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eFigure 1. Curation Process for Generating the List of Possible Findings in AP Chest 

Radiographs 

 

 

  

Chest X-ray Lexicon Creation Process 
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eFigure 2. Vocabulary Expansion Process Used for the Chest Radiograph Lexicon Construction 

The current candidate for expansion is the concept ‘linear density’. The unsupervised learning 

algorithm analyzes textual reports such as the one shown in column 1. The proposed candidates 

are shown in column 3. The accepted and rejected candidates are used to propose better 

candidates in the next iteration. 

 
 

  



© 2020 Wu J et al. JAMA Network Open. 

eFigure 3. Splitting Algorithm for Producing the Partitions for Training, Validation, and Testing 

in the Modeling Data Set 

(a) Unnormalized distributions. (b) normalized distributions.  The modeling dataset has both AP 

and PA images reflecting ambulatory and inpatient data across two hospital sources (NIH, 

MIMIC).  

 

  
(a)                                                           (b) 
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eFigure 4. Prevalence Distribution of the Labels in the Comparison Study Data Set 

(a) The prevalence distribution of finding labels in the comparison study dataset. (b) The 

prevalence label distribution of AP chest radiographs in the NIH portion of the modeling 

dataset.  
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eFigure 5. User Interface Used by Radiologists for Building Consensus After Independent Read 

Discrepancies Were Catalogued  

The discrepant labels resulting from the independent reads of the radiologists (stage 1) are 

resolved through a video conference discussion to build consensus in stage 2 whose interface is 

shown in the figure.  

 

 
 

 

 

 

 

 

  

Consensus-building Interface 
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eFigure 6. Web-Based User Interface Used for Collecting the Reads from Radiology Residents 

on the Comparative Study Data Set 

 

 

 

 
 

 

  

Radiology Resident Read Collection 
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eFigure 7. Extent of Agreement With the Ground Truth for AI Algorithm and Radiology 

Residents on Labels in the Comparison Study Data Set With at Least 2.5% Prevalence  

Some finding labels are ontological abstractions of underlying labels (marked with an *).  
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eFigure 8. Preliminary Read Performance Differences of Radiology Residents and the AI 

Algorithm 

 

  

 
 

 

  

Box Plots for AI Algorithm and Radiology Residents Performance 
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eTable 1. Finding Label Extraction From Reports Through Text Analytics 

Column 1 shows the original text, and Column 2 lists the detected findings (both positive and 

negative).  

 

Sample text from actual radiology reports NLP Produced Findings labels with 

negative (NO) or positive context 

(YES) 

Lines and tubes: None. 

Cardiomediastinal silhouette: Cardiomegaly. Lungs 

and pleura: perihilar and lower lobe ground glass 

opacity. query small effusions. no pneumothorax.  

Bones and soft tissues: No acute osseous 

abnormality. prior median sternotomy. surgical 

clips along the right axilla. 

Impression: cardiomegaly with moderate-severe 

pulmonary edema, likely from heart failure. 

- Enlarged cardiac silhouette 

(YES) 

- Not otherwise specified opacity, 

Pleural/parenchymal opacity 

(YES) 

- Pleural effusion or thickening 

(YES) 

- Pneumothorax (NO) 

- Pulmonary edema/hazy opacity 

(YES) 

- Fracture (NO) 

Mild  peri-hilar opacities  atelectasis or edema. 

Right small pleural effusion. No pneumothorax. 

