, as expected (Cisse et al., 2008; Sawai

et al., 2013). Similarly, cDC2 showed higher activity for IRF4

and SPI1 (Anderson et al., 2000; Suzuki et al., 2004), whereas

monocytes showed higher activity for FLI1, KLF4, and CEBP

family members (Zhu et al., 2016). Finally, we found that the

cDC1 TF BATF3 (Hildner et al., 2008) appeared more active in

human monocytes than cDC1, which may be due to similarities

between the binding motifs of BATF3 and other TFs of the

AP-1 family (Friedman, 2007).

Although TF expression can be shared between DC subsets,

mouse studies have shown that each subset can use distinct en-

hancers. For instance, both pDCs and cDC1 express Irf8, which

regulates the function and development of these cells, respec-

tively (Sichien et al., 2016). However, mouse pDCs use

the +41-kb Irf8 enhancer, whereas cDC1 absolutely require
ates ATAC-seq signal Z scores. Bottom: overlap of cDC2-specific differentially

Cell Reports 32, 108180, September 22, 2020 3



Figure 2. ATAC-Seq Reveals an Unde-

scribed Transcriptional Regulator in pDCs.

(A) PCA based on TF activity scores (TF score)

calculated by chromVAR.

(B) Heatmap of top 200 most variable TFs (col-

umns) across subsets (rows). The color indicates

scaled TF score.

(C) PCA as in (A) colored by scaled TF score.

(D) Chromatin accessibility around the IRF8, TCF4,

CEBPA, and KLF4 loci. The tracks are from 1

representative donor. The TCF4 ChIP-seq track

(Ceribelli et al., 2016) is shown for IRF8 and TCF4.

(E) pDC-specific TFs identified by chromVAR that

also demonstrate higher mRNA expression in

pDCs. The x axis represents the mean mRNA

expression in pDCs measured by scRNA-seq (Vil-

lani et al., 2017). The bars are colored by pDC

specificity compared to other DC subsets (Z score).

(F) Genome tracks of ZBTB18 locus from 1

representative donor showing transcript variant 1.

(G) ZBTB18 HINT-ATAC footprint from genome-

wide binding sites. The data are pooled from all of

the samples for each subset.

(H) ZBTB18 transcript variant 1 expression

measured by RT-PCR, n = 3–5 in 2–4 independent

experiments. The statistics are determined by

1-way ANOVA with Dunnett’s multiple compari-

sons test.

Bar graphs showmeans ± SDs. *p < 0.05 and **p <

0.01. See also Figure S2.
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the +32-kb Irf8 enhancer for their development (Bagadia et al.,

2019; Durai et al., 2019). Similarly, human pDCs showed higher

accessibility of the +58-kb enhancer and cDC1 showed higher

accessibility of the +49-kb enhancer, which are equivalent to

the mouse counterparts (Figure 2D; Bagadia et al., 2019; Gra-

jales-Reyes et al., 2015). We also observed 2 cis-elements

unique to pDCs located near +54 kb, which have not been re-

ported in mice. Chromatin immunoprecipitation sequencing

(ChIP-seq) data (Ceribelli et al., 2016) showed that the pDC line-

age-defining TF TCF4 binds to these 2 newly described en-

hancers, suggesting they may drive IRF8 expression specifically

in human pDCs.

We further investigated enhancers of other lineage-defining TFs

(Figure 2D). We found that all DC subsets exhibited open regions

at the TCF4 locus, including the TSS; however, only pDCs had

accessibility at the +570-kb TCF4 enhancer, a binding site neces-

sary for the TCF4positive feedback loop that drives pDCdevelop-

ment in mice (Grajkowska et al., 2017). We further observed

higher accessibility of the +42-kbCEBPA enhancer inmonocytes,

equivalent to the +37-kb Cebpa enhancer described in mice

(Cooper et al., 2015). Finally, we analyzed the KLF4 locus and

found that cDC2 and monocytes shared accessibility at +25 kb,

a predicted enhancer site (Fishilevich et al., 2017). Thus, our
4 Cell Reports 32, 108180, September 22, 2020
data enable identification of human DC

subset-specific cis-elements around line-

age-defining TFs.

We then explored TFs with high activity

in pDCs to identify undescribed regula-

tors. One limitation of ATAC-seq is its dif-
ficulty in distinguishing between TFs that share similar binding

motifs. Therefore, we considered only TFs with high activity

that were also specifically expressed in pDCs at the RNA level

(Figures 2E and S2A). TCF4 and RUNX2 were highly expressed

in pDCs, correlating with their higher activity. TGIF2was not spe-

cific, being expressed in pDCs and other DC subsets. TCF3,

which shares binding motifs with TCF4, was highly and specif-

ically expressed in pDCs; however, mouse experiments have

shown that this TF is dispensable for pDC development and

function (Cisse et al., 2008). Lastly, ZBTB18 (ZNF238/RP58/

ZFP238), a zinc finger TF known to inhibit ID2 expression in skel-

etal muscle (Yokoyama et al., 2009), was specifically expressed

in pDCs.

We further evaluated ZBTB18 activity in pDCs. Analysis of the

cis-elements surrounding ZBTB18 showed a pDC-specific peak

at the TSS for one of the transcript variants (Figures 2F and S2B).

Also, HINT (HMM-based identification of TF footprints)-ATAC,

which displays the ‘‘footprint’’ caused by TF-mediated protec-

tion from transposition (Li et al., 2019b), showed changes sur-

rounding ZBTB18 binding sites in pDCs but no other DC subsets

(Figure 2G). Moreover, RT-PCR confirmed specific expression of

ZBTB18 transcript variant 1 by pDCs (Figure 2H). Of note,

ZBTB18 transcript variants 2 and 3 were not differentially
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expressed between the subsets, suggesting that they do not

contribute to the expression levels observed by scRNA-seq (Fig-

ure S2C). These data suggest that ZBTB18 may regulate pDC

gene expression. To support this hypothesis, we leveraged pub-

licly available data of Zbtb18 silencing in mouse myoblasts and

gene set enrichment analysis (GSEA) (Mootha et al., 2003; Sub-

ramanian et al., 2005). We found that genes that were downregu-

lated upon Zbtb18 silencing were significantly enriched among

human pDCs but no other DC subsets, providing additional evi-

dence of ZBTB18 activity in pDCs (Figures S2D and S2E).

In summary, our analyses unravel TFs that regulate the chro-

matin landscape of human primary DC subsets. In particular,

they allowed the identification of ZBTB18, a previously unrecog-

nized TF that is active and specifically expressed by human

pDCs.

Chromatin Landscape and Transcriptional Regulation of
tDCs
Recently, we and others described an evolutionarily conserved

DC population that shares features with both pDCs and cDCs,

which we called tDCs. Given that the transcriptional regulation

of tDCs remains poorly understood, we obtained high-quality

ATAC-seq profiles using the optimized Omni-ATAC protocol

for low cell numbers (Corces et al., 2017; Figures S3A and S3B).

To parallel our previous analyses, we divided tDCs into pDC-

like CD11clo tDCs and cDC-like CD11chi tDCs (Alcántara-Her-

nández et al., 2017; Leylek et al., 2019). As previously observed

for RNA and protein analyses (Alcántara-Hernández et al., 2017;

Villani et al., 2017), TF activity scores derived from ATAC-seq

profiles positioned tDCs intermediate between pDCs and

cDC2 by PCA and unsupervised hierarchical clustering (Figures

3A and 3B). TFs with higher activity scores in tDCs versus pDCs

tended to have higher scores in cDC2 (Figure 3C). Conversely,

TFs with higher activity scores in tDCs versus cDC2 tended to

have even higher scores in pDCs (Figure 3D). For example, the

pDC TFs TCF4 and RUNX2 clearly showed the transition,i.e,

high activity in pDCs, intermediate in tDCs, and low in cDC2 (Fig-

ure 3E). On the other hand, the cDC2 TFs CEBPA and FLI1 were

low in pDCs, intermediate in tDCs, and higher in cDC2. In all of

the cases, there was a directional gradient in TF activity from

CD11clo tDCs to CD11chi tDCs. Finally, tDCs displayed activity

for both IRF8 and IRF4, in agreement with their protein expres-

sion (Leylek et al., 2019). As expected (Alcántara-Hernández

et al., 2017; Villani et al., 2017), tDCs did not show a transitional

relationship between pDCs and cDC1 (Figure S3C).

We next focused on TFs that show higher activity in tDCs, i.e.,

BCL11A, BCL11B, KLF3 and TBX2 (Figure 3F, left, labeled with

an asterisk). Due to the challenge of differentiating between

TFs with similar binding motifs, we included closely related TFs

in our analysis and assessed RNA expression (Figure 3F, right).

We found that the TBX family was not expressed in any DC pop-

ulation. BCL11A and BCL11B have identical binding motifs, and

both showed higher TF activity in tDCs; however, BCL11B was

not expressed in any DC subset, and BCL11A was highly ex-

pressed in both pDCs and tDCs. Lastly, all 3 KLF familymembers

were expressed in tDCs, but KLF12 expression was highest in

tDCs. Analysis of cis-elements around the KLF12 locus

confirmed the presence of an intronic region uniquely accessible
in tDCs (Figure 3G). Furthermore, tDCs from both humans and

mice expressed at least 2-fold more KLF12mRNA than the other

populations (Figure 3H). Finally, genes that were downregulated

in Klf12�/� mouse natural killer (NK) cells were significantly

enriched among genes expressed in tDCs, providing further ev-

idence for KLF12 activity in tDCs (Figures S3D and S3E).

