Supplementary Information

Quantum transport evidence of Weyl fermions in an epitaxial ferromagnetic oxide

Kosuke Takiguchi,^{1,2,†} Yuki K. Wakabayashi,^{1,*,†} Hiroshi Irie,¹ Yoshiharu Krockenberger,¹

Takuma Otsuka,³ Hiroshi Sawada,³ Sergey A. Nikolaev,^{4,5} Hena Das,^{4,5} Masaaki Tanaka,² Yoshitaka Taniyasu,¹ and Hideki Yamamoto¹

 ¹NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan.
²Department of Electrical Engineering and Information Systems & Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

³NTT Communication Science Laboratories, NTT Corporation, Soraku-gun, Kyoto 619-0237, Japan.

⁴Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.

⁵Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.

> *email: yuuki.wakabayashi.we@hco.ntt.co.jp †These authors contributed equally to this work.

Supplementary Fig. 1 HAADF-STEM and EELS-STEM images, and Fermi liquid behaviour in SrRuO₃. **a**, (From left to right) HAADF-STEM image of the SrRuO₃ film with the RRR of 71 taken along the [100] axis of the SrTiO₃ substrate. EELS-STEM images for the Ru- $M_{4,5}$ - (red), Ti- $L_{2,3}$ -(green), Sr- M_3 - (blue), O-K-edge (orange), and a color overlay of the EELS-STEM images for Sr, Ru and Ti. **b**, $\rho_{xx}(T)$ versus T^2 curve (blue line) for the SrRuO₃ film with the RRR of 84.3. The black dashed line is the linear fitting result. Close-up near 0 K² is shown in the inset. The $\rho_{xx}(T \rightarrow 0$ K) value is estimated from the extrapolation of the fitting line to the 0 K² axis.

Supplementary Fig. 2 Machine-learning-assisted MBE. a, Schematic illustration of our multisource oxide MBE system. EIES: electron impact emission spectroscopy. **b**, Flowchart of machinelearning-assisted MBE growth based on the BO algorithm. **c**, Highest experimental RRR values plotted as a function of the total number of MBE growth runs. In **c**, open circles are data deduced from Ref. 28. Here, the Ru flux rate, growth temperature, and nozzle-to-substrate distance were varied in ranges between 0.18 and 0.61 Ås⁻¹, 565 and 815°C, and 1 and 31 mm, in correspondence to the search ranges in BO.

Supplementary Fig. 3 Anisotropic MR and linear positive MR in SrRuO₃ a, MR ($\rho_{xx}(B) - \rho_{xx}(0 T)$)/ $\rho_{xx}(0 T)$ at 2 K for the SrRuO₃ film with the RRR of 84.3 with -0.3 T < *B* < 0.3 T applied in the out-of-plane [001] direction of the SrTiO₃ substrate (blue filled circles). Magnetization *M* versus *B* (-0.3 T < *B* < 0.3 T) curve at 10 K with *B* applied in the out-of-plane [001] direction of the SrTiO₃ substrate (red filled circles). **b**, MR ($\rho_{xx}(B) - \rho_{xx}(0 T)$)/ $\rho_{xx}(0 T)$ at 2 K for the SrRuO₃ film with the RRR of 84.3 with -14 T < B < 14 T applied in the out-of-plane [001] direction of the SrTiO₃ substrate. The black dashed line is an eye-guide to indicate the linearity of the MR. These are the same data in Fig. 1e in the main manuscript. **c**, Magnetization *M* versus *B* (-1 T < *B* < 1 T) curve at 10 K with *B* applied in the out-of-plane [001] direction of the SrTiO₃ substrate. **c**, Magnetization *M* versus *B* (-1 T < *B* < 1 T) curve at 10 K with *B* applied in the out-of-plane [001] direction of the SrTiO₃ substrate. The black dashed line is an eye-guide to indicate the linearity of the MR. These are the same data in Fig. 1e in the main manuscript. **c**, Magnetization *M* versus *B* (-1 T < *B* < 1 T) curve at 10 K with *B* applied in the out-of-plane [001] direction of the SrTiO₃ substrate. **d**, Hall resistivity $\rho_{xy}(B)$ curve at 2 K for the SrRuO₃ film with the RRR of 84.3 with *B* applied in the out-of-plane [001] direction of the SrTiO₃ substrate. **e**, MR ($\rho_{xx}(B) - \rho_{xx}(0 T)$)/ $\rho_{xx}(0 T)$ observed from 0 to 14 T at 2 K (light blue line) and the fitting result by eq. (2) (black dashed line). In **d** and **e**, $\rho_{xy}(B)$ and $\rho_{xx}(B)$ are the same data in Fig. 1f and 1e, respectively. The oscillating behaviour of the fitting curve is due to the quantum oscillation of $\rho_{xy}(B)$.

