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Supplementary Information 
 
Table S1  
 

 Column 1 Column 2 Column 3 Column 4 Column 5 
Fig.4a 
𝒔 = 𝟎. 𝟏, 𝝉 = 𝟎. 𝟏,  
	𝒄𝒊 = 𝟎, 𝒄𝒋 = 𝟎  

𝑤 = 0.4 𝑤 = 0.45 𝑤 = 0.5 𝑤 = 0.55 𝑤 = 0.6 

Fig.4b 
𝒘 = 𝟎. 𝟓, 𝝉 =
𝟎. 𝟏, 𝒄𝒊 = 𝟎, 𝒄𝒋 = 𝟎		  

𝑠 = 0.01 𝑠 = 0.0325 𝑠 = 0.055 𝑠 = 0.0775 𝑠 = 0.1 

Fig.4c 
𝒘 = 𝟎. 𝟓, 𝝉 = 𝟎. 𝟏,  
𝒔 = 𝟎. 𝟏	  
 

𝑐9 = −0.04 
𝑐; = 0.04 

𝑐9 = −0.02 
𝑐; = 0.02 

𝑐9 = 0 
𝑐; = 0 

𝑐9 = 0.02 
𝑐; = −0.02 

𝑐9 = 0.04 
𝑐; = −0.04 

Fig.4d 
𝒔 = 𝟎. 𝟏, 𝝉 = 𝟎. 𝟏,  
𝒔 = 𝟎. 𝟏	  
 

𝑐9 = −0.04 
𝑐; = −0.04 

𝑐9 = −0.02 
𝑐; = −0.02 

𝑐9 = 0 
𝑐; = 0 

𝑐9 = 0.02 
𝑐; = 0.02 

𝑐9 = 0.04 
𝑐; = 0.04 

 
 
Table S1. Parameters used to generate the decoy influence maps in Fig. 4a-d.   
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Table S2 
 

 𝒄𝒊, 𝒄𝒋 𝒔 𝜷𝟏 𝜷𝟐 𝒌	 𝝉	 

Vanilla divisive 
normalisation 𝑓𝑟𝑒𝑒 1 0 1 0.001 𝑓𝑟𝑒𝑒 

Recurrent divisive 
normalisation 𝑓𝑟𝑒𝑒 1 1 1 0.001 𝑓𝑟𝑒𝑒 

Adaptive gain 𝑓𝑟𝑒𝑒 𝑓𝑟𝑒𝑒 1 1 1 𝑓𝑟𝑒𝑒 

Range normalisation 0 1 0 0 0.001 𝑓𝑟𝑒𝑒 

 
 
 
Table S2. Parametrisations of grandmother model corresponding to computational schemes 
proposed in the literature. 
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Model derivations 
 
For the grandmother model, we facilitated comparison between the adaptive gain model 
(which incorporates a logistic transformation) with other normalisation models (which do not), 
by leveraging the following limit:  
 

lim
E→G

𝑥E − 1
𝑘 = 	 logL 𝑥 , ∀	𝑥 > 0 

[S1] 
Thus, substituting 𝑥 above for our variables of interest, 𝑣(𝐴9) and 𝜇, we obtain: 
 

log 𝑣(𝐴9) −	 log 𝜇9 = 	 lim	E→G

𝑣(𝐴9)E − 1
𝑘 −

𝜇9E − 1
𝑘 = 	 lim	

E→G

𝑣(𝐴9)E − 𝜇9E

𝑘 	 
	 [S2] 

 
Parameter 𝑘 thus corresponds to the extent to which inputs are compressed before being 
transduced, with 𝑘~0 signifying a log compression, and 𝑘~1 signifying linear input. Our results 
revealed that variations in parameter 𝑘, which allow us to interpolate between those two 
schemes, do not result in impactful systematic changes of the predicted pattern of decoy 
influence. This is consistent with simulations of the transfer function under different values of 
parameters 𝑘 and 𝑠, whereby the transfer function retains a consistent functional form across 
values of 𝑘, when 𝑠 < 1 (Fig. S4). 
  
Simulations revealed that implementing a value of 𝑘 as high as 0.001 satisfactorily 
approximates the natural logarithm (Fig. S5). Consequently, when we plug in the parameter 
values for vanilla divisive normalisation specified in Table S2	(𝑐𝑖, 𝑐𝑗 = 𝑓𝑟𝑒𝑒, 𝑠 = 1,𝛽1 = 0,𝛽2 =
1,𝑘 = 0.001) into the general grandmother model eq. 7, we may substitute in the relationship 
outlined above in eq. S2, arriving at the formulation of recurrent divisive normalisation as per 
eq. 1: 
 

𝑢(𝐴9)Z[ = 	
1

𝑒\(](^_)`.``a\b_`.``a)(G.GGc)da
=

1
𝑒\ (efg ](^_)\efgb_)	

