Supplementary Information

Quantum transport evidence of Weyl fermions in an epitaxial ferromagnetic oxide

Kosuke Takiguchi,^{1,2,†} Yuki K. Wakabayashi,^{1,*,†} Hiroshi Irie,¹ Yoshiharu Krockenberger,¹ Takuma Otsuka,³ Hiroshi Sawada,³ Sergey A. Nikolaev,^{4,5} Hena Das,^{4,5} Masaaki Tanaka,²

Yoshitaka Taniyasu,¹ and Hideki Yamamoto¹

¹*NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan.* ²*Department of Electrical Engineering and Information Systems & Center for Spintronics Research*

Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

3 *NTT Communication Science Laboratories, NTT Corporation, Soraku-gun, Kyoto 619-0237, Japan.*

4 *Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan*.

5Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.

> *email: yuuki.wakabayashi.we@hco.ntt.co.jp †These authors contributed equally to this work.

Supplementary Fig. 1 HAADF-STEM and EELS-STEM images, and Fermi liquid behaviour in SrRuO₃. a, (From left to right) HAADF-STEM image of the SrRuO₃ film with the RRR of 71 taken along the [100] axis of the SrTiO₃ substrate. EELS-STEM images for the Ru- $M_{4,5}$ - (red), Ti- $L_{2,3}$ -(green), Sr-*M*3- (blue), O-*K*-edge (orange), and a color overlay of the EELS-STEM images for Sr, Ru and Ti. **b,** $\rho_{xx}(T)$ versus T^2 curve (blue line) for the SrRuO₃ film with the RRR of 84.3. The black dashed line is the linear fitting result. Close-up near 0 K² is shown in the inset. The $\rho_{xx}(T\rightarrow 0 \text{ K})$ value is estimated from the extrapolation of the fitting line to the $0 K²$ axis.

Supplementary Fig. 2 Machine-learning-assisted MBE. a, Schematic illustration of our multisource oxide MBE system. EIES: electron impact emission spectroscopy. **b**, Flowchart of machinelearning-assisted MBE growth based on the BO algorithm. **c**, Highest experimental RRR values plotted as a function of the total number of MBE growth runs. In **c**, open circles are data deduced from Ref. 28. Here, the Ru flux rate, growth temperature, and nozzle-to-substrate distance were varied in ranges between 0.18 and 0.61 Ås⁻¹, 565 and 815°C, and 1 and 31 mm, in correspondence to the search ranges in BO.

Supplementary Fig. 3 Anisotropic MR and linear positive MR in SrRuO₃ a, MR ($\rho_{xx}(B)$ − $\rho_{xx}(0)$ T))/ $\rho_{xx}(0)$ T) at 2 K for the SrRuO₃ film with the RRR of 84.3 with -0.3 T < *B* < 0.3 T applied in the out-of-plane [001] direction of the SrTiO₃ substrate (blue filled circles). Magnetization *M* versus *B* (-0.3 T < B < 0.3 T) curve at 10 K with *B* applied in the out-of-plane [001] direction of the SrTiO₃ substrate (red filled circles). **b**, MR $(\rho_{xx}(B)-\rho_{xx}(0\text{ T}))/\rho_{xx}(0\text{ T})$ at 2 K for the SrRuO₃ film with the RRR of 84.3 with −14 T < *B* < 14 T applied in the out-of-plane [001] direction of the SrTiO₃ substrate. The black dashed line is an eye-guide to indicate the linearity of the MR. These are the same data in Fig. 1e in the main manuscript. **c**, Magnetization *M* versus *B* (-1 $T < B < 1$ T) curve at 10 K with *B* applied in the out-of-plane [001] direction of the SrTiO₃ substrate. **d**, Hall resistivity $\rho_{xy}(B)$ curve at 2 K for the SrRuO₃ film with the RRR of 84.3 with *B* applied in the out-of-plane [001] direction of the SrTiO₃ substrate. **e,** MR $(\rho_{xx}(B) - \rho_{xx}(0 \text{ T}))/\rho_{xx}(0 \text{ T})$ observed from 0 to 14 T at 2 K (light blue line) and the fitting result by eq. (2) (black dashed line). In **d** and **e**, $\rho_{xy}(B)$ and $\rho_{xx}(B)$ are the same data in Fig. 1f and 1e, respectively. The oscillating behaviour of the fitting curve is due to the quantum oscillation of $\rho_{xy}(B)$.