Supplementary Fig. 4 Temperature dependence of the Hall resistivity and chiral-anomalyinduced linear and negative MR. a, Hall resistivity $\rho_{xy}(B)$ curves at 2 to 100 K for the SrRuO₃ film with the RRR of 84.3 with -0.3 T < B < 0.3 T applied in the out-of-plane [001] direction of the SrTiO₃ substrate. In a, the Hall resistivity at each temperature has been offset by 0.15 $\mu\Omega$ ·cm for easy viewing. b, ρ_s versus ρ_{xx} plot (red circles) and fitting results by eq. (4) (black dashed curve) up to 130 K. In b, ρ_s at each temperature was obtained by dividing $\rho_{xy}(0 \text{ T})$ in Fig. 1f by M_{\perp} with 100 Oe obtained by the SQUID measurements. Here, the magnitude of $\rho_{xy}(0 \text{ T})$ is defined as the averaged absolute value of ρ_{xy} at $\pm 0.2 \text{ T}$. ρ_{xx} at each temperature is the same data as in Fig. 1d. c, $\rho_{xx}(B)$ at $\alpha = 0$ (brown solid curve) for the SrRuO₃ film with the RRR of 84.3 and the linear fitting line (black dashed line) to $\rho_{xx}(B)$ in the negative MR region (8 T < B < 14 T). The fitting line completely reproduces the negative and linear MR region. The purple dashed line corresponds to the value of the zero field resistivity $\rho_{xx}(0 \text{ T})$.

Supplementary Fig. 5 Landau quantization and chemical potential, pretreatment of the SdH oscillation data and STEM image. a, b, Schematic energy diagram of the relationship between Landau quantized levels ϵ_N and chemical potential μ_c which is located at the middle point between the *N*th and (*N*+1)th Landau level, and at the center of *N*th Landau level, respectively. The green region represents the filling ratio of each Landau level. In **a** and **b**, the *N*th Landau level is fully and half occupied, respectively. **c**, Raw $\sigma_{xx}(B)$ data measured at 2 K and $\beta = \gamma = 90^\circ$ for the SrRuO₃ film with the RRR of 84.3. The raw conductivity data is obtained by using $\rho_{xx}(B)$ and $\rho_{xy}(B)$ data as $\sigma_{xx}(B) = \rho_{xx}(B)/((\rho_{xx}(B))^2 + (\rho_{xy}(B))^2)$. **d**, SdH oscillation data $\Delta \sigma_{xx}(B)$ obtained by subtracting a polynomial function up to the fifth order from $\sigma_{xx}(B)$ in **c**. **e**, Cross-sectional high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image of the SrRuO₃ film with the RRR of 71 taken along the [100] axis of the SrTiO₃ substrate.

Supplementary Fig. 6 LK theory fitting to the SdH oscillations with the fixed zero Berry phase and mass estimations of the trivial orbits. a, SdH oscillation data at 2 K for the SrRuO₃ film with the RRR of 84.3 and the fitting results by eq. (1) with the zero Berry phases ($\beta_1 = \beta_2 = 0$). The SdH oscillation is the same data as in Fig. 3b. The fitting was carried out by a non-linear least squares method with the fitting parameters A_1 , T_{D1} , A_2 , and T_{D2} . The fitting curve cannot reproduce the experimental data well, confirming the existence of the non-zero Berry phase. **b**, Fourier transform spectra of the SdH oscillations from 70 to 750 mK for the SrRuO₃ film with the RRR of 84.3. The spectra are obtained by fast Fourier transform for the oscillation data $\Delta \rho_{xx}(B)$ from 12.5 T to 14 T. F_3 , F_4 , F_5 , and F_6 peaks correspond to 300, 500, 3500, and 3850 T, respectively. **c-f**, Mass estimations for the F_3 , F_4 , F_5 , and F_6 orbits according to the LK theory. Black dashed curves are fitting curves.

