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Supplementary Note 1: Data analysis 
Data on the evolution of the epidemic in Italy 
Data on the evolution of the epidemic in Italy and in each of the 20 regions have been obtained 
from the public database7 of the Italian Civil Protection Agency (Protezione Civile). The 
database provides daily updates for each region on the overall number of detected cases, 
hospitalized, quarantined, and recovered. The data were pre-processed by filtering them with 
a moving average filter of 3 days or 7 days to reduce noisiness. Specifically, a moving average 
filter of 3 days was used to preprocess data for all regions but for Valle d’Aosta, Umbria and 
Basilicata. For these three regions, which presented higher levels of noise, we used a longer 
average filter of 7 days. These lengths were chosen heuristically so as to best capture the 
parameters and their variation among different time windows. 
 
Interregional Fluxes estimation 
We considered two types of inter-regional fluxes associated to 

(i) daily commuters traveling between neighboring regions; 
(ii) long distance travels covered by high-speed trains, planes, and large ferries. 

To estimate commuters’ fluxes, as in previous work6, we used the latest official country-wide 
assessment of Italian mobility conducted by the Italian Institute of Statistic (ISTAT) in 2011. 
Specifically, we use the origin-destination matrix describing, at the municipality level, the 
number of people who declared themselves daily commuters for work or study purposes 
(https://www.istat.it/it/archivio/139381). By aggregating data on a regional basis, we 
obtained interregional commuters’ flows among regions.  
 
For longer distance routes covered by high-speed trains, planes and large ferries we 
proceeded as follows. 

a. For railway connections, the fraction )!"#  of the population of region * traveling to 

region + is obtained as 

)!"# =
1
,!
)#

-#
-!"# , 
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where 

• )# is total number of daily high-speed customers of the main Italian carrier, 
Trenitalia; 

• -# is the total number of high-speed trains per day; 

• -!"#  is the number of high-speed trains connecting region * to region +; 

• ,! is the total resident population in region *. 
 

b. For flight connections, for all the Italian operating airports (currently there are 39 

according to www.enac.gov.it) and for each pair of connected airports, say (0, 1), we 

used the number of weekly direct flights 3$% in normal operating conditions (i.e., 

without any restriction due to the emergency). Then, for each pair (0, 1) we computed 

the average capacity ⟨5$%⟩ of the regional fleet of the main carrier serving the route. 
Grouping the airports on a regional basis we computed the average daily flow due to 

air connections )!"&  from region * to + as: 

)!"& =
∑ ∑ 3$%

'!
%()

'"
$() ⟨5$%⟩

7,!
, 

where 9! and ,! are the number of airports and the population of region *. 
 

c. For ferry connections, we considered the five regions that act as hubs for long range 
national maritime travel, that is, the two main insular regions, Sardinia and Sicily, 
together with three mainland regions, Campania, Lazio, and Liguria. The maritime 
flows are then obtained as 

)!"* =
)!

,! 	-!"*
, 

where )! and ,! are the average number of maritime passengers and the population 

of region * respectively, while -!"* is the total number of maritime connections between 

regions * and +. Note that as it is reasonable to assume that -!)!" ≈ -")"!, and as all 
relevant maritime routes are either from or to the main islands, in practice, it suffices 

to compute )!"* only for region * being Sicily and Sardinia. 

 
Note that, as also done in other network models in the literature6,27, we chose not to consider 
long term migrations as they generally occur on a longer time-scale than that we are interested 
in to characterize the COVID19 epidemic in Italy. Looking at available data on fluxes among 
regions over the timespan of interest we noted that the fraction of people permanently moving 
from a region to another is negligible compared to the total resident population in the region. 
Hence, our model, as also done in other papers6,27, takes into account commuters fluxes from 



5 
 

one region to the other; the infected of a region contributing to increasing the likelihood of 
generating new infected in the region they move to. 
 
Supplementary Note 2: Identification procedure 
As explained in the main text, we assume that, for each region, the parameters of the model 

remain constant over - time windows, but neither their number - nor their durations <), … , <+ 
are assumed to be known a priori. Therefore, the identification procedure detects at the same 

time the breakpoints >), … , >+,) when notable parameters’ changes are detected and, within 
each time-window, estimates their values as those that best capture the trend of the available 
data. 
 
The model used to carry out the identification of regional or national parameters is the 
discretized version of the model of the epidemic spread in each area of interest given by model 
(14)-(20) in the main text. 
 
As also noted in other previous work1-4, identification of SIR and SIR-modified models is 
highly non-convex and hence the optimization landscape is scattered with local minima that 
must be avoided as not being admissible. To mitigate this problem, we identified from the 
literature admissible intervals for the parameter values (see Supplementary Table 5) in order 
to reduce the feasible search space for the optimization algorithm and provide it with 

reasonable initial guesses. Note that, ? and ! always appear as a product in the model. 

Therefore, only their product can be identified. Hence, we fixed ? to an intermediate value of 

0.4 from those reported in the literature3,6, where the estimates for ? range from 0.301 3, 0.373 
15, and 0.315 14 to a much higher value of 1.12 17 (when ? models the transmission rate for 
documented infections and therefore can become larger than 1 capturing the fact that the new 
infected can get the disease from undetected infected individuals17). We found that setting 

? =0.4 in our model roughly scales the parameter ! between 0 and 1, making apparent the 

effect of the social distancing rules imposed during the lockdown. Moreover, since @ 
represents the flux of infected people that recover without having any symptoms, thus 
connecting two compartments that cannot be measured, we chose to fix this rate at 1/14 days-

1 as a conservative approximation of the values reported in recent work6 where the longest 
estimate of the infectious period for an asymptomatic infected (counting from as soon as the 
contagion occurs) is 12.93 days. Note that in other works3 an even higher choice of 29.41 days 
is used. Altogether, the unknown parameters left to be estimated are 

[B(0), !, D, E, F- , F. , G. , G- , H] both at the national and regional level. 
 
