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Methods 

Occurrence data collection 

A two year data collation process was conducted as part of the HumBug Project to build on the 

existing MAP database of global occurrence data for the Asian DVS of human malaria. Using the MAP 

data abstraction protocol [25, 70], additional searches of the published literature (PubMed, Web of 

Science and Scopus) were conducted extending the occurrence data from 2010 to 2016 and where 

possible, disaggregated sibling species data from the existing data across the full time period (1985 – 

2016). Only those records with reliable reported identification methods (i.e. molecular methods 

distinguishing siblings) were included.  

For the modelling presented here, we used An. stephensi occurrence data drawn from this updated 

dataset, supplemented with the most recent reports of An. stephensi, including those in the Horn of 

Africa and Sri Lanka. 

Background data 

Most species distribution modelling methods require absence/pseudo-absence or background data 

(true absence data is rarely available) [38, 71]. Ideally these data should reflect the same sampling 

bias as is found in the occurrence data (for example, occurrence data will be biased towards more 

accessible locations where surveyors can conduct their sampling) [72]. To do this, many background 

datasets used in mosquito vector mapping are based on sites where mosquito sampling has 

occurred, but where the target species was not recorded (e.g. [73]). These background points cannot 

be called ‘true absences’ as it may be that the target species does exist at the location but was just 

not found in the reported survey. Our initial set of background points included presences for 

anopheline species (excluding An. stephensi) across Asia and within the Horn of Africa, and records 

of Aedes and Culex species (some of these species have larval site behaviours similar to An. 

stephensi).  To try and lessen the likelihood of a background point in reality being a presence point, 

but prevent the background points being selected from locations too far from the presence points 

(and therefore not representing the environmental space sampled for An. stephensi), we drew a 

polygon encompassing the occurrence data and established the distance between the central point 

within this polygon to the occurrence point the furthest distance away. This distance defined the 

buffer radius drawn around each occurrence point and only those background points (selected from 

within our existing dataset) within these buffers were sampled to provide the background data for 

the models. A buffer of 0.5 degrees was drawn around all the background points and a second buffer 

of 0.2 degrees was drawn around the presence points (to prevent background data being selected 

too close to the presence data). These three buffer zones in combination reflect the sampling bias 

implicit in the presence data.  

As model accuracy can vary according to the selection of these points, we made 10 random 
selections across the defined background zone. The total number of pseudo-absence points (3762) 
per selection equates to 1% of the total number of pixels available in the background area. 
 

Environmental Covariates 

An initial suite of 19 covariates with varying resolutions were resampled to 0.1 degree (~11km) 

resolution to match the precision of our occurrence data (10km).  To limit multi-collinearity we used 

principal component analyses (PCA), keeping only those variables with Spearman correlation 

coefficient <0.7 and those with specific relevance to mosquito biology, giving a final set of seven 

predictor variables (Table S2). 
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These seven covariate surfaces were downloaded from the source (See Table S2) and underwent 

minor pre-processing (coded in R [28, 29]) prior to use in biomod2. This included insuring all surfaces 

were in the same format (i.e. had the same projection) and any no data cells designated as ‘-9999’ 

were assigned as ‘NA’ (the accepted notation in R). The rasters were stacked and masked to only 

include the relevant continents (Asia, Oceania and Africa) for An. stephensi. 

The final set of seven covariates were: annual mean temperature and seasonal precipitation 

(Deblauwe et al [74] developed from MODIS [75] and CHIRPS [76] respectively), human population 

density (WorldPop [77, 78]), EVI (Enhanced Vegetation Index, corrected mean across each month 

and year for the period 2000-2014, MODIS satellite imagery [75]), Tasselled Cap Wetness (TCW) 

(Tasselled Cap Wetness – a measure of surface water, corrected mean across each month of the 

year for the period 2000-2014, MODIS satellite imagery [75]), Irrigation – Global Map of irrigated 

areas (GMIA) FAO, United Nations [79] and Crop mosaic (Proportional cover of land with a mosaic of 

croplands, forest, shrublands and grasslands, International Geosphere and Biosphere Programme 

(GBP) land cover classification within the MODIS dataset [80]).   