Supplementary Fig. 4 Temperature dependence of the Hall resistivity and chiral-anomalyinduced linear and negative MR. a, Hall resistivity $\rho_{xy}(B)$ curves at 2 to 100 K for the SrRuO₃ film with the RRR of 84.3 with -0.3 T < B < 0.3 T applied in the out-of-plane [001] direction of the SrTiO3 substrate. In **a**, the Hall resistivity at each temperature has been offset by 0.15 µΩ∙cm for easy viewing. **b**, ρ_s versus ρ_{xx} plot (red circles) and fitting results by eq. (4) (black dashed curve) up to 130 K. In **b**, ρ_s at each temperature was obtained by dividing $\rho_{xv}(0 \text{ T})$ in Fig. 1f by M_{\perp} with 100 Oe obtained by the SQUID measurements. Here, the magnitude of $\rho_{xy}(0 \text{ T})$ is defined as the averaged absolute value of ρ_{xy} at \pm 0.2 T. ρ_{xx} at each temperature is the same data as in Fig. 1d. **c**, $\rho_{xx}(B)$ at α = 0 (brown solid curve) for the SrRuO₃ film with the RRR of 84.3 and the linear fitting line (black dashed line) to $\rho_{xx}(B)$ in the negative MR region ($8 T < B < 14 T$). The fitting line completely reproduces the negative and linear MR region. The purple dashed line corresponds to the value of the zero field resistivity $\rho_{xx}(0 \text{ T})$.

Supplementary Fig. 5 Landau quantization and chemical potential, pretreatment of the SdH oscillation data and STEM image. a, **b,** Schematic energy diagram of the relationship between Landau quantized levels ϵ_N and chemical potential μ_c which is located at the middle point between the *N*th and (*N*+1)th Landau level, and at the center of *N*th Landau level, respectively. The green region represents the filling ratio of each Landau level. In **a** and **b**, the *N*th Landau level is fully and half occupied, respectively. **c,** Raw $\sigma_{xx}(B)$ data measured at 2 K and $\beta = \gamma = 90^{\circ}$ for the SrRuO₃ film with the RRR of 84.3. The raw conductivity data is obtained by using $\rho_{xx}(B)$ and $\rho_{xy}(B)$ data as $\sigma_{xx}(B)$ = $\rho_{xx}(B)/((\rho_{xx}(B))^2 + (\rho_{xy}(B))^2)$. **d,** SdH oscillation data $\Delta \sigma_{xx}(B)$ obtained by subtracting a polynomial function up to the fifth order from $\sigma_{xx}(B)$ in **c**. **e**, Cross-sectional high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image of the SrRuO₃ film with the RRR of 71 taken along the $[100]$ axis of the SrTiO₃ substrate.

Supplementary Fig. 6 LK theory fitting to the SdH oscillations with the fixed zero Berry phase and mass estimations of the trivial orbits. a, SdH oscillation data at 2 K for the SrRuO₃ film with the RRR of 84.3 and the fitting results by eq. (1) with the zero Berry phases ($\beta_1 = \beta_2 = 0$). The SdH oscillation is the same data as in Fig. 3b. The fitting was carried out by a non-linear least squares method with the fitting parameters A_1 , T_{D1} , A_2 , and T_{D2} . The fitting curve cannot reproduce the experimental data well, confirming the existence of the non-zero Berry phase. **b,** Fourier transform spectra of the SdH oscillations from 70 to 750 mK for the $SFRuO₃$ film with the RRR of 84.3. The spectra are obtained by fast Fourier transform for the oscillation data $\Delta \rho_{xx}(B)$ from 12.5 T to 14 T. F_3 , *F*4, *F*5, and *F*⁶ peaks correspond to 300, 500, 3500, and 3850 T, respectively. **c**-**f,** Mass estimations for