As mentioned in the main text, the identification procedure is carried out in two stages by 

considering equations (14)-(16) of the main text to estimate {D, B(0), !} and the window 
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breakpoints, and equations (17)-(20) of the main text to estimate the remaining parameters. 
The identification described next is repeated for each of the 20 regions and, for the sake of 
completeness, to parameterize a national aggregate model. 
 

Step 1: Online Identification of the estimation breakpoints and the parameters D, B(0), ! in each time 

window  
 

We start by identifying the parameters’ vector L ∶= [B(0), !, D] exploiting equations (14)-(16) 

of the main text and the time series of the number of cases NO collected for P/0/ consecutive days 
starting from the day when 10 deceased and 10 recovered were first reported in the area of 
interest. In particular, an ad hoc optimization algorithm (described below and implemented in 

MATLAB) is used to find breakpoints >" and the values of the parameters’ vector LQ	that 

minimize the cumulative squared prediction error in each window, defined as 

RRSTLQ, >" , >"1)U = 	VW	NO(>, L) − NYT>, LQUW2
3!#$

3(3!
 

 with + = 	0, 1, 2, … , - − 1. 
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We use the following recursive procedure: 
 

1. Set the initial time >4 as the first day in which the first 10 deaths and 10 recovered were 
reported in the area (region or nation).  

2. Assume the initial guess for the width of the window to be P = ⌈(2, + 1)/^⌉, where , 

is the number of parameters to be identified and ^ the number of measured variables.  
3. Estimate the parameters over the entire window to obtain 

LQ = argmin
56

RRSTLQ, >4, >4 + PU 

4. Divide the window into two intervals and estimate the parameters over each 
subsample obtaining the two estimates  

LQ& = argmin
56%

RRSTLQ& , >4, >4 + ⌈P/2⌉U, and LQ7 = argmin
56&

RRSTLQ7 , >4 + ⌈P/2⌉, >4 + PU. 

5. Perform Chow statistical test 

f =
(P − 2,)(g − (g& + g7))

,(g& − g7)
∼ ℱ{9,;,29} 

where 

g = RRSTLQ, >4, >4 + PU	

g& = RRSTLQ& , >4, >4 + ⌈P/2⌉U	

g7 = 	RRSTLQ7 , >4 + ⌈P/2⌉, >4 + PU 
 

with null hypothesis '4: kLQ) = LQ2l and critical ,-value ,∗ = 10,>. 
6. Then, 

a. if ℱ{9,;,29}(f) > ,∗, the null hypothesis cannot be rejected, and the parameters 

are considered constant in the time-window P. Then, the length of the current 

window is increased by setting  P = P + 1, and steps 3, 4 and 5 are repeated; 

b. if ℱ{9,;,29}(f) ≤ ,∗, the null hypothesis is rejected, and then the next 

breakpoint >) is selected as 

>) = argmax	ℱ{9,;,29}(f) 

and the parameter set LQ	that minimizes RRSTLQ, >4, >)U is selected as the set that best fits 

the data over the window (>4, >))	 whose duration is therefore <): = >) − >4 . 

7. If >) = P/0/ the algorithm is stopped, otherwise starting from >) steps 2-7 are repeated 
to find the next breakpoint and the new set of parameters best estimating the data in 
the next window until the end of the available datapoints. 
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Step 2: Offline refinement of the identification process 
 

At the end of the process we will have the set of breakpoints >" and the parameters set in each 

of the windows (>" , >"1)) best fitting the data. As the number of windows can be large given 
the variability in the available data, we refine the estimation results as follows to estimate the 
minimal number of windows able to capture qualitatively the trend of the real data. 
 
In particular, once the window breakpoints are obtained at the end of step 1, any two 

consecutive windows of duration say <" , <"1) are merged into one larger window of size <" +

	<"1) if one of the two following conditions is verified: 
 

a) The window size of the first window is less than 5 days. 

b) The relative variation of the sum D + ! as estimated in each of the two windows is less 
than 5%, i.e. 

(D + !)"1) − (D + !)"

(D + !)"
≤ 0.05 

where j denotes the window to which the parameter estimates refers to. 
 

If two windows are merged, then the parameters are estimated again on the entire merged 
window and the procedure is iterated once more in case condition b) is still verified. 
 
As a final refinement step, we heuristically explore the effect on the fitting of perturbing the 

breakpoints within ±5 days from their estimated value. As a representative example, the 

results of the fitting procedure for the national aggregate model are shown in Supplementary 
Table 3 and depicted in Supplementary Figure 9. The same procedure is repeated to 
parametrize each of the 20 regional models.  
 
As the key use of the identified model is to validate the intermittent mitigation strategies we 
propose in the paper, it is crucial to check whether the proposed method overfits the data, 
thus worsening the model prediction ability. To provide a representative validation of our 
estimation approach, we report in Supplementary Figure 10 the time evolution of the total 
number of detected cases at the national level predicted by the model in each time window. 
It is possible to see that using just 30% of the datapoints from all the available data (shown as 
red circles), the model predictions (solid blue lines) fit well the rest of the data in each time 
window both before and after the windows are merged as a result of step 2 with a maximum 



9 
 

prediction error of 10,000 units. A further numerical validation of the time window estimation 
algorithm is provided later in this Note. 
 