=
1
𝜇9

𝑣(𝐴9)
= 		

𝑣(𝐴9)
𝜇

= 	
𝑣(𝐴9)

𝑣(𝑎𝑣𝑔^jZ9) + 𝑐9
	 

[S3]  
 
 
Similarly, we may simplify the grandmother model (eq. 7) into recurrent divisive normalisation 
(eq. 2) by plugging in the relevant parameter values (𝑐9, 𝑐; = 𝑓𝑟𝑒𝑒, 𝑠 = 1, 𝛽c = 1, 𝛽l = 1, 𝑘 =
0.001) specified in Table S2: 
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𝑢(𝐴9)mZ[ = 	
1

1 + 𝑒\(](^_)`.``a\b_`.``a)(G.GGc)da
=

1
1 + 𝑒\(efg ](^_)\efgb_)	

=
1

1 +	 	𝜇9𝑣(𝐴9)

= 		
𝑣(𝐴9)

𝑣(𝐴9) + 𝜇9
= 	

𝑣(𝐴9)
𝑣(𝐴9) +	𝑣(𝑎𝑣𝑔^jZ9) + 𝑐9

	 

[S4]  
 
Note that if we allow parameter 𝑠 to vary freely, it assumes the role of a power transform for 
inputs: 

𝑢(𝐴9)mZ[no =
1

1 + 𝑒\(](^_)`.``a\b_`.``a)(o∙G.GGc)da
= 	

1
1 + 𝑒\(efg ](^_)\efgb_)oda	

=
1

1 +	 	𝜇9
oda

𝑣(𝐴9)o
da

= 		
𝑣(𝐴9)o

da

𝑣(𝐴9)o
da + 𝜇9o

da = 	
𝑣(𝐴9)o

da

𝑣(𝐴9)o
da +	(𝑣(𝑎𝑣𝑔^jZ9) + 𝑐9)

oda  

[S5]  
 
Similarly, we may obtain the formulation of range normalisation eq. 6 by plugging in the 
relevant parameter values (𝑐9, 𝑐; = 0, 𝑠 = 1, 𝛽c = 0, 𝛽l = 0, 𝑘 = 0.001) from Table S2 into 
the general grandmother model (eq. 7): 
 

𝑢(𝐴9)m[ = 	
1

𝑒\(](^_)`.``a\b_`.``a)(G.GGc)da
=

1
𝑒\ (efg ](^_)\efgb_)	

=
1
𝜇9

𝑣(𝐴9)
= 		

𝑣(𝐴9)
𝜇9

= 	
𝑣(𝐴9)

𝑣(𝑟𝑛𝑔^jZ9)
	 

[S6]  
 
Note that while the expression above in eq. S6 does not contain the scaling term 𝛽c from eq. 
6, in the context of the larger grandmother model, its function is absorbed by the weighting 
parameter 𝑤, as in eq. 4. 
 
Finally, we may obtain the formulation of the adaptive gain model (eq. 3) by plugging in the 
relevant parameter values (𝑐9, 𝑐; = 𝑓𝑟𝑒𝑒, 𝑠 = 𝑓𝑟𝑒𝑒, 𝛽c = 1, 𝛽l = 1, 𝑘 = 1) from Table S2 into 
the general grandmother model (eq. 7): 
 

𝑢(𝐴9)^r = 	
1

1 + 𝑒\(](^_)\b_)	oda
=

1
1 + 𝑒\(](^_)\(s_n](t]uvwx_))	oda

=
1

1 + 𝑒dyzyv_{d	z(|z}vwx_)d~_{�da
 

[S7]  
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Fig. S1 
 

 
 
Figure S1. The function of the exponential nonlinearity in the adaptive gain model. A. Simulated decoy 
maps for the adaptive gain (eq. 3) and recurrent divisive normalisation (eq. 2) models. It is noteworthy 
that unlike recurrent divisive normalisation, the adaptive gain model (with bias terms 𝑐9 = 𝑐; = 0) 
produces symmetrical regions of repulsion and attraction around the line of isopreference, whereas 
recurrent divisive normalization produces stronger repulsion and attraction for superior decoys (i.e. 
decoys above rather than below the isopreference line). B. To understand this difference, it is helpful 
to consider the form of the gain function (or transducer) implied by either account. The asymmetrical 
pattern of decoy influence seen for linear RDN occurs because this transducer is a (decelerating) Naka-
Rushton function: 

𝑓�mZ[(𝑥) =
𝑥

𝑥 + 	𝜇
 

 

This function is concave, meaning that the derivative is always higher (i.e. curve steeper) for low than 
high attribute values irrespective of the value of 𝑥. By contrast, the gain function for AG is sigmoidal: 
 

𝑓^r(𝑥) = 	
1

1 +	𝑒\
(�\b)
o

 