Supplementary Fig. 7 RRR dependence of T_c **,** T_F **, and Hall resistivity. a,** $\rho_{xx}(T)/\rho_{xx}(T\rightarrow 0 \text{ K})$ **versus** *T* of the different RRR samples. The kinks around 150 K correspond to T_c of the samples. **b**, $\rho_{xx}(T)/\rho_{xx}$ $(T\rightarrow 0 \text{ K})$ versus T^2 curves with the linear fittings (black lines) for the different RRR samples. The black dashed lines correspond to T_F^2 where the experimental ρ_{xx} and the fitting line are close enough to each other (< 0.1 μΩ cm). **c**, Hall resistivity $ρ_{xy}(B)$ curves of the different RRR samples at 2 or 2.3 K with *B* applied in the out-of-plane $[001]$ direction of the SrTiO₃ substrate. The right-side figure is enlarged graph of $\rho_{xy}(B)$ with RRR = 8.93 at 4.5 T < B < 9 T. The orange line is the linear fitting result from 5T to 9 T for estimating the carrier density and mobility.

Supplementary Fig. 8 Electronic structure of orthorhombic SrRuO3 calculated within GGA+*U* with $U = 2.6$ eV and $J = 0.6$ eV. a, Band structure (left) and density of states (right) for the ferromagnetic state without SOC. **b**, Band structure for the ferromagnetic state with SOC and the magnetization along the orthorhombic *c* and *b* axes (left and right, respectively) calculated within GGA+*U*+SOC. Fractional coordinates of the high-symmetry *k-*points are Г (0,0,0), X (0.5,0,0), S $(0.5,0.5,0)$, Y $(0,0.5,0)$, Z $(0,0,0.5)$, U $(0.5,0,0.5)$, R $(0.5,0.5,0.5)$, and T $(0,0.5,0.5)$.

Supplementary Fig. 9 Pairs of bands I and II in the case of magnetization along the orthorhombic *c* **axis. a,** Gap function ∆≤ 0.1 eV for the pair I (red and blue bands in upper figures in **a**) in the k_z = 0, *ky* = 0, *kx* = 0 planes. **b**, Gap function ∆≤ 0.1 eV for the pair II (red and blue bands in upper figures in **b**) in the $k_z=0$, $k_x=0$, $k_x=0$ planes. The band structure is interpolated in the Wannier basis representing the t_{2g} and e_g states based on the electronic structure calculated within GGA+U+SOC.

Supplementary Fig. 10 Pairs of bands I and II in the case of magnetization along the orthorhombic *b* **axis. a,** Gap function ∆≤ 0.1 eV for the pair I (red and blue bands in upper figures in **a**) in the $k_z = 0$, $k_y = 0$, $k_x = 0$ planes. **b**, Gap function $\Delta \le 0.1$ eV for the pair II (red and blue bands in upper graphs in **b**) in the $k_z = 0$, $k_y = 0$, $k_x = 0$ planes. The band structure is interpolated in the Wannier basis representing the *t2g* and *eg* states based on the electronic structure calculated within GGA*+U*+SOC.

Supplementary Fig. 11 Electronic structure of monoclinic SrRuO3 in the ferromagnetic state without SOC calculated within GGA+*U* **with** $U = 2.6$ **eV and** $J = 0.6$ **eV. Fractional coordinates of** the high-symmetry *k-*points are Г (0,0,0), Z (0.5,0,0), D (0.5,0,0.5), Y (0,0,0.5), and X (0,0.5,0).

Supplementary Table 1 Frequencies and effective cyclotron masses estimated from SdH oscillations in the SrRuO₃ film with RRR = 84.3. Frequencies and effective cyclotron masses estimated in Fig. 3c and Supplementary Fig. 6c-f. m_0 represents the free electron mass in a vacuum.