In conclusion, the transcription factor profile of tDCs is inter-

mediate between pDCs and cDC2, corroborating their transi-

tional features. We nevertheless identified KLF12, a TF that is

uniquely active and expressed in human and mouse tDCs, sug-

gesting it may play a role in regulating their development or

function.

pDCs Undergo Large-Scale Stimulus-Dependent
Chromatin Changes
We next aimed to identify regulatory elements that control func-

tional changes during DC activation. For this, we used pDCs as

an example, given their potential for multiple functional out-

comes (Alculumbre et al., 2018; Swiecki and Colonna, 2015).

pDCs are known for their capacity to produce IFN-I upon viral

stimulation (Reizis, 2019). Also, pDCs can convert into cDC-

like cells by remodeling their morphology, upregulating co-stim-

ulatory markers, increasing antigen presentation, and

decreasing IFN-I production (Leylek and Idoyaga, 2019). Howev-

er, the chromatin dynamics underlying these 2 distinct functional

outcomes are unclear. Thus, we performed a comprehensive

analysis of chromatin changes across resting and stimulated

bona fide pDCs (purified to be free of tDCs; Figure S3A). We

compared a stimulus that promotes IFN-I secretion (i.e., the

TLR7 agonist imiquimod [IMIQ]) and a stimulus that promotes

pDC activation without IFN-I secretion (i.e., CD40L) (Figures 4A

and S4A–S4C). As expected, both stimuli induced human leuko-

cyte antigen (HLA)-DR (major histocompatibility complex II

[MHC-II]) and CD80 protein upregulation, corresponding with

increased chromatin accessibility around HLA-DRA, CD80,

and CD83 (Figures 4B and 4C). However, only IMIQ induced

IFN-I secretion, which corresponded to greater chromatin

accessibility surrounding IFN-stimulated genes such as IFITM2.

Comparison of the chromatin accessibility changes between

the 2 stimuli showed that the primary axis of variation distin-

guished resting and stimulated pDCs (Figure 4D, left). Neverthe-

less, we found 2,502 and 8,182 regions that were more acces-

sible after CD40L and IMIQ stimulation, respectively (Figures

4D, right, and 4E). These regions neighbored several immune

genes—for example, CADM1, CD5, and CCR7 for IMIQ and

CD2 for CD40L (Figures 4E and 4F). To determine whether

changes in chromatin accessibility correlated with differences

in protein expression, we profiled stimulated bona fide pDCs

by CyTOF (see Table S2 for the antibody cocktail). In accordance

with the ATAC-seq data, IMIQ and CD40L stimulation induced

different cellular phenotypes identified by 2 major differentiation

arms of the Wishbone trajectory analysis (Setty et al., 2016; Fig-

ure 4G). Paralleling the ATAC-seq analysis, CD2 protein expres-

sion was higher in branch 2 corresponding to CD40L-stimulated

cells, whereas CADM1 and CCR7 protein expression was higher

in branch 3 corresponding to IMIQ-stimulated cells.

Next, we used the Genomic Regions Enrichment of Annota-

tions Tool (GREAT) (McLean et al., 2010) to identify significantly
Cell Reports 32, 108180, September 22, 2020 5



Figure 3. Unique TF Profile of tDCs

(A) PCA based on TF scores calculated by chromVAR.

(B) Heatmap of top 200 most variable TFs (columns) across subsets (rows). The color indicates scaled TF score.

(C) Left: histogram of difference in TF scores between pDCs and CD11chi tDCs. The colored points indicate significantly different TFs (DTF score > |0.05| and p-

adj < 0.05). Right: boxplots of TF scores for differentially active TFs from indicated comparisons.

(D) Same as (C), but comparing cDC2 and CD11chi tDCs.

(E) Bar graphs of scaled TF scores for indicated TF motifs (n = 4–17 samples per subset).

(F) Left: heatmap of scaled TF scores for tDC-specific TFmotifs (DTF score > |0.05| and p-adj < 0.05 in all pairwise comparisons; indicated by asterisk) and closely

related TFs. Right: heatmap of average TF mRNA expression from scRNA-seq data (Villani et al., 2017).

(G) Genome tracks of KLF12 locus from 1 representative donor.

(H) Left: KLF12 expression in human subsets measured by RT-PCR (n = 2–3 in 2 experiments). Right: Klf12 expression in mouse subsets measured by RNA-seq

(n = 2–3) (Lau et al., 2016; Leylek et al., 2019). The statistics are determined by 1-way ANOVA with Dunnett’s multiple comparisons test.

Bar graphs show means ± SDs. **p < 0.01, ***p < 0.001, and ****p < 0.0001. See also Figure S3.
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Figure 4. Analysis of Chromatin Landscapes Reveals Alternative pDC Cell States following Stimulation

(A) Experimental workflow for analysis of freshly isolated (day 0) and stimulated pDCs. Bona fide pDCs (AXL�) were sorted and analyzed immediately (day 0) or

stimulated in vitro for 2 days, followed by re-sorting live cells for ATAC-seq analysis (see Figures S3A and S4A for gating strategy).

(B) Left: protein levels of HLA-DR and CD80 in freshly isolated (day 0) or 2-day stimulated bona fide pDCs measured by flow cytometry (n = 3–9 in 3–8 exper-

iments). The statistics are determined by Kruskal-Wallis with Dunn’s multiple comparisons test. Right: IFN-a measured by ELISA in culture supernatant after

2 days (n = 5 in 5 experiments). The statistics are determined by Mann-Whitney test.

(C) Genome tracks from 1 representative donor.

(D) Left: PCA based on ATAC-seq signal in all cis-elements. Each point represents 1 sample (n = 3–4 per condition). Right: scatterplot comparing all cis-elements

between CD40L- and IMIQ-stimulated pDCs. The colored points indicate significantly differentially accessible cis-elements (FC > 2 and p-adj < 0.05).

(E) Heatmap of scaled ATAC-seq signal in cis-elements identified in (D).

(F) Genome tracks from 1 representative donor.

(legend continued on next page)
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enriched functional pathways among IMIQ- and CD40L-remod-

eled chromatin landscapes (Figure 4H). IMIQ-stimulated pDCs

gained more accessibility around genes involved in cytokine

biosynthesis, which correlated with greater IFN-I, tumor necrosis

factor a (TNF-a), and interleukin-6 (IL-6) production (Figures 4B

and 4I). Also, IMIQ-stimulated pDCs had increased accessibility

around proliferation genes, which functionally correlated with

higher Ki67 expression and increased cell division during culture

(Figure 4J). Finally, IMIQ-stimulated pDCs gained greater acces-

sibility around genes related to lymphocyte activation. To func-

tionally confirm this pathway, we compared the capacity of

IMIQ- and CD40L-stimulated pDCs to activate T cells in a mixed

leukocyte reaction (MLR) (Figures 4K, S4D, and S4E). While both

stimuli increased the capacity of pDC to promote T cell prolifer-

ation, IMIQ-stimulated pDCs biased responses toward IFN-g-

producing T cells, whereas CD40L-stimulated pDCs biased re-

sponses toward regulatory T cells (Tregs) (Figure 4K).

Our analysis resolves the chromatin dynamics of pDCs stimu-

lated under IFN-I-producing and non-IFN-I-producing condi-

tions, providing evidence of distinct pathways of differentiation

that result in alternative cell states and functionality.

CD40L-Stimulated pDCs Share Chromatin Landscape
with tDCs and cDCs
We observed that stimulated bona fide pDCs cluster nearest to

tDCs using unbiased global analysis (Figure S5). Using a modi-

fied GSEA, we confirmed that both CD40L and IMIQ stimulation

promoted chromatin remodeling that correlated with the chro-

matin landscape of tDCs and cDCs (Figure 5A). This analysis

also revealed a higher correlation between CD40L-stimulated

pDCs and CD11chi tDCs. Thus, pDCs can undergo large-scale

chromatin remodeling to primarily resemble tDCs, especially

during CD40L stimulation.

GREAT analysis of biological processes showed that, similar

to tDCs and cDCs, CD40L-stimulated pDCs had greater acces-

sibility near genes related to myeloid cell differentiation, T cell

activation, and cytokine secretion (Figure 5B), which is in line

with previous evidence that CD40L-stimulated bona fide pDCs

can acquire cDC-like functions (Alcántara-Hernández et al.,

2017). We then used chromVAR to profile the changes in TF ac-

tivity between CD40L-stimulated and freshly isolated (day 0)

pDCs (Figures 5C and 5D). TFs that were less active in CD40L-

stimulated pDCs tended to be less active in tDCs and cDCs.

Conversely, TFs that were more active in CD40L-stimulated

pDCs tended to have higher activity in tDCs and cDCs. Among

these, we found amarked decrease in the activity of TCF4 during

CD40L stimulation, which was also less active in tDCs and cDCs
(G) Left: PCA of sorted bona fide pDCs analyzed by CyTOF, including three time p

and merged. The color indicates the branch cluster determined by Wishbone (

Wishbone branch at day 6. Right: PCA colored by expression of select markers.

(H) Top Gene Ontology terms enriched in CD40L and IMIQ differentially access

indicates �log10 false discovery rate (FDR).