Species Distribution Modelling 

There are an increasing number of algorithms that can be applied to model species ecological niches 

and distributions, all with their own strengths and weaknesses [81, 82].  Different algorithms will 

have different conceptual approaches and different accuracy depending on the case study. The 

quality and quantity of the input data will also have a huge impact on the reliability, confidence and 

suitability outputs. To leverage the strengths and mitigate the weaknesses of such diverse modelling 

methods [83], we used biomod2: “… a platform for ensemble forecasting of species distributions, 

enabling the explicit treatment of model uncertainties and the examination of species-environment 

relationships.’  [30]. This platform allows comparison between multiple species distribution models 

and those that perform well are then combined to create the final ensemble map. Our maps are 

composed from 500 model runs, using five species distribution modelling algorithms (Maximum 

Entropy (MAXENT) [32, 33], random forest [34] , generalised boosted regression [35], generalised 

additive models [36], and multiple adaptive regression splines (MARS) [37]).  

The models were calibrated and evaluated over 10 data-splitting (80-20%) runs resulting in 500 
model outputs.  Two evaluations were used, the True Skill Statistic (TSS) and the area under the 
receiver operating curve (ROC), both based on a confusion matrix (a matrix that summarises the 
number of true and false predictions for presence and absence made by the model using a held back 
subset of data). The TSS is considered an improved substitute for the kappa value, a widely used 
metric but one that may be biased by the prevalence of the modelled species. It generates a 
confusion matrix by comparing a hypothetical set of perfect predictions to the number of correct 
predictions minus those attributed to random guessing. The output is a range between -1 to +1 
where +1 equates to a perfectly agreed model whereas anything at zero or below indicate a model 
performance no better than random [84]. The ROC assessment plots the true prediction rate against 
the false prediction rate of multiple threshold data splits and the area under the subsequent curve 
provides a relative value for model performance [85]. 

The resulting consensus maps, indicating the habitat suitability for An. stephensi across Asia and into 

Africa, is an ensemble of the consensus mean of predictions of all 500 model runs that had a TSS and 

ROC evaluation score of > 0.6 and > 0.8 respectively. The outputs are weighted by the model’s 

respective evaluation scores (i.e. TSS) before being combined.  

All modelling was conducted in R studio (version 1.2.1335) [29] using R (version 3.6.1) [28]. 

 

 



Coefficient of Variation (CV) Map 

Anopheles stephensi appears to be rapidly expanding its geographic range. Most SDMs assume some 

level of equilibrium between the species and its environment [38] [39] and species that are invading 

and expanding into new locations are not stable. Although we have included all available occurrence 

data for this species in Africa alongside suitable background points, it is important to note that we 

are still extrapolating into novel environments. Using an ensemble model methodology addresses 

this instability to some extent [38, 40, 41], but we are still attempting to predict occurrence in 

environments that are not represented by the sampled locations. Therefore we need to highlight 

where the modelled outputs are less robust.  

We therefore accompany each of our ensemble models with a coefficient of variation (CV) map. This 
is a simple evaluation that maps the relative standard deviation (RSD – the ratio of the SD to the 
mean) across the 500 final models calculated on a per pixel basis. A high score therefore indicates a 
greater distribution around the mean and therefore a lower confidence in the mean ensemble value.  

Model-selected influential variables 
To establish the influence of each covariate, correlation scores were calculated on a model by model 

and covariate by covariate basis. Correlation values were calculated for each of the 500 models that 

made up the ensemble map, comparing the final model with an adjusted version where the values of 

the covariate in question had been shuffled/randomised. The correlation between the two models 

indicates the importance of that covariate. A low value (min = 0) indicates minimal influence of that 

covariate in the final model and a high value (max = 1) denotes a high influence on the final model 

[31]. These values were ranked to show their relative influence in the final models.  

Population at risk 

Risk is a product of predicted impact and likelihood. Three components of the likelihood of An. 

stephensi establishing and transmitting the malaria parasite in the future were calculated for the 

African cities with greater than one million inhabitants [42]. Using QGIS [43] a rectangle was drawn 

around the locations known to have An. stephensi, the quartile values were then calculated for the 

set of predictions within this rectangle and these were used to classify each of the African cities 

(using the maximum suitability value from the pixels within that city). Class 4 (below the lower 

quartile value, indicating lowest suitability) was not assigned to any listed city. Class 3 and 2 indicate 

increasing increments of suitability, with class 1 indicating the highest suitability (i.e. predictions 

greater than the upper quartile value).  The distance from a confirmed An. stephensi record 

(occurrence data from this study) was calculated in QGIS using UN-sourced city coordinates. These 

coordinates were also used to evaluate the distance from the combined P. falciparum and P. vivax 

endemic zone, which was defined using the transmission limits data available from the Malaria Atlas 

Project [17].  

 

 

 

 

 

 

 

 



Supplemental Tables 

Table S1: The environmental covariates ranked by importance as selected by the inclusive and 

exclusive ensemble models.  