Supplementary Table 2 Magnetic moments (in μ_B) of SrRuO₃ in the ferromagnetic state as **obtained from GGA+***U***+SOC.** Second and third columns show the calculated magnetic moments in μ_B units when the magnetization is along the orthorhombic *c* and *b* axes, respectively. *S* and *L* are spin and orbital magnetic moments, respectively. Ru sites are given in fractional coordinates.

Ru site	$M \parallel c$	$M \parallel b$
	$S = (0.064, 0.010, 1.399)$	$S = (0.057, 1.398, -0.020)$
(0.5, 0, 0)	$L = (0, -0.005, 0.074)$	$L = (0.003, 0.099, -0.008)$
	$S = (-0.064, 0.010, 1.400)$	$S = (-0.056, 1.400, -0.021)$
(0, 0.5, 0)	$L = (0, -0.005, 0.074)$	$L = (-0.003, 0.099, -0.008)$
(0.5, 0, 0.5)	$S = (-0.064, -0.010, 1.397)$	$S = (0.059, 1.397, -0.020)$
	$L = (0, 0.005, 0.074)$	$L = (0.003, 0.099, 0.008)$
(0.5, 0, 0.5)	$S = (0.064, -0.010, 1.396)$	$S = (-0.057, 1.399, -0.021)$
	$L = (0, 0.005, 0.074)$	$L = (-0.003, 0.099, 0.008)$

#	$E-E_F$, (eV)	(k_{x}, k_{y}, k_{z})	Chirality
WP_z1_1	0.204	(0, 0, 0.332)	1
WP _z 1 ₂	0.204	$(0, 0, -0.332)$	-1
WP _z 2 ₁	0.214	(0, 0.307, 0.357)	-1
WP _{z22}	0.219	$(0, 0.305, -0.355)$	$\mathbf{1}$
WP _{z23}	0.219	$(0, -0.305, 0.355)$	-1
WP_z2_4	0.214	$(0, -0.307, -0.357)$	$\mathbf{1}$
WP _z 3 ₁	0.117	(0, 0.485, 0.456)	-1
WP _z 3 ₂	0.116	$(0, -0.484, 0.456)$	-1
WP_z3_3	0.116	$(0, 0.484, -0.456)$	$\mathbf{1}$
WP_z3_4	0.117	$(0, -0.485, -0.456)$	$\mathbf{1}$
WP _z 4 ₁	0.102	$(-0.022, 0.439, -0.478)$	-1
WP _z 4 ₂	0.102	$(0.020, 0.439, -0.478)$	-1
WP _z 4 ₃	0.101	$(-0.027, 0.437, 0.479)$	$\mathbf{1}$
WP _z 4 ₄	0.101	(0.029, 0.436, 0.479)	$\mathbf{1}$
WP _z 4 ₅	0.102	$(-0.021, -0.439, 0.479)$	$\mathbf{1}$
WP _z 4 ₆	0.102	$(0.023, -0.438, 0.479)$	$\mathbf{1}$
WP _z 4 ₇	0.101	$(0.027, -0.437, -0.479)$	-1
WP_z4_8	0.101	$(-0.029, -0.436, -0.479)$	-1
WP _z 5 ₁	0.089	$(0.235, -0.306, 0.483)$	-1
WP _z 5 ₂	0.087	(0.233, 0.306, 0.483)	-1
WP _z 5 ₃	0.087	$(0.233, -0.306, -0.483)$	$\mathbf{1}$
WP_z5_4	0.089	$(0.235, 0.306, -0.483)$	$\mathbf{1}$
WP _z 5 ₅	0.087	$(-0.233, 0.306, 0.483)$	-1
WP_z5_6	0.087	$(-0.233, -0.306, -0.483)$	$\mathbf{1}$
WP_z5_7	0.089	$(-0.235, 0.306, -0.483)$	$\mathbf{1}$
WP_z5_8	0.089	$(-0.235, -0.306, 0.483)$	-1

Supplementary Table 3 Weyl points calculated for the pair of bands I for the case of the magnetization along the *c* **axis.** The *k*-points are given in fractional coordinates.