Step 3: Identifying the parameters	F. , F- , p, E, G. , G- , H  

For each of the time windows identified in Step 2, using the time series BY(>) estimated from 
the equations parametrized in Step 1, and considering that equations (17)-(20) of the predictor 
reported in the main text are linear with respect to the parameters, we use an ordinary 
constrained least squares method, with constraints given in Supplementary Table 2 to 
compute the remaining parameters.  
The comparison between the model predictions and the available data is depicted in 
Supplementary Figure 11 and Supplementary Figure 12. Values of all estimated parameters 
at the end of the process are given in Supplementary Table 4 for each region where in the last 

column the regional net reproduction numbers are computed as q4,! = !!?/(E! + p! + @) in 
each time window. Already in the earliest windows it is possible to see the effects of the first 
measures taken by the government that date back to February 23rd and March 4th. Indeed, 

estimates of q4,! in the first windows are lower than the value between 3 and 4 estimated in 
the literature2. Taking Lombardy as a representative example and carrying out our 
identification procedure on the first 7 days (from February 24th to March 1st), yields an 

estimate of q4 = 3.37, for that region, confirming that the social distancing measures adopted 
by the government started taking effect around the beginning of March.  
Note that we enforce continuity of the trajectory between different time windows by imposing 
soft constraints in the optimization problems (see Supplementary Table 2) so that the result of 
the simulation in the previous time window constrains the dynamics in the next one. The 
apparent discontinuity between time-windows that can be observed in the parameter values 
given in Supplementary Table 4 is typical of all predictor-corrector algorithms where after a 
certain number of prediction steps the actual data points are used to “correct” the final 
predictions and restart over the next period. This is standard in systems and control theory 
(e.g. Kalman predictor and n-step ahead predictors). 
 
Supplementary Figure 13 shows the distribution of the regional social distancing parameters 
over time depicting the effects of the national lockdown at the regional level. 
 



10 
 

H! as a function of the occupancy of ICU beds in each region 

Observing the data and the identified parameters in Supplementary Table 4, we noticed a 
significant correlation between the mortality rate in each time window and the congestion of 
the ICU system in that region. 
 
Specifically, we found that  

H! = 3('(!) = H4?@ + H)?@'(! 

where H4?@  and H)?@  are coefficients to be estimated, while '(! is the estimated average congestion 
of the hospitals in each time-window defined as the average ratio between the number of 

hospitalized subjects and the number of available beds in ICU in that region, say P!. (obtained 
by linearly interpolating the number of ICU beds at the beginning of the year, reported on the 
web-page of the Italian Ministry of Health8, and those reported by the Italian Government at 
the end of the national lockdown9). From a qualitative viewpoint, this assumption can be 
explained by the fact that the quality of the care hospitals can provide degrades as the health 
system becomes more and more under stress.  
 

Each point in Supplementary Figure 14 is the value of H! estimated for a given region in each 
time window plotted against the number of hospitalized in the corresponding region 
averaged over the time window. As illustrated in Supplementary Figure 14, a least square 

linear fitting yields H4?@ = 0.016, H)?@ = 0.00068. The function is then saturated at both ends, i.e. 

at 0 and at the value 0.023 for '(! ≥ 10. 
 
Remark on the ad-hoc identification method in the context of the existing literature  
As in other available methods in the literature (quasi-linearization20, Finite Differences, 
Integration of Data21 and Smooth-the-Data methods22-25) that cannot rely on analytical 
solutions of the model equations, we carried out the identification by using some 
approximating solution of the model predictions. Here, we integrated numerically the model 
using a Runge-Kutta algorithm and took the solution as a piecewise differentiable 
approximation of its true solutions (rather than other approximating solutions adopted in 
existing methods that we found unsuitable in our case).  We then incorporated techniques 
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from the literature, as the Chow test25,26, to find the breakpoints, that is, the points in time 
where the parameters change significantly. 
Overall, our method is therefore in line with the others available in the literature but is fine 
tuned and adapted to the specific case of interest also to render its use possible online, i.e. as 
new datapoints become available. 
 
Validation of the ad-hoc window estimation method on a synthetic dataset  
As a further validation of its effectiveness, we tested our parameter ad-hoc window estimation 
algorithm over 100 synthetic datasets containing 40 datapoints each.   
Each dataset is obtained by simulating a replica of model (14)-(16) given by 
 

Ṙ = −!?
R	B
9
,																																																	 

 

 
Ḃ = !?

R	B
9
− DB − @B,															 

 

 Ṅ = DB	 

9̇ = DB + @B 

 

with parameter values set equal to ! = 0.4, D = 0.1, ? = 0.4,	 @ = 1/14,9(0) = 10A, B(0) =

100,	R(0) = 9(0) − B(0), N(0) = 0, artificially varying parameter ! twice (after 10 time units 
and 20 time units respectively) reducing its value by 10% each time and adding to the output 

N(>)	of the model a uniform noise with standard deviation comparable to the values of the 
daily increment in the number of cases, i.e. considering as the model output the variable 

NO(>) ∶= N(> − 1) + x(>)TN(>) − N(> − 1)U	 

with x(>) ∼ y(0,2).	Each dataset therefore contains two artificial parameter changes and 
should therefore be partitioned into 3 time-windows by the algorithm.  
To check the rate of success of the method, we then ran the identification procedure on all the 
synthetic datasets that were generated, estimating the number of windows. Specifically, for 
each instance of the generated data, we collected the number of time windows detected by 
the algorithm after every step of the identification procedure described above. We found that, 
before the offline refinement step of the algorithm (Step 1 of the identification procedure), the 
algorithm detects the correct number of windows in 63% of the cases, overestimating it in 30% 
of the cases. However, after the offline refinement stage (Step 2 of the identification 
procedure), the algorithm overestimates the number of windows (i.e., over-parameterized the 
model) only in 3% of the cases confirming that the model is not being overfitted by the 
procedure. This is also confirmed, as stated above, by its good predictive ability as shown in 
Supplementary Figure 10. 
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Supplementary Note 3. Regional feedback intervention strategies 

We considered three different types of intervention strategies at the regional level that can be 
used individually or in combination.  
 