(I) Cytokines in culture supernatant of 2-day stimulated pDCs (n = 5 in 5 experim

(J) Left: frequency of Ki67+ cells among fresh (day 0) or 2-day stimulated pDCs.

stimulated pDCs (n = 4–11 in 2–7 experiments). The statistics are determined by

(K) MLR using fresh or 2-day stimulated pDCs (DC:T cell ratio 1:20, n = 3–4 donors

0 or t test.

Bar graphs shown as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.00
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(Figures 5E and 5F). However, we found amarked increase in the

activity of TFs from the JUN and FOS families (i.e., TFs that can

regulate myeloid cell differentiation) (Liebermann et al., 1998) in

CD40L-stimulated pDCs, tDCs, and cDCs. Of note, only

CD40L-stimulated pDCs showed a marked increase in the activ-

ity of TFs from the nuclear factor kB (NF-kB) family, suggesting

that these have minimal activity in resting DC subsets

(Figure 5D).

TCF4 is known to control the expression of several pDC-spe-

cific genes while repressing cDC hallmark genes such as ID2,

thereby blocking cDC differentiation (Ghosh et al., 2010; Graj-

kowska et al., 2017). Accordingly, we found that CD40L-stimu-

lated bona fide pDCs had lower TCF4 protein expression, which

corresponded to higher ID2 expression (Figures 5G and 5H).

ZBTB18, which has also been described as repressing ID2,

was similarly less active and had a lower expression in CD40L-

stimulated pDCs (Figures 5E–5G). We then asked which other

stimulation-induced changes in TF activity could be attributed

to the loss of TCF4. We compared changes in TF activity upon

CD40L stimulation to changes in TF expression upon TCF4

silencing (Figure 5I; Ceribelli et al., 2016). We found that several

members of the JUN and FOS families were upregulated upon

both TCF4 silencing and CD40L stimulation, suggesting that

TCF4 may repress their expression directly or indirectly.

Our chromatin landscape analysis shows that CD40L is able to

promote bona fide pDC conversion into tDC- and cDC-like cells,

and that this dynamic process is likely tightly regulated by TCF4,

as previously suggested in the mouse (Ghosh et al., 2010). Our

data further suggest that ZBTB18may contribute to this process.

pDC Conversion into cDC-like Cells Follows a Linear
Trajectory
Our bulk analysis could not dissect whether CD40L-mediated

chromatin remodeling was a homogeneous process for all

pDCs or whether there was heterogeneity within the pDC popu-

lation. Thus, we correlated our ATAC-seq observations with

phenotypic cell conversion at the single-cell level by analyzing

fresh (day 0), 2-, or 6-day CD40L-stimulated bona fide pDCs us-

ing CyTOF (mass cytometry). Wanderlust analysis (Bendall et al.,

2014), which predicts the time and order of phenotypic changes,

showed that the trajectory of cell conversion correlated with

TCF4 downregulation, as suggested by the ATAC-seq data (Fig-

ure 6A). During stimulation, pDCs downregulated classic

markers such as BDCA2, and upregulated several cDC markers

(e.g., CD33, HLA-DR, CD172a, CD11c) (Figures 6B and 6C).

Next, we aligned the phenotype of CD40L-stimulated bona

fide pDCs to that of tDCs and cDCs using Scaffold (Spitzer
oints (days 0, 2, and 6) and conditions (media alone, CD40L, IMIQ) subsampled

n = 1 representative of 2 experiments). Center: percentage of pDCs in each

ible cis-elements. The bubble size represents the fold enrichment. The color

ents). The statistics are determined by t test.

Right: number of CellTrace Violet low (CTVlo) cells among fresh, 2-, or 6-day

t test.

in 3 experiments). The statistics are determined by 1-way ANOVA against day

01. See also Figure S4 and Table S2.



Figure 5. CD40L-Stimulated pDCs Share Chromatin Accessibility Landscape with tDCs and cDCs

(A)ModifiedGSEA to test for enrichment of DC subset chromatin signatures amongCD40L- or IMIQ-stimulated pDCs (seeQuantification and Statistical Analysis).

The bubble size represents the Spearman’s rank correlation coefficient. The color indicates the normalized enrichment score (NES).

(legend continued on next page)
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et al., 2015). Scaffold generates a reference map that facilitates

comparison across conditions by connecting single cells to land-

marks based on phenotypic similarity. We used prior knowledge

to denote the location of pDC (blue), tDC (cyan), cDC1 (green),

and cDC2 (red) landmarks in the map (Figures S6A and S6B).

Corroborating our purification strategy,�99% of freshly isolated

bona fide pDCs localized in the pDC landmark at day 0 (Figures

6D and 6E). In accordancewith the ATAC-seq analysis, we found

that �15% of pDCs mapped to the tDC landmark after 2 days of

culture with CD40L. These cells expressed several tDCmarkers,

including CD5, BDCA3, CD11c, CD33, CX3CR1, and AXL (Fig-

ures 6F and S6C). The appearance of AXL+ cells in the culture

was not attributable to cell proliferation (Figure S6D). By day 6,

we observed that a fraction of cells positioned in the cDC2 land-

mark (Figures 6D and 6E). Considering that cultured pDCs map-

ped to the tDC landmark by day 2, but only mapped to the cDC2

landmark at day 6, our data suggest that tDCs are a transitional

cell state during pDC-to-cDC conversion.

To test whether CD40L-mediated phenotypic changes corre-

lated with functional changes, we re-sorted cells that mapped to

the pDC, tDC, or cDC2 landmarks and analyzed their function

(see Figure S6E for the phenotype of purified cells). Cells that

mapped to the pDC landmark retained the capacity to produce

IFN-a (Figure 6G). Conversely, cells that mapped to the cDC2

landmark lost IFN-a production potential and acquired strong

T cell activation capacity. Finally, cells that mapped to the tDC

landmark produced very little IFN-a and induced strong T cell

proliferation, which corresponds to the previously described

functional capabilities of tDCs (Leylek et al., 2019).

We conclude that bona fide pDCs follow a linear trajectory of

cell conversion to cDC-like cells during CD40L stimulation, pass-

ing through a stage that resembles circulating tDCs. There is het-

erogeneity in the pDC response to stimulation at the single-cell

level, such that not all pDCs proceed through the cell-conversion

process simultaneously. Finally, our data are in line with a recent

report showing that mouse pDCs can acquire tDC- and cDC-like

gene signatures after viral infection in vivo (Abbas et al., 2020).
GWAS Associates Systemic Sclerosis Genetic Risk
Variants with pDCs
Dissecting the molecular mechanisms behind autoimmune dis-

ease genetic risk variants requires pinpointing disease-relevant

cell types. However, nearly 90% of these variants lie in noncod-
(B) Top Gene Ontology terms enriched in CD40L-stimulated pDCs compared to fr

The bubble size represents the term fold enrichment.

(C) Left: histogram of difference in TF scores between CD40L-stimulated pDCs

p-adj < 0.05) are colored. Right: boxplots of TF scores.

(D) Heatmap of differentially active TFs from (C). The color indicates the scaled T

(E) HINT-ATAC footprint plots for indicated TFs. The data are pooled from 3–4 d

(F) Bar graphs of scaled scores for select TFs from (D) (n = 4–17 samples per ce

(G) Top: frequency of pDCs expressing high levels of TCF4 protein measured by

variant 1 expression measured by RT-PCR (n = 3–4 in 3–4 experiments). The sta

(H) Top: representative histogram of ID2 mRNA expression in 2-day CD40L-stim

control. Bottom: frequency of ID2+ pDCs (n = 2 in 2 experiments).

(I) Scatterplot comparing changes between CD40L stimulation and TCF4 silencing

(shRNA) conditions in the pDC cell line CAL-1 (microarray) (Ceribelli et al., 2016). y

(ATAC-seq). Shown are TFs that were significantly different in both analyses.

Bar graphs show means ± SDs. *p < 0.05 and ****p < 0.0001. See also Figure S5
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ing regions (Farh et al., 2015). Our global chromatin analysis al-

lowed us to ask whether genetic variation in coding and non-

coding regions confers the risk of autoimmune diseases in a

DC subset-dependent manner.

We used a publicly available database for autoimmune and

non-immune (control) disorders and calculated the enrichment

of disease-related SNPs in DC subsets using the Chromatin

Element Enrichment Ranking by Specificity (CHEERS) algorithm

(Farh et al., 2015; Soskic et al., 2019; Figures 7A and S7A). The

majority of the significant autoimmune disease associations

were found with cis-elements that opened upon stimulation.

For instance, a SNP that confers the risk of Crohn’s disease

was located in a stimulation-responsive enhancer region within

STAT3, a negative regulator of DC activation (Figure S7B; Melillo

et al., 2010). Thus, stimulation-responsive chromatin regions can

explain significant trait heritability in DCs.

We then focused on identifying disease-related SNPs in cis-ele-

ments for resting DCs. Resting pDCs had significant enrichment

for risk variants associated with systemic sclerosis (Figure 7A).