$\#$	$E-E_F$, (eV)	(k_{x}, k_{y}, k_{z})	Chirality
WP _z 6 ₁	-0.008	(0, 0.464, 0.400)	1
WP _z 6 ₂	-0.016	$(0, 0.464, -0.400)$	-1
WP_26_3	-0.016	$(0, -0.464, 0.400)$	$\mathbf{1}$
WP_z6_4	-0.008	$(0, -0.464, -0.400)$	-1
WP_z7_1	-0.104	(0.452, 0, 0.385)	-1
WP_z7_2	-0.104	$(-0.452, 0, -0.385)$	$\mathbf{1}$
WP_z7_3	-0.122	$(0.450, 0, -0.368)$	$\mathbf{1}$
WP_z7_4	-0.122	$(-0.450, 0, 0.368)$	-1
WP_z8_1	0.239	$(0.276, 0.485, -0.205)$	$\mathbf{1}$
WP_28_2	0.225	(0.266, 0.483, 0.223)	-1
WP_28_3	0.220	$(0.262, -0.483, 0.228)$	-1
WP_z8_4	0.231	$(0.270, -0.484, -0.215)$	$\mathbf{1}$
WP_z8_5	0.238	$(-0.275, -0.485, 0.209)$	-1
WP_z8_6	0.230	$(-0.269, 0.484, 0.218)$	-1
WP_z8_7	0.220	$(-0.262, 0.483, -0.228)$	$\mathbf{1}$
WP_z8_8	0.227	$(-0.267, -0.484, -0.220)$	$\mathbf{1}$
WP_29_1	0.142	$(-0.492, 0.187, 0.170)$	-1
WP_29_2	0.142	(0.492, 0.188, 0.170)	-1
WP_29_3	0.151	$(0.492, -0.191, 0.175)$	-1
WP_z9_4	0.149	$(-0.492, -0.191, 0.174)$	-1
WP_z9_5	0.142	$(-0.491, 0.193, -0.176)$	$\mathbf{1}$
WP_z9_6	0.142	$(-0.492, -0.188, -0.171)$	$\mathbf{1}$
WP_z9_7	0.149	$(0.492, -0.188, -0.171)$	$\mathbf{1}$
WP_z9_8	0.150	$(0.492, 0.192, -0.175)$	$\mathbf{1}$
WP_z10_1	0.257	$(0.408, -0.379, -0.121)$	-1
WP_z10_2	0.257	$(0.426, 0.362, -0.123)$	-1
WP_z10_3	0.257	$(0.425, -0.363, 0.124)$	1
WP_z10_4	0.258	$(-0.412, 0.374, 0.128)$	1
WP_z10_5	0.258	$(-0.412, -0.375, -0.129)$	-1
WP_z10_6	0.256	$(-0.427, 0.360, -0.116)$	-1
WP_z10_7	0.258	(0.403, 0.384, 0.119)	$\mathbf{1}$
WP_z10_8	0.256	$(-0.428, -0.359, 0.116)$	1

Supplementary Table 4 Weyl points calculated for the pair of bands II for the case of the magnetization along the *c* **axis.** The *k*-points are given in fractional coordinates.