1) Feedback Social distancing rule. Each region modulates its lockdown measures so as to 
switch them on or off according to the relative saturation level of its health system. 
Namely, the social distancing parameter is modulated by the following hysteretic 
control rule: 

!! =

⎩
⎪
⎨

⎪
⎧!! , if			

0.1'!
P!.

	≥ 0.2		

!̅! , if		
0.1'!
P!.

	≤ 0.1
 

 where !! is set equal to the minimum estimated value in that region during the 

national lockdown (corresponding to the value given in the last window for each 

region reported in Supplementary Table 4) and, as a worst-case scenario, !̅! is set to 

three times !! (or unity if 3!! >1) to simulate a relaxation of the containment measures 

in that region. 
 

2) Feedback flux control. Here the fluxes in or out of a region are modulated according to 
the following hysteretic rules  

)!" = �
)!" , if		

4.)."
;"'

	≥ 0.2			

)Ä!" , if		
4.)."
;"'

	≤ 0.1
 , ∀+ ≠ * 

 
and 

)"! = �
)"! , if			

4.)."
;"'

	≥ 0.2			

)Ä"! , if			
4.)."
;"'

	≤ 0.1
 , ∀+ ≠ * 

where we denote by )!" and )Ä!" respectively the quarantine (low) and post quarantine 

(high) values of the flux from region * to region +. In particular during a lockdown we 

set )!" = 0.3)Ä!" while )Ä!" correspond to the fluxes from region i to region j estimated 

as described in Supplementary Notes 1. 

Note that all people resident in region * not commuting to any other region are 

assumed to stay and move in region * itself by setting )!! = 1 − ∑ )!""C!	 . 
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Supplementary Note 4. Further details on the numerical code 

All the numerical analyses presented in the paper were performed with MATLAB. The code 
is available at https://github.com/diBernardoGroup/Network-model-of-the-COVID-19 and 
was designed to 
 

1) Load the estimated parameter values and the inter-regional fluxes and to iterate the 
discretized model dynamics of each region considering the presence of interregional 
fluxes (MATLAB script “siqhrd_network_main.m”). The script also computes the 
regional and national reproduction numbers. 
 

2) Implement the differentiated regional intervention strategies described in 
Supplementary Notes 3. 

 
3) Carry out parameter sensitivity analysis by using the Latin Hypercube sampling to 

explore the parameter region surrounding the estimated nominal parameter values. A 
variation of up to 20% of all parameters was considered in the simulations reported in 
the paper (MATLAB scripts “siqrhd_network_main_montecarlo.m” and 
“hypercube_gen.m”) 