 
 

and it is thus symmetric around the midpoint (which is itself adjusted to the context; this is the 
“adaptive” part). In the rightmost panel above we have plotted the transductions applied to inputs by 
the Naka-Rushton function in red and by the Sigmoidal function in blue, with 𝑥∈ [0,1], 𝜇 = 0.5, s = 0.1. 
Notably, the Naka-Rushton function applies a non-symmetric mapping of inputs onto outputs for values 
lower than the additive constant (𝜇 = 0.5, dashed line) compared to values higher than it, whereby the 
gain is higher for lower values. By contrast, the sigmoidal function applies a symmetric compression 
around the inflection point (𝜇 = 0.5, dashed line). The recurrent divisive normalisation framework 
(without additional nonlinearity) implies that those attribute values which are always relatively smaller 
(closer to zero) are processed with higher gain. By contrast, the adaptive gain model implies that 
resources are allocated preferentially to the mean of a context, exaggerating binary distinctions which 
potentially straddle that midpoint (e.g. “low” vs. “high” value). One might term the former “prothetic” 
normalisation and the latter “metathetic” normalisation, because they differ in their assumptions about 
whether feature spaces have a “way up” or intrinsic magnitude-like representation, or whether they 
are fundamentally two ends of a symmetric continuum. C. The relative strengths of the compromise, 
attraction, similarity and repulsion effects per the two decoy maps.  
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Fig. S2 
 

 
Figure S2. Decoy maps according to response latencies. A. Trials were split into fast and slow according 
to the median reaction time of each participant for the first choice. B. Trials were split into fast and 
slow according to the median reaction time of each participant for the second choice. C. Trials were 
split into fast and slow according to the overall median reaction time of each participant.  
It appears that response time did not affect the overall form of the decoy effects at all, with qualitatively 
equivalent decoy influence maps observed for fast and slow trials on both the first and second of the 
sequential ranking judgments made on each trial. Despite their equivalence in form of the influence 
maps, we observe that decoy effects are more pronounced in fast relative to slow trials. This pattern 
emerges consistently regardless of whether we split the data according to time at first choice, second 
choice, or overall time. We note in passing that this reaction time effect can be captured by varying 
parameter 𝑠 in the adaptive gain model, i.e. the overall slope of the transducer or gain of processing 
between fast and slow trials. At first glance, these results may appear to contradict the established 
finding whereby decoy effects are diminished under time pressure (e.g. for faster trials). However, it is 
important to note that our task involved a free response paradigm rather than a fixed response 
paradigm; it is thus likely that on average, those trials with overall low gain (e.g. where participants paid 
less attention) were those where slower responses were made, for instance because they were 
temporarily distracted. We believe that these findings constitute an interesting empirical contribution. 
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Fig. S3 
 

 
 
Figure S3. Embedding space for normalisation models of decoy effects, as in Fig. 5. A. t-distributed 
stochastic neighbour visualisation of the maps of decoy influence produced by different variants of the 
grandmother model. Each map represents a variant of the grandmother model positioned in 2D space 
such that models with similar decoy influence patterns are nearby, while models with more different 
decoy patterns are further apart. Heat maps illustrate decoy influence. B-D. Each model-produced 
decoy map is denoted as a dot and colour coded to indicate parameter value: 𝛽c (panel B), 𝛽l (panel 
C), or 𝑘 (panel D). Human data is represented with a cross. 
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Fig. S4 
 

 
 
 
Figure S4. Illustration of the transfer function of the grandmother model, with 𝑐9 = 	 𝑐; = 0, 
𝛽c = 𝛽l = 	1, and 𝑣(𝑎𝑣𝑔9) = .5, across different values of 𝑘 and 𝑠. Note that with this 
parametrisation, the transfer function is equivalent to a logistic function when 𝑘 = 1, and to a 
Naka-Rushton function when 𝑘~0 and 𝑠 = 1, as in Fig. S1. 
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Fig. S5 
 

 
Figure S5. Illustration of the impact of varying parameter 𝑘 between 0 and 1 in 𝑓(𝑥) = 	 (�

�\b�)
E

 , 
as per eq. S2, with 𝜇 = .5. A: When 𝑘 approaches zero (darkest green curve), 𝑓(𝑥) ≈ log	𝑥 −
log	𝜇 (dotted black curve), and when 𝑘 = 1 (lightest green curve), 𝑓(𝑥) = 𝑥 − 	𝜇 (dashed 
black curve). Variations in parameter 𝑘 (green curves) interpolate between those two 
functions. B: Substituting the functions above into an exponential function, as in the logistic 
formulation of the grandmother model (eq. S7). When 𝑘 approaches zero (darkest green 
curve), 𝑓(𝑥) approaches 𝑒(efg �\efgb) = �

b
 (dotted line), allowing us to recover linear 

normalisation models, as per eq. S3-S5. 
 
 