$\#$	$E-E_F$, (eV)	(k_{x}, k_{y}, k_{z})	Chirality
WP_{y11}	0.160	(0, 0.378, 0.395)	
WP _y 1 ₂	0.152	$(0, 0.379, -0.394)$	$\mathbf{1}$
WP _y 1 ₃	0.160	$(0, -0.378, -0.395)$	-1
WP _y 1 ₄	0.152	$(0, -0.379, 0.394)$	-1
WP _y 2 ₁	0.126	$(0.485, -0.095, 0)$	$\mathbf{1}$
WP _y 2 ₂	0.128	$(-0.486, -0.097, 0)$	$\mathbf{1}$
WP _y 2 ₃	0.128	(0.486, 0.097, 0)	-1
WP_{y24}	0.152	$(-0.485, 0.095, 0)$	-1
WP _y 3 ₁	0.275	$(0, -0.326, -0.297)$	-1
WP _y 3 ₂	0.275	(0, 0.326, 0.297)	$\mathbf{1}$
WP_y3_3	0.282	$(0, 0.321, -0.294)$	$\mathbf{1}$
WP_y3_4	0.281	$(0, -0.321, 0.294)$	-1
WP_v4_1	0.168	$(0.323, -0.081, -0.375)$	-1
WP _y 4 ₂	0.163	$(0.331, 0.076, -0.379)$	$\mathbf{1}$
WP _v 4 ₃	0.165	$(0.329, -0.077, 0.377)$	-1
WP_v4_4	0.168	$(-0.323, 0.082, 0.375)$	$\mathbf{1}$
WP _y 4 ₅	0.165	$(-0.329, 0.077, -0.377)$	$\mathbf{1}$
WP _y 4 ₆	0.163	$(-0.331, -0.076, 0.379)$	-1
WP_v4_7	0.177	(0.306, 0.092, 0.368)	$\mathbf{1}$
WP_14_8	0.177	$(-0.306, -0.092, -0.368)$	-1
WP _y 5 ₁	0.113	$(-0.172, 0.308, -0.437)$	-1
WP_35_2	0.112	$(0.174, -0.306, 0.437)$	$\mathbf{1}$
WP _y 5 ₃	0.098	$(0.196, -0.307, -0.452)$	$\mathbf{1}$
WP_v5_4	0.103	(0.191, 0.305, 0.449)	-1
WP _y 5 ₅	0.099	$(-0.196, 0.303, 0.451)$	-1
WP _y 5 ₆	0.102	$(-0.193, -0.304, -0.450)$	$\mathbf{1}$
WP_v5_7	0.096	$(-0.201, -0.302, 0.454)$	$\mathbf{1}$
WP _y 5 ₈	0.096	$(0.201, 0.302, -0.454)$	-1

Supplementary Table 5 Weyl points calculated for the pair of bands I for the case of the magnetization along the *b* **axis.** The *k*-points are given in fractional coordinates.

#	$E-E_F$, (eV)	(k_{x}, k_{y}, k_{z})	Chirality
WP_06_1	-0.070	$(0, 0.441, -0.349)$	
WP_16_2	-0.060	(0, 0.441, 0.350)	
WP _y 6 ₃	-0.070	$(0, -0.441, 0.349)$	-1
WP_v6_4	-0.060	$(0, -0.441, -0.349)$	-1
WP_v7_1	-0.318	$(0.155, -0.328, 0)$	$\mathbf{1}$
WP_v7_2	-0.331	(0.169, 0.313, 0)	-1
WP _y 7 ₃	-0.320	$(-0.157, 0.326, 0)$	-1
WP_y7_4	-0.331	$(-0.168, -0.314, 0)$	1
WP_v8_1	-0.243	$(-0.398, -0.101, 0)$	-1
WP_v8_2	-0.260	$(-0.391, 0.104, 0)$	
WP_18_3	-0.240	(0.399, 0.100, 0)	
WP_18_4	-0.260	$(0.390, -0.104, 0)$	-1
WP_y9_1	-0.160	(0.454, 0.020, 0)	-1
WP_29_2	-0.160	$(-0.454, -0.021, 0)$	
WP_29_3	-0.153	$(-0.455, 0.026, 0)$	-1
WP_v9_4	-0.154	$(0.455, -0.025, 0)$	

Supplementary Table 6 Weyl points calculated for the pair of bands II for the case of the magnetization along the *b* **axis.** The *k*-points are given in fractional coordinates.