Two variants, rs12445476 and rs11642873, were located within

the+58-kbpDC-specific IRF8enhancer (Figure7B). Thisenhancer

was highly accessible in resting pDCs, but not in cDCs, mono-

cytes, or stimulated pDCs. Furthermore, this enhancer was not

accessible inBcells, T cells, orNKcells,demonstratingpDCspec-

ificity. Notably, rs12445476 and rs11642873 were adjacent to six

E-boxes, which is in line with previous reports showing that the

majority of SNPs are found near but not within TF binding sites

(Bagadia et al., 2019; Farh et al., 2015). Since IRF8 regulates

pDC function (Sichien et al., 2016), it is possible that these SNPs

contribute to the pathogenesis of systemic sclerosis by dysregu-

lating IRF8 expression in pDCs.Our approach shows the potential

of this dataset to infer diseasemechanisms that involve alterations

in DC chromatin regulatory regions.
DISCUSSION

Here, we analyzed the chromatin landscape that provides the

basis of primary human DC heterogeneity by unraveling the

repertoire of accessible cis-elements in each subset. We inferred

previously undescribed TFs that may underlie pDC and tDC

development or function and exposed the dynamic activity of

lineage-specific and stimulus-dependent TFs governing the

outcome of stimulated pDCs. Finally, by connecting the
eshly isolated (day 0) pDCs. The terms are colored and ranked by�log10 FDR.

and day 0 pDCs. The significantly different TF motifs (DTF score > |0.08| and

F score for each subset.

onors per condition.

ll type).

flow cytometry (n = 13–17 in 10–14 experiments). Bottom: ZBTB18 transcript

tistics are determined by t test.

ulated pDCs measured by PrimeFlow. The unfilled histogram represents the

. x axis: FC of mRNA expression between TCF4 and control small hairpin RNA

axis: DTF score between freshly isolated (day 0) and CD40L-stimulated pDCs

.



Figure 6. Single-Cell Trajectory of pDC Cell State Conversion during Stimulation

(A) Wanderlust trajectory of fresh (day 0), 2-, or 6-day CD40L-stimulated bona fide pDCs analyzed by CyTOF; each point represents 1 cell (1 experiment of 3–4).

(B) Normalized expression of pDC and cDC markers plotted along Wanderlust trajectory axis.

(C) As in (A), but colored by expression of key markers.

(D) Statistical Scaffold maps of CyTOF data from fresh (day 0), 2-, or 6-day CD40L-stimulated pDCs (1 representative donor).

(E) Summary graph of frequency of pDCs mapped to each landmark node (n = 2–3 donors in 3–4 experiments).

(F) Protein expression in fresh (day 0), 2-, or 6-day CD40L-stimulated bona fide pDCs analyzed by flow cytometry and CyTOF (n = 3–18 donors in 3–16 ex-

periments). Statistics determined by Kruskal-Wallis with Dunn’s multiple comparisons test.

(G) Functional analysis of pDCs thatmapped to each landmark node. Two-day CD40L-stimulated pDCswere re-sorted based on phenotype. Left: IFN-a in culture

supernatant after 24 h CpG-A, measured by ELISA. Right: T cell proliferation in MLR (n = 2–3 donors in 2–3 experiments).

Bar graphs show means ± SDs. **p < 0.01, ***p < 0.001, and ****p < 0.0001. See also Figure S6 and Table S2.
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chromatin landscape of each DC subset to disease-causing

SNPs, we identified genetic variants that contribute to the risk

of autoimmune diseases such as the human pDC-specific +58-

kb IRF8 enhancer in systemic sclerosis.

Nearly all of the regions accessible in cDC2 were shared with

R1 cell types. We propose that the lack of a cDC2-specific

signature reflects the predominance of a generalized and shared
myeloid program. Alternatively, it is possible that lack of a cDC2

signature is indicative of cDC2 heterogeneity, which has recently

been highlighted in several publications (Alcántara-Hernández

et al., 2017; Dutertre et al., 2019; Villani et al., 2017). Considering

this heterogeneity among cDC2, further investigation of their

transcriptional regulation may benefit from advances in single-

cell ATAC-seq approaches (Satpathy et al., 2019).
Cell Reports 32, 108180, September 22, 2020 11



Figure 7. ATAC-Seq Identifies Regulatory Regions Overlapping

Autoimmune Disease-Related SNPs

(A) Enrichment for autoimmune disease-associated SNPs performed by

CHEERS. Color indicates p value, asterisk indicates p < 0.05. See Figure S7 for

the complete list.

(B) Left: genome track of the IRF8 locus showing 1 representative donor. Right:

genome track of the +58-kb IRF8 enhancer showing pDCs, major immune cell

lineages (Calderon et al., 2019), and TCF4ChIP-seq data (Ceribelli et al., 2016).

Bottom panel shows the schematic of SNP positions in relation to TCF4

binding sites (E-boxes).
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The development, identity, and function of pDCs is dependent

on themaster regulatorTCF4 (Cisseetal., 2008).TCF4antagonizes

ID2, and thus is critical in regulating pDCversus cDCdifferentiation

(Grajkowska et al., 2017). Similar to TCF4, the herein-identified

pDC-specific TF ZBTB18 is known to inhibit ID2 expression during

muscle cell development (Yokoyama et al., 2009). Thus, it is

reasonable to hypothesize that ZBTB18 cooperates with TCF4 to

repress ID2 during pDC development and differentiation. A recent

chromatin-accessibility study noted the specific activity of Zbtb18

inmurine pDCs (Li et al., 2019b), suggesting it is conserved in both

species. Future loss-of-function experiments will aim to evaluate

the role of this undescribed TF on pDC function.

A feature of bona fide pDCs (AXL�) is their capacity to convert

into cDC-like cells (Alcántara-Hernández et al., 2017). We

showed that pDC conversion occurs efficiently during CD40L

stimulation and is associated with the loss of TCF4 and

ZBTB18 TF activity and the gain of ID2 expression. We also

observed the increased activity of JUN and FOS families, which

form AP-1 heterodimers (Shaulian and Karin, 2002). TCF4
12 Cell Reports 32, 108180, September 22, 2020
silencing in the absence of stimulation was sufficient to induce

the expression of AP-1 members, suggesting that AP-1 activity

is repressed by TCF4 directly or indirectly, and may be neces-

sary for pDC conversion into cDC-like cells. Finally, we showed

that bona fide pDC conversion into cDC-like cells can pass

through a stage that resembles circulating tDCs.

The recent identification of tDCs has raised questions about

their origin and function. Our analysis of TF activity based on

chromatin accessibility complementedprevioushigh-dimensional

protein and transcriptomic approaches demonstrating the transi-

tional nature of these cells in relation to pDCs and cDC2 (Alcán-

tara-Hernández et al., 2017; Leylek et al., 2019; Villani et al.,

2017). Given their phenotypic and functional overlap with other

DC subsets, it remains unclear whether tDCs have a distinct func-

tion within the immune system. Nevertheless, we identified KLF12

as a TF expressed in both human and mouse tDCs. Although

KLF12 has not been described in myeloid development or func-

tion, other KLF familymembers have been described. KLF4 drives

monocyte differentiation and is required for cDC2 function (Fein-

berg et al., 2007; Tussiwand et al., 2015). KLF12 is most closely

related to KLF3 and KLF8, which act as transcriptional repressors

(Ilsley et al., 2017). Within the immune compartment, Klf12 is

required for NK cell proliferation (Lam et al., 2019). Further study

is needed to determine the function of KLF12 in tDCs.

Our analysis enabled identification of disease-associated

SNPs that lie in the regulatory regions of human DC subsets.

We observed most of the significant autoimmune trait heritability

within accessible regions of stimulated but not resting DCs, as

observed for other immune cells (Calderon et al., 2019), suggest-

ing an important role for DC activation in autoimmune dysregula-

tion. Nevertheless, we did identify disease SNPs associated with

resting cells, such as systemic sclerosis-associated SNPs

rs12445476 and rs11642873 within the pDC-specific +58-kb

IRF8 enhancer. The IRF8 locus was previously linked to systemic

sclerosis (Arismendi et al., 2015; Gorlova et al., 2011; Terao et al.,

2013). Similarly, pDCs have been associated with systemic scle-

rosis in human patients and mouse models (Ah Kioon et al.,

2018). However, the molecular cause of pDC dysregulation is

not fully understood. It is possible that mutations in the +58-kb

IRF8 enhancer may alter IRF8 expression specifically in pDCs,

and consequently, their function in systemic sclerosis.