Supplementary Fig. 7 RRR dependence of T_C , T_F , and Hall resistivity. a, $\rho_{xx}(T)/\rho_{xx}(T \rightarrow 0 \text{ K})$ versus T of the different RRR samples. The kinks around 150 K correspond to T_C of the samples. b, $\rho_{xx}(T)/\rho_{xx}(T \rightarrow 0 \text{ K})$ versus T^2 curves with the linear fittings (black lines) for the different RRR samples. The black dashed lines correspond to T_F^2 where the experimental ρ_{xx} and the fitting line are close enough to each other (< 0.1 $\mu\Omega$ cm). c, Hall resistivity $\rho_{xy}(B)$ curves of the different RRR samples at 2 or 2.3 K with B applied in the out-of-plane [001] direction of the SrTiO₃ substrate. The right-side figure is enlarged graph of $\rho_{xy}(B)$ with RRR = 8.93 at 4.5 T < B < 9 T. The orange line is the linear fitting result from 5T to 9 T for estimating the carrier density and mobility.

Supplementary Fig. 8 Electronic structure of orthorhombic SrRuO₃ calculated within GGA+U with U = 2.6 eV and J = 0.6 eV. a, Band structure (left) and density of states (right) for the ferromagnetic state without SOC. b, Band structure for the ferromagnetic state with SOC and the magnetization along the orthorhombic c and b axes (left and right, respectively) calculated within GGA+U+SOC. Fractional coordinates of the high-symmetry k-points are Γ (0,0,0), X (0.5,0,0), S (0.5,0.5,0), Y (0,0.5,0), Z (0,0,0.5), U (0.5,0,0.5), R (0.5,0.5,0.5), and T (0,0.5,0.5).

Supplementary Fig. 9 Pairs of bands I and II in the case of magnetization along the orthorhombic *c* axis. a, Gap function $\Delta \le 0.1$ eV for the pair I (red and blue bands in upper figures in a) in the $k_z = 0$, $k_y = 0$, $k_x = 0$ planes. b, Gap function $\Delta \le 0.1$ eV for the pair II (red and blue bands in upper figures in b) in the $k_z=0$, $k_y=0$, $k_x=0$ planes. The band structure is interpolated in the Wannier basis representing the t_{2g} and e_g states based on the electronic structure calculated within GGA+U+SOC.

Supplementary Fig. 10 Pairs of bands I and II in the case of magnetization along the orthorhombic *b* axis. a, Gap function $\Delta \le 0.1$ eV for the pair I (red and blue bands in upper figures in a) in the $k_z = 0$, $k_y = 0$, $k_x = 0$ planes. b, Gap function $\Delta \le 0.1$ eV for the pair II (red and blue bands in upper graphs in b) in the $k_z = 0$, $k_y = 0$, $k_x = 0$ planes. The band structure is interpolated in the Wannier basis representing the t_{2g} and e_g states based on the electronic structure calculated within GGA+U+SOC.

Supplementary Fig. 11 Electronic structure of monoclinic SrRuO₃ in the ferromagnetic state without SOC calculated within GGA+U with U = 2.6 eV and J = 0.6 eV. Fractional coordinates of the high-symmetry *k*-points are Γ (0,0,0), Z (0.5,0,0), D (0.5,0,0.5), Y (0,0,0.5), and X (0,0.5,0).

Supplementary Table 1 Frequencies and effective cyclotron masses estimated from SdH oscillations in the SrRuO₃ film with RRR = 84.3. Frequencies and effective cyclotron masses estimated in Fig. 3c and Supplementary Fig. 6c-f. m_0 represents the free electron mass in a vacuum.

	F_1	F_2	F_3	F_4	F_5	F_6
$F(\mathbf{T})$	26	44	300	500	3500	3850
m^*/m_0	0.35	0.58	2.9	3.1	5.0	5.8

Supplementary Table 2 Magnetic moments (in μ_B) of SrRuO₃ in the ferromagnetic state as obtained from GGA+*U*+SOC. Second and third columns show the calculated magnetic moments in μ_B units when the magnetization is along the orthorhombic *c* and *b* axes, respectively. *S* and *L* are spin and orbital magnetic moments, respectively. Ru sites are given in fractional coordinates.

Ru site	М∥с	M b
(0,5,0,0)	S = (0.064, 0.010, 1.399)	S = (0.057, 1.398, -0.020)
(0.3, 0, 0)	L = (0, -0.005, 0.074)	L = (0.003, 0.099, -0.008)
(0, 0, 5, 0)	S = (-0.064, 0.010, 1.400)	S = (-0.056, 1.400, -0.021)
(0, 0.3, 0)	L = (0, -0.005, 0.074)	L = (-0.003, 0.099, -0.008)
(0.5, 0, 0.5)	S = (-0.064, -0.010, 1.397)	S = (0.059, 1.397, -0.020)
(0.3, 0, 0.3)	L = (0, 0.005, 0.074)	L = (0.003, 0.099, 0.008)
	S = (0.064, -0.010, 1.396)	S = (-0.057, 1.399, -0.021)
(0.3, 0, 0.3)	L = (0, 0.005, 0.074)	L = (-0.003, 0.099, 0.008)