ETT  In appropriate position.  CRT-D.  mild 

cardiomegaly. Calcified density overlying the  right 

shoulder maybe degenerative or post-traumatic.", 

- Linear/patchy atelectasis (YES) 

- Not otherwise specified opacity, 

Pleural/parenchymal opacity 

(YES) 

- Pulmonary edema/hazy opacity 

(YES) 

- Pleural effusion or thickening 

(YES) 

- Pneumothorax (NO) 

- Enlarged cardiac silhouette 

(YES) 

- Not otherwise specified 

calcification (YES) 
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eTable 2. Performance of AI Algorithm vs Radiology Residents Across Labels With at Least 

2.5% Prevalence in the Comparison Study Data Set 

 

Finding label 

Number 

of 

images 

in the 

comparis

on study 

dataset 
Interpret 

difficulty 

AUC in 

Comparis

on Study 

Dataset 

DL 

Label-

based 

PPV 

 DL 

Label-

based 

sensitivity 

DL 

Label-

based 

specificit

y 

Rads Label-

based PPV 

Rads Label-

based 

sensitivity 

Rads label-

based 

specificity 

Central intravascular lines 1296 medium 0.865 0.864 0.935 0.729 0.976 0.979 0.956 

Not otherwise specified opacity 

(pleural/parenchymal opacity) 713 low 0.787 0.695 0.818 0.801 0.719 0.122 0.974 

Normal anatomically 637 medium 0.932 0.608 0.936 0.718 0.748 0.744 0.882 

Pleural effusion or thickening 604 low 0.940 0.729 0.849 0.863 0.862 0.629 0.956 

Enlarged cardiac silhouette 339 low 0.902 0.621 0.785 0.902 0.631 0.581 0.931 

Drain tubes 240 low 0.927 0.746 0.904 0.958 0.888 0.963 0.984 

Pulmonary edema/hazy opacity 236 low 0.936 0.504 0.737 0.903 0.397 0.525 0.893 

Other internal post-surgical material 228 low 0.997 0.503 0.395 0.950 0.540 0.794 0.913 

Subcutaneous air 203 low 0.817 0.671 0.704 0.961 0.946 0.429 0.997 

Linear/patchy atelectasis 168 low 0.997 0.322 0.405 0.922 0.235 0.661 0.802 

Costophrenic angle not included 149 medium 0.836 1.000 0.000 1.000 0.829 0.718 0.988 

Elevated hemidiaphragm 137 low 0.976 0.444 0.029 0.997 0.508 0.445 0.968 

Enteric tubes 100 high 0.978 0.832 0.840 0.991 0.921 0.930 0.996 

Enlarged hilum 100 high 0.583 0.250 0.040 0.994 0.355 0.220 0.979 

Hyperaeration 100 low 0.917 0.440 0.510 0.966 0.450 0.180 0.988 

Consolidation 97 low 0.869 0.205 0.464 0.908 0.232 0.577 0.903 

Rotated 92 low 0.513 0.167 0.022 0.995 0.196 0.489 0.903 

Multiple masses/nodules 91 low 0.744 0.264 0.154 0.980 0.540 0.736 0.970 

Superior mediastinal mass/enlargement 88 high 0.757 0.200 0.011 0.998 0.471 0.455 0.976 

Apical lordotic 87 high 0.72 0.190 0.046 0.991 0.421 0.184 0.988 

Tubes in the airway 86 low 0.773 0.884 0.884 0.995 0.951 0.907 0.998 

Mass/nodule (not otherwise specified) 79 high 0.944 0.000 0.000 0.998 0.348 0.405 0.969 

Central intravascular lines - incorrectly 

positioned 78 low 0.753 1.000 0.000 1.000 0.365 0.949 0.933 

Pneumothorax 66 high 0.682 0.250 0.409 0.958 0.463 0.561 0.978 

Vascular calcification 62 low 0.611 0.476 0.161 0.994 0.769 0.323 0.997 

Scoliosis 59 low 0.666 0.600 0.051 0.999 0.587 0.627 0.987 
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eTable 3. Comparative Finding Label Recognition Performance Between Radiologists and AI 

Algorithm 

 

AI Outperformed radiologists 

Similar Performance of AI and 

Radiologists Radiologists outperformed AI 

Not otherwise specified opacity 

(pleural/parenchymal opacity) Tubes and lines present Scoliosis 

Pleural effusion or thickening Tubes in the airway Enlarged hilum 

Enlarged cardiac silhouette Enteric tubes Rotated 

Pulmonary edema/hazy opacity Drain tubes Costophrenic angle not included 

Subcutaneous air tubesandlines - no incorrect placement Elevated hemidiaphragm 

Hyperaeration Device present Superior mediastinal mass/enlargement 

 Normal anatomically Apical Lordotic 

 Other internal post-surgical material Mass/nodule (not otherwise specified) 