This dataset provides insights into the transcriptional regula-

tion that underpins the heterogeneity of primary human DCs

and a resource for understanding human DC differentiation,

plasticity, and function. This dataset enables connecting human

DC subsets to disease pathogenesis and, consequently, pro-

vides an avenue for DC-based therapeutic design.
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Antibodies

Anti-human CD11b (clone ICRF44) Nd144 Fluidigm Cat# 3144001B; RRID:AB_2714152

Anti-human BDCA2/CD303 (clone 201A) Sm147 Fluidigm Cat# 3147009B; RRID:AB_2714153

Anti-human CD16 (clone 3G8) Nd148 Fluidigm Cat# 3148004B; RRID:AB_2661791

Anti-human CD127/IL-7R (clone A019D5) Sm149 Fluidigm Cat# 3149011B; RRID:AB_2661792

Anti-human CD123/IL3R (clone 6H6) Eu151 Fluidigm Cat# 3151001B; RRID:AB_2661794

Anti-human CD163 (clone GHI/61) Sm154 Fluidigm Cat# 3154007B; RRID:AB_2661797

Anti-human CD45 (clone HI30) Y89 Fluidigm Cat# 3089003; RRID:AB_2661851

Anti-human CD45 purified (clone HI30) Biolegend Cat# 304002;

RRID:AB_314390

Anti-human CCR7 (clone G043H7) Tb159 Fluidigm Cat# 3159003A; RRID:AB_2714155

Anti-human CD14 (clone M5E2) Gd160 Fluidigm Cat# 3160001B; RRID:AB_2687634

Anti-human CD11c (clone Bu15) Dy162 Fluidigm Cat# 3162005B; RRID:AB_2687635

Anti-human CD117/c-kit purified (clone 104D2) Biolegend Cat# 313202;

RRID:AB_314981

Anti-human BDCA3/CD141 (clone 1A4) Yb173 Fluidigm Cat# 3173002B; RRID:AB_2714156

Anti-human CD32 purified (clone FUN-2) Biolegend Cat# 303202; RRID:AB_314334

Anti-human CD335/NKp46 purified (clone 9E2) Biolegend Cat# 331902; RRID:AB_1027637

Anti-human BDCA-1/CD1c purified (clone L161) Biolegend Cat# 331502; RRID:AB_1088995

Anti-human CD1a (clone HI149) Biolegend Cat# 300102; RRID:AB_314016

Anti-human CD172a/b / SIRP alpha purified

(clone SESA5)

Biolegend Cat# 323802; RRID:AB_830701

Anti-human HLADR purified (clone L243) Biolegend Cat# 307651; RRID:AB_2562826

Anti-human CD34 purified (clone 561) Biolegend Cat# 343602; RRID:AB_1732014

Anti-human CD3 purified (clone UCHT1) Biolegend Cat# 300443; RRID:AB_2562808

Anti-human CD115/CSF1R purified (clone

9-4D2-1E4)

Biolegend Cat# 347302; RRID:AB_2085375

Anti-human CX3CR1 purified (clone K0124E1) Biolegend Cat# 355702; RRID:AB_2561726

Anti-human CD116/ GMSFR purified (clone 4H1) Biolegend Cat# 305902; RRID:AB_314568

Anti-human CLEC9A/ DNGR1 purified (clone 8F9) Biolegend Cat# 353802; RRID:AB_10983070

Anti-human CD135/ FLT3 purified (clone

BV10A4H2)

Biolegend Cat# 313302; RRID:AB_314987

Anti-human CD45RA purified (clone HI100) Biolegend Cat# 304102; RRID:AB_314406

Anti-human CD33 purified (clone WM53) Biolegend Cat# 303402; RRID:AB_314346

Anti-human CD2 purified (clone RPA-2.10) Biolegend Cat# 300202; RRID:AB_314026

Anti-human CD81 purified (clone 5A6) Biolegend Cat# 349502; RRID:AB_10643417

Anti-human CD5 purified (clone UCHT2) Biolegend Cat# 300602; RRID:AB_314088

Anti-human CD66b purified (clone G10F5) Biolegend Cat# 305102;

RRID:AB_314494

Anti-human CD19 purified (clone HIB19) Biolegend Cat# 302202;

RRID:AB_314232

Anti-APC (clone APC003) Biolegend Cat# 408005; RRID:AB_2563706

Anti-human IRF4 (clone 3E4) Biolegend Cat# 646402;

RRID:AB_2280462

Anti-human IRF8 APC (clone V3GYWCH) ThermoFisher Scientific Cat# 17-9852-82;

RRID:AB_2573318

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-human Siglec-6/CD327 PE (clone 767329) R&D Systems Cat# FAB2859P; RRID:AB_2714157

Anti-human CD100- APC (clone REA316) Miltenyi Biotec Cat# 130-104-674; RRID:AB_2654323

Anti-human AXL purified (clone 108724) R&D Systems Cat# MAB154; RRID:AB_2062558

Anti-human/mouse CADM1/ SynCAM purified

(clone 3.E.1)

MBL Life Science Cat# CM004-3; RRID:AB_592783

Anti-human CD3 purified (OKT3) Biolegend Cat# 317302; RRID:AB_571927

Anti-human CD14 purified (HCD14) Biolegend Cat# 325602;

RRID:AB_830675

Anti-human AXL Alexa Fluor 488 (clone 108724) R&D Systems Cat# FAB154G;

RRID:AB_2714170

Anti-human BDCA1/CD1c APC/Cy7 (clone L161) Biolegend Cat# 331520; RRID:AB_10644008

Anti-human BDCA3/CD141 PE/Cy7 (clone M80) Biolegend Cat# 344110; RRID:AB_2561623

Anti-human BDCA3/CD141 BV785 (clone M80) Biolegend Cat# 344116;

RRID:AB_2572195

Anti-human BDCA4/ CD304 APC (clone 12C2) Biolegend Cat# 354506; RRID:AB_11219600

Anti-human BDCA4/ CD304 PE (clone 12C2) Biolegend Cat# 354503;

RRID:AB_11219200

Anti-human CD11c Alexa Fluor 700 (clone Bu15) Biolegend Cat# 337220; RRID:AB_2561503

Anti-human CD123 FITC (clone 6H6) Biolegend Cat# 306014;

RRID:AB_2124259

Anti-human CD123 PE (clone 6H6) Biolegend Cat# 306006;

RRID:AB_314580

Anti-human CD14 APC (clone M5E2) Biolegend Cat# 982506; RRID:AB_2650643

Anti-human CD14 BV785 (clone M5E2) Biolegend Cat# 301840; RRID:AB_2563425

Anti-human CD14 650 (clone M5E2) Biolegend Cat# 301836;

RRID:AB_2563799

Anti-human CD16 BV650 (clone 3G8) Biolegend Cat# 302042; RRID:AB_2563801

Anti-human CD19 PerCP/Cy5.5 (clone HIB19) Biolegend Cat# 302230; RRID:AB_2073119

Anti-human CD20 PerCP/Cy5.5 (clone 2H7) Biolegend Cat# 302325; RRID:AB_893285

Anti-human CD3 PerCP/Cy5.5 (clone UCHT1) Biolegend Cat# 300430; RRID:AB_893299

Anti-human CD335 PerCP/Cy5.5 (clone 9E2) Biolegend Cat# 331920; RRID:AB_2561665

Anti-human CD66b PerCP/Cy5.5 (clone G10F5) Biolegend Cat# 305108; RRID:AB_2077855

Anti-human CD80 BV421 (clone 2D10) Biolegend Cat# 305222;

RRID:AB_2564407

Anti-human HLADR BV605 (clone L243) Biolegend Cat# 307640; RRID:AB_2561913

Anti-human/mouse TCF4/E2-2 purified (clone

NCI-R159-6)

Abcam Cat# ab217668; RRID:AB_2714172

Anti-human Ki67 PerCP/Cy5.5 (clone Ki-67) Biolegend Cat# 350520;

RRID:AB_2562295

Anti-human CD3 PE/Cy7 (clone UCTH1) Biolegend Cat# 300419;

RRID:AB_439780

Anti-human CD4 BV785 (clone RPA-T4) Biolegend Cat# 300554;

RRID:AB_2564382

Anti-human CD8 APC/Cy7 (clone RPA-T8) Biolegend Cat# 301016;

RRID:AB_314134

Anti-human IFNg Alexa Fluor 700 (clone B27) Biolegend Cat# 506516;

RRID:AB_961351

Anti-human FOXP3 APC (clone PCH101) ThermoFisher Scientific Cat# 17-4776-41;

RRID:AB_1603281

Anti-human CD33 BV650 (clone WM53) Biolegend Cat# 303430;

RRID:AB_2650934

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-human CD5 BUV737 (clone UCHT2) BD Biosciences Cat# 564452;

RRID:AB_2714177

Biological Samples

Whole blood from healthy donors Obtained from donors with

informed consent. IRB approved

by Stanford University Research

Compliance Office.