 Exclusive map – WITHOUT African data Inclusive map – WITH African data 

Model 
evaluation 

TSS: 0.897, ROC: 0.985 TSS: 0.907, ROC: 0.987 

1 Annual Mean Temperature 0.459 Annual Mean Temperature 0.461 

2 Human population density 0.325 Human population density 0.370 

3 Precipitation Seasonality 0.171 Enhanced vegetation Index (EVI) 0.174       

4 Enhanced vegetation Index (EVI) 0.161   Precipitation Seasonality 0.161   

5 Irrigation 0.155 Tasselled cap wetness 0.134 

6 Tasselled cap wetness 0.110 Irrigation 0.130 

7 Cropland-Natural Vegetation 
Mosaic 

0.011  Cropland-Natural Vegetation 
Mosaic 

0.010 

 

 



Table S2 Predictor variables. Descriptions of each potential explanatory variable used in the 

ensemble model. If the data layer was obtained from an online repository, the URL and date 

accessed are given. If the data layer has a citation then this is given. 

Short name Description URL Date 
accessed 

Citation 

Annual mean 
temperature 

Annual mean temperature 
derived from MOD11C3 v. 5.0 
(and published in [74]. Original 
data: MOD11C3 (MODIS sensor, 
2001-2013) land surface 
temperature 
 
 

https://vdeblau
we.wordpress.c
om/download/ 

2018 [74, 75] 

Seasonal 
precipitation 

Seasonal precipitation derived 
from CHIRPS v. 2.0 (and 
published in [74]. Original data: 
CHIRPS (1981-2013) 
precipitation dataset.  
 

https://vdeblau
we.wordpress.c
om/download/ 

2018 [74, 76] 

Tasselled Cap 
Wetness (TCW)  
- Surface 
wetness mean 

Mean values for a measure of 
surface moisture (TCW, 
variation in the vigour of green 
vegetation) 

https://lpdaac.u
sgs.gov/product
s/mcd43d6*2-
4*v006/ 

2018 [86] 

Cropland-
natural 
vegetation 
percentage 
(Class 14) 

Proportion of the pixel area 
covered by a mosaic of annual 
crops and natural vegetation 
(mosaic of cropland, forest, 
shrubland or grassland) 

https://modis.gs
fc.nasa.gov/dat
a/dataprod/mo
d12.php 

2018 [75] 

Enhanced 
Vegetation 
index (EVI) 
mean 

Mean enhanced vegetation 
index is a measure of greenness 
reflectance of the land surface 

https://lpdaac.u
sgs.gov/product
s/mcd43d6*2-
4*v006/ 

2018 [87] 

Irrigation Global Map of irrigated areas 
(GMIA)  

http://www.fao.
org/aquastat/en
/geospatial-
information/glo
bal-maps-
irrigated-areas 

2018 [79] 

Population 
density  

WorldPop, human population 
size (No. persons/pixel)  

https://www.w
orldpop.org/geo
data/listing?id=
17 

n/a [78] 

 

https://vdeblauwe.wordpress.com/download/
https://vdeblauwe.wordpress.com/download/
https://vdeblauwe.wordpress.com/download/
http://chg.geog.ucsb.edu/data/chirps/
https://vdeblauwe.wordpress.com/download/
https://vdeblauwe.wordpress.com/download/
https://vdeblauwe.wordpress.com/download/
http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas
http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas
http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas
http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas
http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas
http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas
https://www.worldpop.org/geodata/listing?id=17
https://www.worldpop.org/geodata/listing?id=17
https://www.worldpop.org/geodata/listing?id=17
https://www.worldpop.org/geodata/listing?id=17


Table S3:  The populations at risk if An. stephensi were to establish in the urban cities of Africa.  

City Country Population Distance from 
An. stephensi 
records (km) 

Distance from 
malaria 
endemic zone 
(km) 