 Pneumothorax Central vascular lines – incorrectly positioned 

 Linear/patchy atelectasis Multiple masses and nodules 

 Central intravascular lines Tubes and lines – incorrect placement 

 Consolidation  

 Vascular calcification  
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eTable 4. Variation in Read Performance Across Radiology Residents 

 
Method Number 

of Images 

Number of 

findings  

Average image-based 

PPV 

Average image-

based sensitivity 

Average image-

based specificity 

Resident 1 399 72 0.594 [0.567, 0.621] 0.688 [0.662,0.716] 0.958 [0.955, 0.962] 

Resident 2 399 72 0.722 [0.697,0.748] 0.743 [0.719,0.768] 0.975 [0.972, 0.977] 

Resident 3 400 72 0.704 [0.678,0.731] 0.729 [0.704,0.754] 0.971 [0.968,0.974] 

Resident 4 400 72 0.648 [0.623,0.674] 0.685 [0.659,0.711] 0.967 [0.964,0.969] 

Resident 5 400 72 0.743 [0.714,0.766] 75.45 [0.729,0.780] 0.975 [0.972,0.977] 
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eAppendix 1. Splitting Algorithm for Model Training 

 

Here we provide additional details on the algorithm used for splitting the model dataset into 

training, validation and testing datasets. The goal of the splitting algorithm was two-fold: (a) 

ensuring the low incidence labels are still present in the training set in adequate numbers so that 

the model can be trained for these labels. (b) Ensuring the label distributions in the split datasets 

to be in a similar proportion to the original prevalence distribution so as to create the least 

sampling bias for testing. The splitting algorithm works by first sorting the distribution of labels 

by their frequencies of occurrences. Starting from the least frequent label, it then iteratively 

determines the size of the training, test, and validate sets of patients containing the target label so 

as to maintain the desired ratio of 70%,10%,20% for training, validation and test datasets. Once 

the number of patients in each split is determined per label, the assignment of the patients (and 

hence their images) is random.  Note that since each image has multiple labels, each such split 

assignment per label covers other possible labels present in these images also maintaining their 

relative frequencies in the resulting distribution. The detailed algorithm is given below

 
We illustrate by an example. Suppose there are 100 images to be split and 2 possible labels (L1, 

L2) and assume each image comes from a unique patient for the purposes of this illustration. 

Suppose we have the following distribution. 

 

 

Total 

images 

Images 

with L1 

and L2 

Images 

with L1 

only 

Images 

with L2 

only 

Frequency 

of L1 

Frequency 

of L2 

L1:L2  Original 

L1:L2 

Ratio  

100 60 15 25 75 85 75:85 0.88 
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To now split this in the ratios by starting with the lowest frequency and using the 70-10-20% 

ratios for train-validate-test, we get 

 
Iteration Frequency Label 

to split 

on 

Images 

split for  

Remaining 

Images to 

split 

Train 

Images 

Validate 

Images 

Test 

Images 

1 75= (60+15) L1 L1 

common 

with L2 (60 

portion) 

100 42 6 12 

1  L1 L1 (15 

portion) 

40 11 1 3 

1 85 = (60+25) L1 L2 

common 

with L1 (60 

portion) 

40 42 6 12 

2  L2 L2 (25 

portion) 

25 18 2 5 

 

 

Total images Frequency of L1: 

L2 in Training 

split 

Ratio Frequency of 

L1:L2 in 

Validation 

split 

Ratio Frequency of 

L1:L2 in Test 

split 

Ratio 

100 53:60 0.88 7:8 0.875 15:17 0.88 

 

 