N/A

Chemicals, Peptides, and Recombinant Proteins

Ficoll-Paque PLUS GE Healthcare Cat# 300-25

1M Tris-HCl, pH 7.4 VWR Cat# 100216-458

NaCl ThermoFisher Scientific Cat# AM9760G

MgCl2 ThermoFisher Scientific Cat# AM9530G

Tween-20 Millipore-Sigma Cat# 11332465001

Digitonin VWR Cat# PAG9441

Nonidet P40 Substitute Millipore-Sigma Cat# 11332473001

IGEPAL CA-630 Millipore-Sigma Cat# 18896

Tn5 transposase Produced as described in

Picelli et al., 2014

N/A

SYBR Green I Nucleic Acid Gel ThermoFisher Scientific Cat# S7563

Dulbecco’s Phosphate Buffered Saline Corning Cat# 21-031-CV

Fetal Bovine Serum, qualified, US origin GIBCO Cat# 26140079

RPMI 1640 with L- Glutamine Corning Cat# 10040CV

L-glutamine Solution Corning Cat# 25005CI

Sodium Pyruvate Solution Corning Cat# 25000CI

Penicillin-Streptomycin Corning Cat# 30002CI

HEPES solution Corning Cat# 25060CI

MEM Nonessential Amino Acid Solution Corning Cat# 25025CI

Recombinant Human IL-3 R&D Systems Cat# 203IL010CF

EDTA 0.5M pH 8.0 Corning Cat# 46034CI

ACK Lysis Buffer Lonza Cat# 10-548E

Benzonase Nuclease Millipore-Sigma Cat# E1014-25KU

Cell-ID Intercalator-Ir Fluidigm Cat# 201192A

Cell-ID Cisplatin Fluidigm Cat# 201064

5(6)-Carboxyfluorescein diacetate

N-succinimidyl ester

Millipore-Sigma Cat# 21888-25MG-F

CellTrace Violet Cell Proliferation Kit ThermoFisher Scientific Cat# C34557

Bovine Serum Albumin solution 30% ± 2% in

0.85% sodium chloride, aseptically filled

Millipore-Sigma Cat# A7284-50ML

Dimethyl sulfoxide > 95% Millipore-Sigma Cat# D4540

Paraformaldehyde 16% aqueous solution Electron Microscopy Sciences Cat# 15710

Indium 113 metal chloride Trace Sciences International In-113

Indium 115 metal chloride Trace Sciences International In-115

CpG-A ODN 2216 Invivogen Cat# tlrl-2216-1

Imiquimod Invivogen Cat# tlrl-imqs

Recombinant Human CD40 Ligand R&D Systems Cat# 6420CL025CF

Critical Commercial Assays

Foxp3 / Transcription Factor Fixation/

Permeabilization Concentrate and Diluent

ThermoFisher Scientific Cat# 00-5521-00

Permeabilization Buffer (10X) ThermoFisher Scientific Cat# 00-8333-56

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Maxpar X8 Multimetal Labeling Kit Fluidigm Fluidigm Cat# 201300

LIVE/DEAD Fixable Dead Cell Stain Sampler Kit ThermoFisher Scientific Cat# L34960

Dynabeads Pan Mouse IgG ThermoFisher Scientific Cat# 11042

Plasmacytoid Dendritic Cell Isolation Kit II, human MACS, Miltenyi Biotec Cat# 130-097-415

Pan T cell Isolation Kit, human MACS, Miltenyi Biotec Cat# 130-096-535

Human IFN Alpha Multi-Subtype ELISA Kit (TCM) PBL Assay Science Cat# 41105-1

BD Cytometric Bead Array Human Enhanced

Sensitivity Master Buffer Kit

BD Biosciences Cat# 561521

BD Cytometric Bead Array Human IL-6 Enhanced

Sensitivity Flex Set

BD Biosciences Cat# 561512

BD Cytometric Bead Array Human TNF Enhanced

Sensitivity Flex Set

BD Biosciences Cat# 561516

BD CompBead Anti-Mouse Ig, k/Negative Control

Compensation Particles Set

BD Biosciences Cat# 552843

Alexa Fluor 647 Antibody Labeling Kit ThermoFisher Scientific Cat# A20186

NucleoSpin RNA XS kit Takara Bio Cat# 740902.10

NEBNext High Fidelity 2X PCR Master Mix New England Biolabs Cat# M0541S

iScript Reverse Transcription Supermix Bio-Rad Laboratories Cat# 1708840

iTaq Universal SYBRGreen Supermix Bio-Rad Laboratories Cat# 1725120

QIAGEN MinElute PCR Purification Kit QIAGEN Cat# 28004

Nextera DNA Library Preparation Kit Illumina Cat# FC-121-1030

Zymo DNA Clean and Concentrator-5 Kit Zymo Research Corporation Cat# D4013

PrimeFlow RNA Assay Kit ThermoFisher Scientific Cat# 88-18005-204

ID2 PrimeFlow Probe Set (A488) ThermoFisher Scientific Cat# PF210; Assay ID: VA4-3086868-PF

Deposited Data

ATAC-seq data (generated here) NCBI GEO GEO: GSE146896

Human DC scRNA-seq https://singlecell.broadinstitute.

org/single_cell/study/atlas-of-

human-blood-dendritic-cells-

and-monocytes

Broad Single Cell Portal study ‘‘Atlas of human

blood dendritic cells and monocytes’’

Mouse DC RNA-seq NCBI GEO GEO: GSE76132

Other Immune Lineage ATAC-seq NCBI GEO GEO: GSE118189

TCF4 ChIP-seq NCBI GEO GEO: GSE76147

TCF4 silencing microarray NCBI GEO GEO: GSE75650

Zbtb18 silencing microarray NCBI GEO GEO: GSE12993

Klf12�/� mouse RNA-seq NCBI GEO GEO: GSE128962

Software and Algorithms

GraphPad Prism 6 GraphPad Software, Inc. https://www.graphpad.com/scientific-

software/prism/

MATLAB N/A https://www.mathworks.com/products/

matlab.html

Cytofkit N/A https://bioconductor.riken.jp/packages/3.7/

bioc/html/cytofkit.html

FlowJo Software v10.0.8 TreeStar, Inc https://www.flowjo.com/solutions/flowjo

R N/A https://www.R-project.org/

ggplot2 v2.2.1 N/A https://github.com/tidyverse/ggplot2

viridis v0.3.0 N/A https://github.com/sjmgarnier/viridis

limma v3.44.3 N/A https://bioconductor.org/packages/

release/bioc/html/limma.html

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

DESeq2 v1.28.1 N/A https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

cqn v1.34.0 N/A https://www.bioconductor.org/packages/

release/bioc/html/cqn.html

PVCA v1.28.0 N/A https://www.bioconductor.org/packages/

release/bioc/html/pvca.html

chromVAR v1.10.0 Schep et al., 2017 http://bioconductor.org/packages/release/

bioc/html/chromVAR.html

SparK N/A https://github.com/harbourlab/SparK/blob/

master/README.md

HINT-ATAC Li et al., 2019b http://www.regulatory-genomics.org/hint/

introduction/

deeptools Ramı́rez et al., 2016 https://deeptools.readthedocs.io/en/

develop/content/installation.html

ENCODE-DCC atac-seq pipeline N/A https://github.com/ENCODE-DCC/

atac-seq-pipeline

ENCODE-DCC chip-seq pipeline N/A https://github.com/ENCODE-DCC/chip-

seq-pipeline2

bedtools Quinlan and Hall., 2010 https://github.com/arq5x/bedtools2

ComBat (sva package) Johnson et al., 2007 https://bioconductor.org/packages/

release/bioc/html/sva.html

CHEERS Soskic et al., 2019 https://github.com/trynkaLab/CHEERS

GSEA Mootha et al., 2003;

Subramanian et al., 2005

https://www.gsea-msigdb.org/gsea/

downloads.jsp

GREAT McLean et al., 2010 http://great.stanford.edu/public/html/

index.php

ReVIGO Supek et al., 2011 http://revigo.irb.hr/

Wanderlust Bendall et al., 2014 https://dpeerlab.github.io/dpeerlab-website/

cyt-download.html

Wishbone Setty et al., 2016 https://github.com/ManuSetty/wishbone

Scaffold Spitzer et al., 2015 https://github.com/nolanlab/scaffold
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Juliana

Idoyaga (jidoyaga@stanford.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
ATAC-seq data generated in this study are deposited in NCBI Gene Expression Omnibus (GEO: GSE146896). Previously published

data analyzed in this study include human dendritic cell scRNA-seq data (Villani et al., 2017; https://singlecell.broadinstitute.org/

single_cell/study/SCP43/atlas-of-human-blood-dendritic-cells-and-monocytes#study-download), mouse dendritic cell RNA-seq

data (Lau et al., 2016; GEO: GSE76132), Zbtb18 silencing data (Yokoyama et al., 2009; GEO: GSE12993), Klf12�/� mouse RNA-seq

data (Lam et al., 2019; GEO: GSE128962), TCF4 ChIP-seq data (Ceribelli et al., 2016; GEO: GSE76147), TCF4 silencing data (Ceribelli

et al., 2016; GEO: GSE75650), and ATAC-seq of human major immune cell lineages (Calderon et al., 2019; GEO: GSE118189).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Blood was obtained with informed consent from healthy adults in accordance with the Research and Laboratory Environmental

Health and Safety program of Stanford University and Institutional Review Board (IRB) protocols approved by the Stanford University

Administrative Panel on Human Subjects in Medical Research. Males and females were equally represented. Our analysis revealed
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that sex differences did not contribute to the variation observed (see Figure S1D), thus it was not a major focus of this work. Blood

donors were healthy, without acute diseases and between 20-45 years old.

METHOD DETAILS

Isolation of Human PBMCs
50 mL of blood from healthy adults were collected using EDTA-coated tubes (BD Biosciences). PBMCs were isolated by density

gradient centrifugation using Ficoll-Paque PLUS (GEHealthcare). Cells were washedwith PBS, counted, and immediately processed

for sorting.

Cell Sorting
PBMCswere incubatedwith human gamma-globulin (Invitrogen) to block non-specific binding for 15minutes on ice.Myeloid cells were

negatively enrichedusingmAbsagainstCD3 (OKT3), CD19 (HIB19), CD335 (9E2), andCD66b (G10F5) followedbyanti-mousemagnetic

beads (Dynabeads, Thermo Fisher Scientific) at a concentration of 4 beads per target cell. For experiments in which tDCs were sorted,

cells were negatively enriched using mAbs against CD3, CD19, CD335, and CD14 (HCD14). After enrichment, cells were stained with

sorting antibody cocktail for 20 minutes at 4�C. Cells were sorted to > 98% purity using a FACSAria II or FACSAria Fusion cell sorter

(BD Biosciences). See Figures S1A, S3A, and S4A for sort gating strategies. For phenotypic experiments, pDCs were enriched from

PBMCs using the Human Plasmacytoid Dendritic Cell Isolation Kit II (Miltenyi Biotec), then sorted as BDCA4+AXL-.