 
Further details can be found in the accompanying README.TXT file included with the code 
in the software repository link above. 
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Supplementary Figure 1 [Only one region relaxes its lockdown] a. Regional and b. national 
dynamics in the case where only one region (Lombardy in Northern Italy) relaxes its 
containment measures at time 0 and the fluxes between regions are set to their pre-lockdown 
level. Panels of regions adopting a lockdown are shaded in red while those of regions relaxing 
social containment measures are shaded in green. Blue, magenta, red, green, and black solid 
lines correspond to the fraction in the population of infected, quarantined, hospitalized 
requiring ICU, recovered, and deceased averaged over 10,000 simulations with parameters 
sampled using a Latin Hypercube technique around their nominal values set as those 
estimated in the last time window for each region as reported in Supplementary Table 4. 
Shaded bands correspond to twice the standard deviation. The red dashed line identifies the 
total fraction of the population that can be treated in ICU (P!./9!). The regions identified with 
a red label are those where the total hospital capacity is saturated.  All plots are shown with a 
double scale. The scale on the left axis (in red) applies to the hospitalized requiring ICU and 
the ICU beds capacity threshold (dashed red line), while the right axis (in black) applies to the 
infected, quarantined, recovered and deceased.    
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Supplementary Figure 2 [All regions relax their lockdown measures] a. Regional and b. 
national dynamics in the case where all regions relax their current restrictions restoring fluxes 
to their pre-lockdown level. Blue, magenta, red, green, and black solid lines correspond to the 
fraction in the population of infected, quarantined, hospitalized requiring ICU, recovered, and 
deceased in the population averaged over 10,000 simulations with parameters sampled using 
a Latin Hypercube technique around their nominal values set as those estimated in the last 
time window for each region as reported in Supplementary Table 4. Shaded bands correspond 
to twice the standard deviation. The red dashed line identifies the fraction of the population 
that can be treated in ICU (P!./9!). The regions identified with a red label are those where the 
total hospital capacity is saturated.  All plots are shown with a double scale. The scale on the 
left axis (in red) applies to the hospitalized requiring ICU and the ICU beds capacity threshold, 
while the right axis (in black) applies to the infected, quarantined, recovered and deceased. 
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Supplementary Figure 3 [National lockdown] a. Regional and b. national dynamics in the 
case where no region relaxes its containment measures, while all regions restore the 
interregional fluxes to their pre-lockdown level. Blue, magenta, red, green, and black solid 
lines correspond to the fraction in the population of infected, quarantined, hospitalized 
requiring ICU, recovered, and deceased averaged over 10,000 simulations with parameters 
sampled using a Latin Hypercube technique around their nominal values set as those 
estimated in the last time window for each region as reported in Supplementary Table 4. 
Shaded bands correspond to twice the standard deviation. The red dashed line identifies the 
fraction of the population that can be treated in ICU (P!./9!). The regions identified with a red 
label are those where the total hospital capacity is saturated.  All plots are shown with a 
double scale. The scale on the left axis (in red) applies to the hospitalized requiring ICU and 
the ICU beds capacity threshold, while the right axis (in black) applies to the infected, 
quarantined, recovered and deceased.  
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Supplementary Figure 4 [Regional dynamics when intermittent national measures are 
enforced as shown in Fig. 3c of the main text]. Each of the 20 panels shows the evolution in 
the corresponding region of the fraction in the population of infected (blue), quarantined 
(magenta) and hospitalized requiring ICUs (red) averaged over 10,000 simulations with 
parameters sampled using a Latin Hypercube technique around their nominal values set as 
those estimated in the last time window for each region as reported in Supplementary Table 
4. Shaded bands correspond to twice the standard deviation. The red dashed line identifies 
the fraction of the population that can be treated in ICU (P!./9!).  National lockdown measures 
are enforced with all regions shutting down when the total number of occupied ICU beds at 
the national level exceed 20% (windows shaded in red, green when relaxed). The regions 
identified with a red label are those where the total hospital capacity is saturated. All plots 
are shown with a double scale. The scale on the left axis (in red) applies to the hospitalized 
requiring ICU and the ICU beds capacity threshold, while the right axis (in black) applies to 
the infected, and quarantined subjects. 
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Supplementary Figure 5 [Intermittent regional measures, É(E = Ñ. ÖÉE]. a. Each of the 20 
panels shows the evolution in the region named above the panel of the fraction in the 
population in the population of infected (blue), quarantined (magenta) and hospitalized 
requiring ICUs (red) averaged over 10,000 simulations with parameters sampled using a Latin 
Hypercube technique around their nominal values set as those estimated in the last time 
window for each region as reported in Supplementary Table 4 of the Supplementary 
Information. Shaded bands correspond to twice the standard deviation. The red dashed line 
identifies the fraction of the population that can be treated in ICU (P!./9!). Regions adopt 
lockdown measures in the time windows shaded in red while relax them in those shaded in 
green. Differently from Figure 3, when lockdown measures are relaxed !̅! is set to 1.5 times 
!!. During a regional lockdown, fluxes in/out of the region are set to their minimum level.  b. 
National evolution of the fraction in the population of infected (blue), quarantined (magenta) 
and hospitalized requiring ICUs (red) obtained by summing those in each of the 20 regions 
adopting intermittent regional measures. All plots are shown with a double scale. The scale 
on the left axis (in red) applies to the hospitalized requiring ICU and the ICU beds capacity 
threshold, while the right axis (in black) applies to the infected and quarantined subjects.  
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Supplementary Figure 6 [Intermittent national measures, É(E = Ñ. ÖÉE] a. Each of the 20 
panels shows the evolution in the corresponding region  of the fraction in the population of 
infected (blue), quarantined (magenta) and hospitalized requiring ICUs (red) averaged over 
10,000 simulations with parameters sampled using a Latin Hypercube technique around their 
nominal values set as those estimated in the last time window for each region as reported in 
Supplementary Table 4. Shaded bands correspond to twice the standard deviation. The red 
dashed line identifies the fraction of the population that can be treated in ICU (P!./9!). 
National lockdown measures are enforced with all regions shutting down when the total 
number of occupied ICU beds at the national level exceed 20%. The regions identified with a 
red label are those where the total hospital capacity is saturated. Regions adopt lockdown 
measures in the time windows shaded in red while relax them in those shaded in green. 
Differently from Supplementary Figure 4, when lockdown measures are relaxed !̅! is set to 
1.5 times !!. During a regional lockdown, fluxes in/out of the region are set to their minimum 
level. b. National evolution of the fraction in the population of infected (blue), quarantined 
(magenta) and hospitalized requiring ICUs (red) obtained by summing those in each of the 20 
regions. All plots are shown with a double scale. The scale on the left axis (in red) applies to 
the hospitalized requiring ICU and the ICU beds capacity threshold, while the right axis (in 
black) applies to the infected and quarantined subjects.  
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Supplementary Figure 7 [Intermittent regional measures with increased COVID-19 testing 
capacity and  É(E = Ñ. ÖÉE] a. Each of the 20 panels shows the evolution in the region named 
above the panel of the fraction in the population of infected (blue), quarantined (magenta) 
and hospitalized requiring ICUs (red) averaged over 10,000 simulations with parameters 
sampled using a Latin Hypercube technique (see Methods) around their nominal values set 
as those estimated in the last time window for each region as reported in Supplementary Table 
4. Shaded bands correspond to twice the standard deviation. The red dashed line identifies 
the fraction of the population that can be treated in ICU (P!./9!). Regions adopt lockdown 
measures in the time windows shaded in red while relax them in those shaded in green. 
During a regional lockdown, fluxes in/out of the region are set to their minimum level. 
Regions COVID-19 testing capacities are assumed to be increased by a factor 2.5 (see Methods) 
with respect to their current values. Differently from Figure 4, when lockdown measures are 
relaxed !̅! is set to 1.5 times !!. During a regional lockdown, fluxes in/out of the region are 
set to their minimum level. b. National evolution of the fraction in the population of infected 
(blue), quarantined (magenta) and hospitalized requiring ICUs (red) obtained by summing 
those in each of the 20 regions. All plots are shown with a double scale. The scale on the left 
axis (in red) applies to the hospitalized requiring ICU and the ICU beds capacity threshold, 
while the right axis (in black) applies to the infected and quarantined subjects.
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Supplementary Figure 8 [Networks resulting from the estimation of flows] (a) Daily 
commuters’ network; (b) Network topology resulting from the estimation of flows due to 
high-speed trains, planes, and ferry connections. For the sake of clarity, edges with neglible 
fluxes are not shown in the figure. Node colours are a measure of their betweenness centrality. 
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Supplementary Figure 9 [Identification of the aggregate national model] Panel (a). 
Comparison between model estimates and data collected with time widows identified at the 
end of Step 1 of the parameter identification process. Panel (b). Comparison between model 
estimates and data collected with the merged time widows obtained after step 2. In both 
panels the estimated number of cases estimated by the model NY (blue solid line) is compared 
with the available datapoints NO (shown as red circles). 
 
a. b. 