Γ	#	E - E_F , (eV)	$(k_{\rm x}, k_{\rm y}, k_z)$	Chirality
	WP_z1_1	0.204	(0, 0, 0.332)	1
	WP_z1_2	0.204	(0, 0, -0.332)	-1
	$WP_z 2_1$	0.214	(0, 0.307, 0.357)	-1
	WP_z2_2	0.219	(0, 0.305, -0.355)	1
	WP_z2_3	0.219	(0, -0.305, 0.355)	-1
	WP_z2_4	0.214	(0, -0.307, -0.357)	1
	WP_z3_1	0.117	(0, 0.485, 0.456)	-1
	WP_z3_2	0.116	(0, -0.484, 0.456)	-1
	WP_z3_3	0.116	(0, 0.484, -0.456)	1
	WP_z3_4	0.117	(0, -0.485, -0.456)	1
	WP_z4_1	0.102	(-0.022, 0.439, -0.478)	-1
	WP_z4_2	0.102	(0.020, 0.439, -0.478)	-1
	WP_z4_3	0.101	(-0.027, 0.437, 0.479)	1
	WP_z4_4	0.101	(0.029, 0.436, 0.479)	1
	WP_z4_5	0.102	(-0.021, -0.439, 0.479)	1
	WP_z4_6	0.102	(0.023, -0.438, 0.479)	1
	WP_z4_7	0.101	(0.027, -0.437, -0.479)	-1
	WP_z4_8	0.101	(-0.029, -0.436, -0.479)	-1
	WP_z5_1	0.089	(0.235, -0.306, 0.483)	-1
	WP_z5_2	0.087	(0.233, 0.306, 0.483)	-1
	WP_z5_3	0.087	(0.233, -0.306, -0.483)	1
	WP_z5_4	0.089	(0.235, 0.306, -0.483)	1
	WP_z5_5	0.087	(-0.233, 0.306, 0.483)	-1
	WP_z5_6	0.087	(-0.233, -0.306, -0.483)	1
	WP_z5_7	0.089	(-0.235, 0.306, -0.483)	1
	WP_z5_8	0.089	(-0.235, -0.306, 0.483)	-1

Supplementary Table 3 Weyl points calculated for the pair of bands I for the case of the magnetization along the *c* axis. The *k*-points are given in fractional coordinates.

8			
#	E - E_F , (eV)	$(k_{\rm x}, k_{\rm y}, k_{\rm z})$	Chirality
WP_z6_1	-0.008	(0, 0.464, 0.400)	1
WP_z6_2	-0.016	(0, 0.464, -0.400)	-1
WP_z6_3	-0.016	(0, -0.464, 0.400)	1
WP_z6_4	-0.008	(0, -0.464, -0.400)	-1
WP_z7_1	-0.104	(0.452, 0, 0.385)	-1
WP_z7_2	-0.104	(-0.452, 0, -0.385)	1
WP_z7_3	-0.122	(0.450, 0, -0.368)	1
WP_z7_4	-0.122	(-0.450, 0, 0.368)	-1
$WP_z 8_1$	0.239	(0.276, 0.485, -0.205)	1
$WP_z 8_2$	0.225	(0.266, 0.483, 0.223)	-1
WP _z 8 ₃	0.220	(0.262, -0.483, 0.228)	-1
WP _z 8 ₄	0.231	(0.270, -0.484, -0.215)	1
WP _z 8 ₅	0.238	(-0.275, -0.485, 0.209)	-1
WP _z 8 ₆	0.230	(-0.269, 0.484, 0.218)	-1
WP _z 8 ₇	0.220	(-0.262, 0.483, -0.228)	1
$WP_z 8_8$	0.227	(-0.267, -0.484, -0.220)	1
WP_z9_1	0.142	(-0.492, 0.187, 0.170)	-1
WP_z9_2	0.142	(0.492, 0.188, 0.170)	-1
WP_z9_3	0.151	(0.492, -0.191, 0.175)	-1
WP_z9_4	0.149	(-0.492, -0.191, 0.174)	-1
WP _z 9 ₅	0.142	(-0.491, 0.193, -0.176)	1
WP_z9_6	0.142	(-0.492, -0.188, -0.171)	1
WP_z9_7	0.149	(0.492, -0.188, -0.171)	1
WP_z9_8	0.150	(0.492, 0.192, -0.175)	1
$WP_z 10_1$	0.257	(0.408, -0.379, -0.121)	-1
$WP_z 10_2$	0.257	(0.426, 0.362, -0.123)	-1
WP _z 10 ₃	0.257	(0.425, -0.363, 0.124)	1
$WP_z 10_4$	0.258	(-0.412, 0.374, 0.128)	1
WPz105	0.258	(-0.412, -0.375, -0.129)	-1
$WP_z 10_6$	0.256	(-0.427, 0.360, -0.116)	-1
$WP_z 10_7$	0.258	(0.403, 0.384, 0.119)	1
$WP_z 10_8$	0.256	(-0.428, -0.359, 0.116)	1