ATAC-seq
Immediately after sorting, cells were processed as described (Buenrostro et al., 2015). Briefly, 50,000-60,000 sorted cells were spun

down, washed with PBS, and lysed. Technical replicates were performed when not limited by cell numbers. The transposition reac-

tion was performed with Tn5 transposase from the Illumina Nextera DNA Library Preparation Kit or produced as described (Picelli

et al., 2014), for 30 min at 37�C. Reactions were scaled down for samples with less than 50,000 cells. Transposed DNA was purified

(QIAGENMinElute PCR Purification Kit) and stored at�20�C. Once 3-4 donors were accumulated, samples were PCR amplified. To

reduce GC and size bias, the optimal number of PCR cycles was determined for each sample via qPCR according to the protocol.

Samples were barcoded using published primers (Buenrostro et al., 2013). Library quality and quantification was assessed with an

Agilent Bioanalyzer at the Stanford Protein and Nucleic Acid Facility.

For subsequent analysis of tDCs and stimulated pDCs, cells were processed according to the Omni-ATAC protocol as described

(Corces et al., 2017). Reaction volumes for 5,000-15,000 cells were scaled down from the protocol for 50,000 cells.

Sequencing
Barcoded sample libraries were pooled for a final concentration of 4 nM. Libraries were first run on low depth MiSeq for quality

assessment. Subsequent sequencing was performed on Illumina NextSeq 500 (2x75bp or 2x50bp) at the Stanford Functional

Genomics Facility. NextSeqwas selected to avoid problemswith index swapping, which can occur in the presence of excess primers

(Larsson et al., 2018). Sequencing was performed in three batches, which constituted two runs with the initial pDC, cDC1, cDC2, and

CD14+ analysis, and a later analysis of pDCs, tDCs, and stimulated pDCs.

Staining cell suspensions for flow cytometry
Antibodies (Abs) for flow cytometry were purchased from Biolegend, R&D, MBL International Corp., and Thermo Fisher Scientific.

Anti-TCF4 (Abcam) was labeled using the Alexa 647 Labeling Kit (Thermo Fisher Scientific) following manufacturer’s instructions

or detected using anti-Rabbit-Alexa 647 (Jackson ImmunoResearch). Cells were acquired on a 5-laser LSRFortessa X-20 (BD

Biosciences), and data analyzed using FlowJo software (Tree Star, Inc). Compensation was set up using compensation beads

(BD Biosciences). PBMCs were incubated with human gamma-globulin to block non-specific binding for 15 minutes on ice. Cells

were incubated with Ab mixes in human FACS buffer (2mM EDTA, 2% Donor equine serum in PBS) for 20 minutes at room temper-

ature (RT). For transcription factors and cytokine detection, cells were stainedwith LIVE/DEAD Fixable Blue (Thermo Fisher Scientific)

for 5 minutes at RT for detection of dead cells, then fixed using FoxP3 Transcription Factor Fix/Perm Buffer (Thermo Fisher Scientific)

for 1 hour and stained intracellularly for 20 minutes in 1X Permwash buffer (Thermo Fisher Scientific). After intracellular stain, cells

were stained for remaining markers for 20 minutes in human FACS buffer. For PrimeFlow, freshly isolated or 2-day stimulated sorted

bona fide human pDCs (AXL-) were plated with 2x106 mouse splenocytes to provide a cellular bed, and stained according to man-

ufacturer’s instructions (Thermo Fisher Scientific). Human cells were identified by gating mouse CD45- human CD123+ cells. ID2

target probes were purchased from Thermo Fisher Scientific. For a negative control, cells were processed identically and stained

without target probes. To track pDC proliferation, PBMCs were resuspended at a concentration of 20x106 cells/mL and labeled

with 2.5 mM CellTrace Violet (Thermo Fisher Scientific) for 10 minutes at 37�C prior to sort.

Staining cell suspensions for CyTOF
Metal-labeled Abs were obtained from Fluidigm or labeled using the MaxPar X8 labeling kit (Fluidigm) according to manufacturer’s

instructions (see Table S2). For mass cytometry analysis of stimulated pDC experiments, bona fide pDCs (AXL-) were obtained by
Cell Reports 32, 108180, September 22, 2020 e6
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sorting as in Figure S3A. Freshly isolated and cultured pDCs were pooled with 3x106 mouse splenocytes to provide a cellular bed,

stained for CyTOF, and identified as humanCD45+mouseCD45- cells. Cells were stainedwith 1mL of 0.25 mMcisplatin (Fluidigm) for

5 minutes at room temperature to exclude dead cells. Cells were then washed with CyFACS buffer (2mM EDTA, 1%BSA 1% in PBS)

and stained with heavy-metal-labeled Ab cocktail for 30minutes on ice. Cells were washed twice with CyFACS then fixed with FoxP3

Transcription Factor Fix/Perm Buffer for 2 hours. Human surface Abs that were sensitive to FoxP3 buffer (i.e., CX3CR1, CD123,

CD33, CD135, CD172a and CD163), were stained after fixation in 1X Permwash buffer, for 30 minutes at 4�C. After staining, samples

were washed and incubated with 2%paraformaldehyde (Electron) in PBS containing 125 nM Iridium intercalator (Fluidigm) overnight.

Cells were washed with water, filtered and acquired in a CyTOF2 (Fluidigm).

Cell culture for pDC activation
Prior to cell culture, pDCs were purified by sorting to be free of tDCs (AXL-), following the gating strategy in Figure S3A. 10,000 sorted

bona fide pDCs were cultured in 200 mL R10 complete media consisting of RPMI (Corning) with 10% FBS, 2 mM L-glutamine (Corn-

ing), 100 IU Penicillin, 100mg/mL Streptomycin (Corning), 25mMHEPES (Corning), 1 mMSodium Pyruvate (Corning), 100mMMEM

Nonessential Amino Acids (Corning) and 55 mM 2-Mercaptoethanol (GIBCO) in 96 well U-bottom plates at 37�C. All conditions
included 10 ng/mL recombinant human IL-3 (R&D Systems; carrier-free) for pDC survival. Stimulation conditions were 100 ng/mL

CD40L (R&D Systems; carrier-free) or 5 mg/mL Imiquimod (R837, Invitrogen). For ATAC-seq, 4-6 wells were plated per condition.

After 2 days, cells were pooled and sorted as FSC-A, SSC-A, Live, Singlets, CD123+ HLA-DR+ (see Figure S4A for sorting strategy).

For analysis of IFN-I production in Figure 6G, pDCs were re-sorted into ‘‘pDC-like,’’ ‘‘tDC-like,’’ and ‘‘cDC-like’’ after 2 days of

stimulation with CD40L, then stimulated for 24h with 5 mg/mL CpG-A (ODN 2216, Invivogen).

Cytokine detection in culture supernatant
IFNa was detected with the VeriKine Human IFN Alpha Multi-Subtype ELISA Kit (PBL Assay Science). IL-6 and TNFa were detected

using the Cytometric Bead Array (CBA) Enhanced Sensitivity Flex Set (BD Biosciences).

Mixed Leukocyte Reactions
PBMCswerewashedwith PBS, incubated with 1.7 nMCFSE (Sigma-Aldrich) at 37�C in awater bath for 10minutes, andwashedwith

MACS buffer (2mM EDTA, 2% BSA in PBS). After CFSE labeling, total T cells (CD4+ and CD8+ T cells) were obtained using the Pan T

Cell Isolation Kit (Miltenyi Biotec) according to manufacturer’s instructions. Allogeneic T cells were co-cultured with freshly sorted

(day 0) bona fide (AXL-) pDCs (1:20 ratio) or bona fide (AXL-) pDCs that were stimulated for 2 days with CD40L or IMIQ. Activated

pDCs were washed, re-counted and plated with allogeneic T cells in the presence of fresh stimuli. As a control of homeostatic pro-

liferation, T cells were cultured alone without pDCs in the presence of the corresponding stimuli. The same T cell donor was used to

perform the experiments with freshly isolated versus activated pDC. Alternatively, pDCs were re-sorted into ‘‘pDC-like,’’ ‘‘tDC-like,’’

and ‘‘cDC-like’’ after 2 days of stimulation with CD40L, then plated with T cells as above. After 6 days of reaction, 100 ng/mL of PMA

(Sigma-Aldrich) and 500 ng/mL of Ionomycin (Sigma-Aldrich) were added to the culture followed by the addition of 10 mg/mL of Bre-

feldin A (Sigma-Aldrich) and 1:1500 Golgi STOP (BD Biosciences) 1 hr later for a total of 6 hr. Cytokines and FoxP3 were stained after

2 hours of fixation with FoxP3 Transcription Factor Fix/Perm Buffer (ThermoFisher Scientific). Results are expressed as total number

of CFSElo T cells or ratio between the numbers of cytokine-producing cells and FoxP3+ CD127low regulatory T cells (Treg).