Habitat 
suitability 
class 

Djibouti City Djibouti <1M 0 0 1 

Addis Ababa Ethiopia 3,725,000 160 10 2 

Asmara Eritrea <1M 450 0 1 

Muqdisho 
(Mogadishu) Somalia 1,890,000 480 0 1 

Al-Khartum 
(Khartoum) Sudan 6,150,000 940 0 1 

Nairobi Kenya 5,950,000 1100 0 1 

Mombasa Kenya 1,240,000 1190 0 1 

Kampala Uganda 3,400,000 1280 0 2 

Dar es Salaam Tanzania 6,150,000 1490 0 1 

Kigali Rwanda 1,140,000 1650 0 2 

Kisangani DRC 1,120,000 1900 0 3 

Al-Qahirah 
(Cairo) Egypt 20,500,000 2260 1490 1 

Bangui CAR 1,160,000 2440 0 2 

Lilongwe Malawi 1,020,000 2450 0 1 

Mbuji-Mayi DRC 2,000,000 2490 0 2 

Kananga DRC 1,190,000 2570 0 3 

Lubumbashi DRC 2,125,000 2640 0 2 

N'Djaména Chad 1,360,000 2720 0 1 

Tananarive 
(Antanarivo) Madagascar 2,450,000 22780 0 1 

Lusaka Zambia 2,575,000 2900 0 1 

Maiduguri Nigeria 1,170,000 2930 0 1 

Harare Zimbabwe 2,050,000 3080 0 2 

Brazzaville Congo (Rep.) 2,175,000 3130 0 1 

Kinshasa DRC 12,000,000 3130 0 1 

Yaoundé Cameroon 3,300,000 3220 0 2 

Douala Cameroon 3,250,000 3410 0 1 

Jos Nigeria 1,000,000 3410 0 2 

Kano Nigeria 4,550,000 3430 0 1 

Pointe-Noire Congo (Rep.) 1,130,000 3490 0 1 

Kaduna Nigeria 1,830,000 3560 0 1 

Abuja Nigeria 3,375,000 3570 0 1 

Luanda Angola 7,900,000 3580 0 1 

Tarabulus 
(Tripoli) Libya 1,210,000 3640 1880 1 

Aba Nigeria 1,120,000 3650 0 2 

Onitsha Nigeria 1,170,000 3700 0 1 

Port Harcourt Nigeria 2,275,000 3700 0 2 

Maputo Mozambique 2,875,000 3730 0 1 

Benin City Nigeria 1,610,000 3820 0 1 

Ilorin Nigeria 1,040,000 3900 0 1 

Johannesburg/ South Africa 13,700,000 3930 300 1 



Pretoria 

Ibadan Nigeria 3,475,000 3990 0 1 

Sousse Tunisia 1,120,000 4020 2110 2 

Lagos Nigeria 18,800,000 4060 0 1 

Tunis Tunisia 2,625,000 4120 2210 2 

Niamey Niger 1,260,000 4130 0 1 

Cotonou Benin 1,770,000 4170 0 1 

Durban South Africa 3,375,000 4180 150 3 

Lomé Togo 2,025,000 4300 0 1 

Accra Ghana 4,950,000 4470 0 1 

Ouagadougou Burkina Faso 2,525,000 4530 0 1 

Kumasi Ghana 2,950,000 4600 0 1 

El Djazaïr  
(Algiers) Algeria 3,900,000 4660 2160 2 

Port Elizabeth South Africa 1,330,000 4800 840 3 

Abidjan Ivory Coast 5,450,000 4890 0 1 

Wahran 
(Oran) Algeria 1,450,000 4910 2000 2 

Cape Town South Africa 4,175,000 5150 1220 2 

Fès Morocco 1,250,000 5220 1820 1 

Bamako Mali 3,375,000 5230 0 1 

Tangier Morocco 1,090,000 5350 2020 2 

Rabat Morocco 2,025,000 5380 1840 1 

Marrakech Morocco 1,100,000 5410 1550 1 

Dar-el-Beida 
(Casablanca) Morocco 4,425,000 5430 1770 1 

Agadir Morocco 1,160,000 5530 1400 1 

Monrovia Liberia 1,530,000 5610 0 2 

Freetown Sierra Leone 1,720,000 5840 0 1 

Nouakchott Mauritania 1,220,000 6060 0 2 

Touba Senegal 1,040,000 6060 0 2 

Dakar Senegal 3,600,000 6230 0 1 
 

1Addis Ababa is within the area of the malaria endemic zone, but due to its altitude (~2300m) is 

considered non-endemic. 
2This Euclidean distance includes a stretch that traverses the Mozambique Channel/Indian Ocean. 



 
 

Figure S1: Populations at risk calculations: close up indicating examples of how the cities were 

classified showing examples of cities in high (Class 1), medium (Class 2) and low (Class 3) risk. 

 

 

 



 
 

Figure S2: Response curves for the seven explanatory covariates derived from models run WITHOUT 

(exclusive) (n = 343, blue line) and WITH (inclusive) the African data (n = 358, red line). The annual 

mean temperature and human population density variables has the most influence in both of the 

final models. 

 

 

 