 
 
Supplementary Figure 10. [Example of data matching and prediction ability]. Model 
prediction of the total number of detected cases N! (blue solid line) at the national level when 
the parameters are estimated using 30% (green solid line) of all the available data (red circles) 
in each time window. As shown in panel (a) at the end of step 1, the model estimates match 
well all the data point in each window.  Panel (b) shows the ability of the model to capture 
the data after the windows are merged as a result of Step 2 of the parameter identification 
process. The total average mismatch between model estimates and data is less than 10% (and 
is reduced to less than 1% in the last window).  
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Supplementary Figure 11 [Identification of the regional models - Steps 1,2] Comparison of 
each of the regional model predictions for the total number (expressed in thousands of people) 
of detected cases in each region (solid magenta line) against the available data points. 
Parameters are set to the values estimated at the end of Steps 2 carried out for each region. 
Vertical black lines denote the breakpoints from one estimation window to the next. 
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Supplementary Figure 12 [Identification of the regional models - Step 3] Comparison of 
each of the regional model predictions of the total number (expressed in thousands of people) 
of recovered (green), quarantined (magenta), hospitalized (red), deceased (black) and 
recovered (green) in each region against the available data points (plotted as circles of the 
same colour). Parameters are set to the values estimated at the end of Step 3 carried out for 
each region. Vertical black lines denote the breakpoints from one estimation window to the 
next.  
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Supplementary Figure 13 [Distribution of the social distancing parameter over time] 
Distribution of the social distancing parameter !! in the different detected estimation 
windows. The black line is the LS-interpolant of the National data reported in Supplementary 
Table 4 
 

 
Supplementary Figure 14. [Fitting of ÜE as a function of á( E] Each point is the value of H! 
estimated for a given region in each time window which is plotted against the average number 
of hospitalized in each time window over the total number of ICU beds available in the same 
time window. Here, q2 = 0.07, , = 0.07, 45 observations, and 43 DOF. Normality of the 
residuals has been tested with the Lilliefors test (p-value 0.21). The function is saturated at 
both ends, i.e. at 0 and at the value 0.023 for '(! ≥ 10. 
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Supplementary Table 1 [Comparison of each of the simulated scenarios over 1 year]. 
Metrics to evaluate the impact over 1 year of each of the simulated scenarios are reported 
showing the effectiveness of the Intermittent regional measures in avoiding any saturation of 
the regional health systems while mitigating the impact of the epidemic and reducing the 
costs. 
  

Simulation 
scenario 

Total 
cases 

Total 
deaths 

Maximum 
hospitalize
d 

Days over 
hospital’s 
capacity 
(nation) 

Regions 
over 
hospital’
s 
capacity 

Economic 
cost [M€] 

All regions but 
Lombardy are locked 
down, Figure 2 

10,550,000 
± 146,084 

1,196,063 
± 97,122 

137,640 
± 10,249 
 

75.8 ± 2.7 3 503,355 
± 0 

Intermittent regional 
measures, Figure 3a,b 

1,986,601 
± 76,184 

173,637 
± 3,911 

2,801 ± 170 0 ± 0 0 509,142 
± 6,606 

Intermittent national 
measure, Figure 3c, 
Supplementary Figure 4 

2,162,539 
± 194,929 

205,261 
± 10,854 

4,481 ± 277 
 

0 ± 0 3 562,373 
± 12,809 

Intermittent regional 
measures with increased 
testing, Figure 4 

1,590,459 
± 69,118 

128,644 
± 2,690 

2,057 ± 102 
 

0 ± 0 0 366,514 
± 12,258 

All regions but 
Lombardy are locked 
down 
(pre-lockdown fluxes),  
Supplementary Figure 1 

11,655,380 
± 208,245 

1,296,978 
± 95,931 

140,615 
± 9,976 
 

82.7 ± 2.6 6 503,355  
± 0 

No measure is taken, 
Supplementary Figure 2 

54,415,220 
± 218,518 

7,278,955 
± 209,729 

455,541 ± 
15,956 

239.4 ± 4.2 20 0 ± 0 

National lockdown, 
Supplementary Figure 3 

345,042 
± 29,835 

46,756 
± 1,904 

1,914 ± 0 0 ± 0 0 643,413 
± 0 

Intermittent regional 
measures !̅! = 1.5!! 
Supplementary Figure 5 

995,342 
± 53,097 

94,264 
± 2,428 

1,914 ± 0 0 ± 0 0 259,314 
± 20,572 

Intermittent national 
measure !̅! = 1.5!! 
Supplementary Figure 6 

1,382,216 
± 134,667 

128,732 
± 5,591 

2,167 ± 84 
 

0 ± 0 2 399,559 
± 43,564 

Intermittent regional 
measures with increased 
testing and !̅! = 1.5!!, 
Supplementary Figure 7 

535,668 
± 58,631 

57,809 
± 3,899 

1,914 ± 0 0 ± 0 0 75,043 
± 16,196 
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Constraint Description 
0.9BY" ≤ BY"1) ≤ 1.1BY"; Continuity constraint on the number of infected at the national 

level from window + to window + + 1. 
âä ≤ BY!

"1) ≤ ãä 
âä = 0.9BY!

" − 0.1BY" 
ãä = 1.1BY!

" + 0.1BY" 

Continuity constraint on the number of infected at the regional 
level. The constraints are relaxed by 10% of the national 
estimated infected to account for the fact that in estimating the 
region parameter we are neglecting the influx of infected from 
other regions.  