Quantitative PCR
RNA was extracted from sorted cells with the Nucleospin RNA XS kit (Takara Bio) according to manufacturer’s instructions. Total

RNA from each DC subset was reverse transcribed to cDNA using iScript Reverse Transcription Supermix for RT-qPCR (Bio-Rad

Laboratories). cDNA was amplified in a CFX Connect Real-Time PCR Detection System (Bio-Rad Laboratories) with the iTaq Univer-

sal SYBR� Green Supermix (Bio-Rad Laboratories). Expression was calculated following a DDCq method relative to RPL13A and

cDC2 and shown as 2-DDCq. Primers were as follows: KLF12 forward CCTTTCCATAGCCAGAGCAG; KLF12 reverse TTGCATCCCTC

AAAATCACA; ZBTB18_v1 forward CAGGTTTATGTGTCCTAAAGGTTATG; ZBTB18_v1 reverse CCACCAGAACAGTGCAGTCA;

ZBTB18_v2 forward AGCACAGTCAGGTAGCAAAAGT; ZBTB18_v2 reverse GTCCCACAAAACCTACAAAATAGC; ZBTB18_v3 for-

ward GGCCGCTCCGTGTTATGAA; ZBTB18_v3 reverse CCACCAGAACAGTGCAGTCA; RPL13A forward GCCCTACGACAAGAA

AAAGCG; RPL13A reverse TACTTCCAGCCAACCTCGTGA.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of experiments, including statistical tests and value of n, can be found in figure legends. Significance is depicted as

follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Statistical tests were two-sided, and were performed with GraphPad Prism

6 unless otherwise indicated. All bar graphs show mean ± SD. PCA and heatmaps were performed and visualized in R with the

ggplot2, prcomp, and viridis packages. gMFI indicates geometric mean fluorescence intensity. DMFI indicates percent change

from control condition.
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Initial processing of ATAC-seq data
Processing of raw sequencing data was performed with the ENCODE ATAC-seq Pipeline (https://github.com/ENCODE-DCC/

atac-seq-pipeline) (ENCODE Project Consortium, 2012) on the Stanford Sherlock computing cluster. A non-overlapping union

peak set was defined using a previously described method (Corces et al., 2018). Briefly, peak calling was first performed on each

sample individually with MACS2. Next, 500 bp fixed width peaks were defined by identifying the peak summit and extending it by

250 bp on either side. Finally, overlapping peaks were removed through an iterative process. For combined analysis in Figure 3,

Figure 5, and Figure 7, fixed width peak sets from both datasets were combined and overlaps were removed. Read counts were

calculated with bedtools multicov (Quinlan and Hall, 2010).

Analysis of open chromatin regions
Differential accessibility analysis of peaks was performed with DESeq. Raw counts were normalized with conditional quantile normal-

ization (CQN). Amodel was built withDESeq using the formula�CellType +Sex +Batch.Cell-specific peaks in Figure 1were definedas

FC > 5 and p-adj < 0.05. Shared peaks in Figure 1 were defined as FC < |2| and average count > 10. Differential peaks between CD40L

and IMIQ in Figure 4 were defined as FC > |2| and p-adj < 0.05. For visualization (PCA, heatmaps), counts were batch corrected using

ComBat when applicable (Johnson et al., 2007). In Figure 3A, the PCAwas built on one batch, and remaining two batcheswere overlaid

using pca.predict. In Figure 3B, TF scores were averaged across samples for each subset prior to calculating Z-score.

For genome tracks, bigwig files were created from bam files with deeptools and normalized using the CPMmethod (Ramı́rez et al.,

2016). Genome tracks were explored using theWashU Epigenome browser (Li et al., 2019a). Genome tracks were formatted for pub-

lication with SparK (https://www.biorxiv.org/content/10.1101/845529v1; https://github.com/harbourlab/SparK).

To connect observed chromatin accessibility at the IRF8 locus with previously described enhancers, we used UCSC BLAT to find

the human hg19 genomic coordinates for the conserved sequences that overlapped the mouse +32kb Irf8 enhancer reported in Gra-

jales-Reyes et al., 2015. These sequences were found between chr16:85981418-85981613, which overlapped the +49kb peak iden-

tified here. We also used the human hg19 genomic coordinates representing a conserved sequence that overlapped the

mouse +41kb Irf8 enhancer reported in Bagadia et al. (2019). We found that this region (chr16:85991064-85991633) overlapped

the +58kb peak identified here.

Enrichment of gene ontology terms was performed on differentially accessible cis-elements with GREAT (McLean et al., 2010) us-

ing the hg19 reference genome with whole genome as background and associating genomic regions by ‘‘Single nearest gene within

1000kb.’’ Default global controls were used (Region-based fold enrichment > 2, FDR < 0.05) except that we increased the minimum

observed gene hits to 5. Redundant pathways were removed with ReVIGO (Supek et al., 2011). Remaining terms were ranked by p

value and the top 8-10 were shown.

To compare chromatin accessibility signatures between stimulated pDCs and resting populations, a modified Gene Set Enrich-

ment Analysis (GSEA) was performed with cis-elements in place of genes. The top 500 cis-elements that were differentially acces-

sible in each DC subset or monocyte compared to Day 0 unstimulated pDCs were used to create signatures (.gmx file), representing

the x axis in Figure 5A. To define the pDC signature, pDCs were compared to cDC2. Stimulation profiles (.rnk files) were created by

taking the top differentially accessible cis-elements (2000 up and 2000 down) between CD40L-stimulated pDCs and Day 0 unstimu-

lated pDCs or between IMIQ-stimulated pDCs and Day 0 unstimulated pDCs, representing the y axis in Figure 5A. The analysis was

performed with GSEA software, which is available through the Broad Institute (https://www.gsea-msigdb.org/gsea/downloads.jsp)

(Mootha et al., 2003; Subramanian et al., 2005).

Analysis of transcription factor activity
For transcription factor analysis, chromVARwas used to calculate deviations (TF activity scores, or TF scores) for a curated collection

of 870 transcription factor motifs derived from cisBP data ‘‘human_pwms_v2’’ (Schep et al., 2017). t test was used for differential

analysis with a Benjamini-Hochberg correction for multiple hypothesis testing. For visualization of chromVAR data (PCA, heatmaps),

deviation scores were batch corrected using ComBat where applicable. Where indicated, TF scores were scaled between 0 and 1 by

subtracting the minimum, then dividing by the maximum.

Transcription factor footprint plots were produced using HINT-ATAC (Li et al., 2019b). Motif position weight matrices (pwms) were

acquired from CisBP, JASPAR, or chromVAR. Data was pooled from all samples for each cell type.

Analysis of autoimmune SNPs
Fine-mapped autoimmune-disease associated SNPs were downloaded from Farh et al. (Farh et al., 2015). We used the CHEERS

algorithm to identify enrichment of disease variants in each cell type (Soskic et al., 2019). Briefly, peak counts were averaged for

each cell type then normalized with a ‘‘reads in peak’’ normalization. The bottom 10th percentile of peaks was removed, and quantile

normalization was performed. Euclidean normalization was performed to obtain a cell type specificity score for each peak in each cell

type. Finally, the algorithm identified peaks that overlap SNPs for each disease and calculated an enrichment p value.

RNA-seq and microarray analysis
Human scRNA-seq data was downloaded from https://singlecell.broadinstitute.org/single_cell/study/SCP43/atlas-of-human-

blood-dendritic-cells-and-monocytes#study-download as log transformed transcripts per million (TPM). For analysis in Figure 2E,
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expression from single cells was averaged for each subset. Then, Z-scores were calculated for pDCs, cDC1, cDC2, and CD14+

monocytes. pDC specificity refers to the Z-score in pDCs. Normalized counts for mouse RNA-seq bulk data were downloaded

from NCBI GEO (GEO: GSE76132). For Figures S2 and S3, GSEA was performed with Zbtb18 silencing (GEO: GSE12993) and

Klf12�/� mice (GEO: GSE128962) datasets, respectively, downloaded from NCBI GEO. The top 500 differentially expressed genes

were used to create signatures for loss ofZbtb18 orKlf12. Differentially expressed genes (FC > 1.5 and p-adj < 0.05) between pDCs or

tDCs and other DC subsets were identified with the limma package in R. Up to 2000 differentially expressed genes (1000 up and 1000

down) were ranked by log2 fold change and tested for overlap with signatures. For Figure 5I, TCF4 silencing data was downloaded

from NCBI GEO (GEO: GSE75650). CAL-1 cells analyzed after 48h treatment with control shRNA or TCF4 shRNA were compared

with the limma package in R to determine differentially expressed TFs (FC > |2| and p-adj < 0.05).

CyTOF data analysis
Files in FCS format were normalized using the Nolan Lab’s Normalizer (https://github.com/nolanlab/bead-normalization). For both

mouse and human, live, single cells were gated using FlowJo. Human PBMCs were gated as CD3-, CD19-, CD335-, CD66b-,

CD14-, CD16- and HLA-DR+. Stimulated pDCs were gated on human CD45+ live cells. Events of interest were imported into CYT

and transformed using hyperbolic arcsin (asinh x/5). For Wanderlust and Wishbone analysis, 250-300 events were sampled from

each condition. Trajectory analysis was performed using all of the parameters except lineage and setting freshly isolated pDCs as

the starting trajectory point.

The Scaffold R package was downloaded from GitHub (https://github.com/nolanlab/scaffold). Events from the stimulated pDCs

and the corresponding PBMCs were imported. DC populations were gated and exported from FlowJo. Clustering was performed

using all of the parameters except lineage markers.
e9 Cell Reports 32, 108180, September 22, 2020
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