Supplementary Table 4 Weyl points calculated for the pair of bands II for the case of the magnetization along the *c* axis. The *k*-points are given in fractional coordinates.

#	E - E_F , (eV)	$(k_{\rm x}, k_{\rm y}, k_{\rm z})$	Chirality
WP_y1_1	0.160	(0, 0.378, 0.395)	1
WP_y1_2	0.152	(0, 0.379, -0.394)	1
WP_y1_3	0.160	(0, -0.378, -0.395)	-1
WP_y1_4	0.152	(0, -0.379, 0.394)	-1
WP _y 2 ₁	0.126	(0.485, -0.095, 0)	1
WP_y2_2	0.128	(-0.486, -0.097, 0)	1
WP_y2_3	0.128	(0.486, 0.097, 0)	-1
WP _y 2 ₄	0.152	(-0.485, 0.095, 0)	-1
WP _y 3 ₁	0.275	(0, -0.326, -0.297)	-1
WP_y3_2	0.275	(0, 0.326, 0.297)	1
WP_y3_3	0.282	(0, 0.321, -0.294)	1
WP_y3_4	0.281	(0, -0.321, 0.294)	-1
WP_y4_1	0.168	(0.323, -0.081, -0.375)	-1
WP_y4_2	0.163	(0.331, 0.076, -0.379)	1
WP_y4_3	0.165	(0.329, -0.077, 0.377)	-1
WP_y4_4	0.168	(-0.323, 0.082, 0.375)	1
WPy45	0.165	(-0.329, 0.077, -0.377)	1
WP_y4_6	0.163	(-0.331, -0.076, 0.379)	-1
WP_y4_7	0.177	(0.306, 0.092, 0.368)	1
WP_y4_8	0.177	(-0.306, -0.092, -0.368)	-1
WP_y5_1	0.113	(-0.172, 0.308, -0.437)	-1
WP_y5_2	0.112	(0.174, -0.306, 0.437)	1
WP _y 5 ₃	0.098	(0.196, -0.307, -0.452)	1
WP_y5_4	0.103	(0.191, 0.305, 0.449)	-1
WP _y 55	0.099	(-0.196, 0.303, 0.451)	-1
WP_y5_6	0.102	(-0.193, -0.304, -0.450)	1
WP_y5_7	0.096	(-0.201, -0.302, 0.454)	1
WP_y5_8	0.096	(0.201, 0.302, -0.454)	-1

Supplementary Table 5 Weyl points calculated for the pair of bands I for the case of the magnetization along the *b* axis. The *k*-points are given in fractional coordinates.

#	E - E_F , (eV)	$(k_{\rm x}, k_{\rm y}, k_{\rm z})$	Chirality
WPy61	-0.070	(0, 0.441, -0.349)	1
WPy62	-0.060	(0, 0.441, 0.350)	1
WP _y 6 ₃	-0.070	(0, -0.441, 0.349)	-1
WPy64	-0.060	(0, -0.441, -0.349)	-1
WP _y 7 ₁	-0.318	(0.155, -0.328, 0)	1
WP_y7_2	-0.331	(0.169, 0.313, 0)	-1
WP_y7_3	-0.320	(-0.157, 0.326, 0)	-1
WP _y 7 ₄	-0.331	(-0.168, -0.314, 0)	1
WP _y 8 ₁	-0.243	(-0.398, -0.101, 0)	-1
$WP_y 8_2$	-0.260	(-0.391, 0.104, 0)	1
WP _y 8 ₃	-0.240	(0.399, 0.100, 0)	1
WPy84	-0.260	(0.390, -0.104, 0)	-1
WP_y9_1	-0.160	(0.454, 0.020, 0)	-1
WP_y9_2	-0.160	(-0.454, -0.021, 0)	1
WP_y9_3	-0.153	(-0.455, 0.026, 0)	-1
WP_y9_4	-0.154	(0.455, -0.025, 0)	1

Supplementary Table 6 Weyl points calculated for the pair of bands II for the case of the magnetization along the *b* axis. The *k*-points are given in fractional coordinates.