Ĝ- ≤ 0.1, 
Ĝ. ≤ 0.1; 
 

We assume that the daily number of people hospitalized from 
quarantine and discharged but still positive (and vice versa) is 
no higher than 10% of the total.  

0.7D" ≤ E" + p" ≤ 1.3D" We assume D̂! = Eç! + pé! does not differ from the national 
estimate D̂ of more than 30%. 

F-,"1) = F-,"  We assume the recovery rate of those quarantined at home 
remains the same from a time window to the next as this 
parameter is likely to be time-invariant. In any case, removing 
this constraint, we observed no significant change of this 
parameter from a time window to the next.  

 
Supplementary Table 2 [Constraints for the regional models’ parameterization]. Set of 
parameters constraints enforced by the parameter identification algorithm. 
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  ρ I0 If ηQ ηH ζ α ψ κH κQ ti R0,i              
  Step 1   
* 0.965 1200 11580 0.028 0.045 0.023 0.020 0.050 0.000 0.000 24-feb-20 2.76 
* 0.958 11580 18805 0.028 0.013 0.024 0.018 0.059 0.027 0.049 05-mar-20 2.61 
† 0.774 18805 43814 0.028 0.017 0.029 0.034 0.042 0.000 0.000 08-mar-20 2.11 
† 0.607 43814 65971 0.028 0.019 0.029 0.048 0.025 0.100 0.000 14-mar-20 1.70 
† 0.331 65971 56726 0.028 0.008 0.032 0.053 0.037 0.099 0.100 19-mar-20 0.83 
‡ 0.533 56726 59229 0.028 0.002 0.029 0.061 0.042 0.045 0.054 25-mar-20 1.24 
‡ 0.234 59229 44109 0.028 0.000 0.027 0.049 0.043 0.056 0.100 27-mar-20 0.58 
‡ 0.374 44109 17980 0.028 0.000 0.018 0.023 0.085 0.001 0.088 01-apr-20 0.84              
  Step 2   
* 0.937 1200 16639 0.028 0.029 0.022 0.018 0.053 0.000 0.000 24-feb-20 2.64 
† 0.646 16639 78621 0.028 0.014 0.032 0.018 0.074 0.000 0.100 07-mar-20 1.59 
‡ 0.298 78621 26392 0.028 0.000 0.020 0.019 0.055 0.000 0.080 23-mar-20 0.82 

 
Supplementary Table 3 [Parameters of the aggregate national model] Parameters of the 
aggregate national model before and after Step 2. Parameters values are given before and after 
merging the time windows. Symbols at the beginning of each row denote parameters from 
windows that are then merged in Step 2 of the identification procedure. Note that because of 
the nonlinear nature of the model, parameter values in the merged windows (after Step 2) can 
exceed the ranges of the separate windows obtained in Step 1. 
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Region ρ I0 If ηQ ηH ζ α ψ κH κQ ti R0 
Abruzzo 0,485 944 1083 0,010 0,003 0,026 0,029 0,051 0,005 0,099 21-mar-20 1,29 
  0,321 1083 747 0,010 0,000 0,022 0,025 0,049 0,000 0,087 25-mar-20 0,89 
  0,194 847 210 0,010 0,019 0,014 0,078 0,003 0,005 0,000 14-apr-20 0,51 
Aosta 0,283 425 262 0,010 0,096 0,036 0,062 0,016 0,028 0,000 30-mar-20 0,77 
  0,122 262 41 0,010 0,260 0,011 0,062 0,000 0,079 0,000 14-apr-20 0,37 
Apulia 0,590 1300 1732 0,010 0,000 0,016 0,028 0,047 0,100 0,100 24-mar-20 1,62 
  0,278 1732 530 0,010 0,004 0,015 0,022 0,051 0,002 0,078 28-mar-20 0,78 
Basilicata 0,177 90 26 0,010 0,060 0,006 0,037 0,021 0,025 0,025 11-apr-20 0,55 
Calabria 0,272 384 49 0,015 0,000 0,012 0,042 0,059 0,005 0,079 28-mar-20 0,63 
Campania 0,467 1231 1816 0,018 0,000 0,022 0,014 0,064 0,000 0,100 19-mar-20 1,26 
  0,221 2231 234 0,018 0,000 0,011 0,067 0,019 0,006 0,040 30-mar-20 0,57 
Emilia 0,725 1418 7246 0,029 0,000 0,038 0,020 0,089 0,000 0,100 06-mar-20 1,62 
  0,400 7246 4467 0,029 0,000 0,023 0,059 0,062 0,000 0,045 20-mar-20 0,84 
  0,362 4467 1881 0,029 0,031 0,017 0,063 0,050 0,000 0,017 06-apr-20 0,79 
Friuli 0,450 900 1717 0,028 0,022 0,028 0,032 0,034 0,000 0,100 14-mar-20 1,32 
  0,202 1717 376 0,028 0,049 0,029 0,044 0,007 0,004 0,000 28-mar-20 0,67 
Lazio 0,713 722 1689 0,015 0,003 0,013 0,018 0,081 0,000 0,062 13-mar-20 1,69 
  0,483 1689 1995 0,015 0,012 0,012 0,029 0,076 0,055 0,100 21-mar-20 1,11 
  0,330 1995 732 0,015 0,008 0,007 0,024 0,066 0,039 0,100 30-mar-20 0,82 
Liguria 0,643 900 1933 0,037 0,010 0,040 0,030 0,070 0,100 0,062 12-mar-20 1,52 
  0,398 2126 1053 0,037 0,010 0,023 0,012 0,092 0,000 0,100 21-mar-20 0,92 
Lombardy 0,727 1799 28900 0,010 0,053 0,033 0,009 0,092 0,000 0,040 27-feb-20 1,69 
  0,303 28900 6731 0,010 0,029 0,024 0,018 0,056 0,000 0,027 19-mar-20 0,84 
Marche 0,231 1906 1206 0,010 0,080 0,016 0,022 0,047 0,009 0,000 05-apr-20 0,66 
  0,133 1178 311 0,010 0,007 0,011 0,000 0,057 0,002 0,068 16-apr-20 0,42 
Molise 0,217 120 13 0,013 0,000 0,012 0,067 0,018 0,000 0,043 02-apr-20 0,56 
Piedmont 0,398 6527 7244 0,022 0,000 0,019 0,010 0,073 0,000 0,100 23-mar-20 1,05 
  0,363 7244 4588 0,022 0,014 0,021 0,021 0,071 0,000 0,100 07-apr-20 0,90 
Sardinia 0,296 618 487 0,013 0,000 0,022 0,064 0,017 0,026 0,100 24-mar-20 0,78 
  0,216 487 60 0,013 0,038 0,021 0,066 0,017 0,015 0,063 02-apr-20 0,56 
Sicily 0,402 1025 952 0,015 0,000 0,016 0,048 0,055 0,034 0,100 23-mar-20 0,93 
  0,293 952 271 0,015 0,000 0,009 0,017 0,068 0,012 0,100 02-apr-20 0,75 
Trentino 0,406 2305 2867 0,029 0,000 0,035 0,048 0,024 0,001 0,000 17-mar-20 1,14 
  0,291 2867 2261 0,029 0,000 0,032 0,032 0,038 0,004 0,100 26-mar-20 0,83 
  0,226 2261 802 0,029 0,035 0,023 0,081 0,006 0,002 0,000 07-apr-20 0,58 
  0,201 802 368 0,029 0,320 0,018 0,073 0,017 0,060 0,100 24-apr-20 0,50 
Tuscany 0,552 1675 2666 0,012 0,000 0,017 0,031 0,086 0,014 0,100 16-mar-20 1,18 
  0,353 2932 1690 0,012 0,000 0,014 0,046 0,062 0,000 0,093 26-mar-20 0,79 
  0,317 1690 482 0,012 0,064 0,019 0,063 0,055 0,001 0,008 12-apr-20 0,68 
Umbria 0,134 794 19 0,010 0,141 0,008 0,089 0,000 0,052 0,000 26-mar-20 0,34 
Veneto 0,807 848 3538 0,031 0,000 0,018 0,062 0,052 0,000 0,100 06-mar-20 1,75 
  0,520 3538 5089 0,031 0,000 0,019 0,078 0,044 0,000 0,039 16-mar-20 1,08 
  0,336 5089 1749 0,031 0,000 0,019 0,054 0,048 0,002 0,100 28-mar-20 0,78 

 
Supplementary Table 4 [Model Parameters] Values of estimated parameters for each region 
at the end of the identification process. Dates are given corresponding to breakpoints between 
estimation windows that are automatically detected by the estimation procedure we 
proposed. Regional net reproduction number are reported in the last column clearly showing 
the increasing effect of the national lockdown measures taken by the government on March 
8th, 2020. The parameter values used to simulate the exit from the Lock-Down considered in 
this paper are those shaded in grey for each region corresponding to the estimated parameter 
in the last window ending on May 3rd 2020. Note that for most regions the analysis started 
from a date when social distancing measures were already in place hence the estimated initial 
q4 are lower than the values reported in the literature before those measures were in place 
(e.g. a value of 3-4 for Lombardy for instance).  
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Supplementary Table 5 [Comparison with the parameters estimated in other papers in the literature for the national aggregate models]. 
Comparison between the parameter’s values we used in our work and those used in other papers proposing national models for the COVID-19 
epidemic in Italy that recently appeared in the literature. Notice that, unfortunately, often it is not possible to pin down a specific parameter in a 
different model that clearly corresponds to one of ours, and vice-versa. This is because of the different meaning that compartments have in the 
models and the dynamics of people between the compartments which do not always overlap in an unambiguous manner. When we had to use 
a time constant, say τ, to determine the value of a parameter, say k, we set k = 1 / τ. 

nom min max nom min max nom min max nom min max nom min max nom min max nom min max nom min max nom min max nom min max nom min max nom min max

our model SIQHRD variable 0.122 1 0.4 0.4 0.4 0.114 0.049 0.159 0.044 1E-15 0.089 0.07 0.07 0.07 0.033 8.68E-11 0.092 0.006 1.82E-15 0.079 0.045 8.26E-14 0.1 0.018 0.01 0.037 0.016 1E-19 0.32 0.02 0.006 0.029 0.78 0.195 2.272

[S6] SEPIAHQRD - - - 0.301 0.273 0.33 - - - 0.099 0.093 0.104 0.087 0.077 0.094 0.148 0.13986 0.156 - - - - - - 0.07 0.063 0.073 0.07 0.063 0.073 0.041 0.037 0.045 3.6 3.49 3.84

[S3] SIDARTHE - - - - - - - - - - - - 0.034 - - 0.017 - - 0.027 - - - - - - - - 0.017 - - 0.01 - - - - -

[S14] SIR - - - - 0.26 0.315 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 4

[S15] SIQR - - - 0.373 - - - - - 0.067 - - - - - - - - - - - - - - - - - - - - - - - - - -

[S4] SIRD - - - - - - - 0.143 0.348 - - - - - - - - - - - - - - - - - - - - - - - - - - -

[S16] - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 4

Mean, min, max → - - - 0.337 0.26 0.373 - 0.143 0.348 0.083 0.067 0.104 0.061 0.034 0.094 0.083 0.017 0.156 0.027 0.027 0.027 - - - 0.07 0.063 0.073 0.043 0.017 0.073 0.026 0.01 0.045 3.6 2 4
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