As can be seen, the prevalence ratio has been maintained in the resulting splits. At the same time, 

the lower prevalence label (L1) has at least 53 training samples sufficient for training. A random 

sampling may not have ensured this since the overall dataset size is still small in this case (100 

images), particularly when there are more labels per image.  
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eAppendix 2. Method of Threshold Selection for Finding Labels 

 

Thresholding is required to convert the real-number prediction scores of the AI model to the binary 

scores of positives and negatives. Let 𝜃 be a vector that contains all label thresholds. To compute 

the optimal thresholds, an objective function based on the image-based F1 score is used: 

𝐿(𝜃) =  − ln (
1

𝑛
∑ F1𝑖(𝜃)

𝑛

𝑖=1

) 

with 𝐹1𝑖 the F1 score of image 𝑖 and 𝑛 the number of images. The F1 score is the harmonic mean 

of PPV and sensitivity, which is computed as: 

F1 =
2TP + 𝜖

2TP + FP + FN + 𝜖
 

where TP, FP, and FN are the true positives, false positives, and false negatives, respectively, 

computed between the ground truth and the binary AI scores after thresholding by 𝜃. 𝜖 = 10−7 is 

used to handle the 0/0 situation when there are no positives in both prediction and ground truth. 

The optimal 𝜃 can be computed by minimizing 𝐿(𝜃) through an optimization algorithm. The 

derivative-free global optimization algorithm, ESCH, is used as it provided the best results in our 

tested algorithms1. By focusing on the positive occurrences of findings per image and minimizing 

𝐿(𝜃)  we ensure that the network prediction has as few false positives while still enabling the 

detection of relevant findings.  

 

 

 

1.  C. H. da Silva Santos, M. S. Gonçalves  and HEH-F. Designing Novel Photonic Devices 

by Bio-Inspired Computing. IEEE Photonics Technol Lett. 2010;22(15):1177-1179. 
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eAppendix 3. Measuring Deep Learning Model Performances for Multilabel Reads 

 
In this appendix, we give further clarification on the choice of the performance measure used in the 

comparative study on machine and resident physician read performance.   

 

Conventional approach to measuring performance: 

 

Conventional approach is to report the performance on a per label basis and using the positive occurrence 

of a label: 

 

Consider a set of images Ι = {𝐼1, 𝐼2, . . 𝐼𝐾} and a label 𝐿𝑖:  

P(𝐿𝑖)= Number of real positive cases in the data. So for a single label case, this implies the number of 

images in the dataset that are assigned this label 𝐿𝑖. 

N(𝐿𝑖)= Number of real negative cases in the data. So for a single label case, this implies the number of 

images in the dataset that are not assigned this label 𝐿𝑖. 

 

Then TP(𝐿𝑖)=The number of images for which the machine also predicts the label 𝐿𝑖 and the actual label is 

also 𝐿𝑖. 

 

Then TN(𝐿𝑖)=The number of images for which the machine does not predict the label 𝐿𝑖 and the actual 

label is also not  𝐿𝑖. 

 

 

And FP(𝐿𝑖)=The number of images for which the machine predicts the label 𝐿𝑖 and the actual label is not 

𝐿𝑖. 

 

Then label-based positive predictive value (PPV) or precision is defined per label 𝐿𝑖 as 

   

PPV(𝐿𝑖)=TP(𝐿𝑖)/(TP(𝐿𝑖)+FP(𝐿𝑖))                                                  (1) 

 

Label-based sensitivity is defined as  

 

Sensitivity(𝐿𝑖)=TP(𝐿𝑖)/P(𝐿𝑖)                                                            (2) 

 

And label-based specificity is defined as  

    Specificity(𝐿𝑖)=TN(𝐿𝑖)/N(𝐿𝑖)         (3) 

 

  

Image-based approach to measuring performance: 

 

  

 

For the radiology read problem, since we have to maintain high precision and recall for each image we are 

reading, we used the image-based positive predictive value (precision) and sensitivity (recall) by redefining 

the terms as follows: 

 

Consider again the set of images Ι = {𝐼1, 𝐼2, . . 𝐼𝐾} and the set of labels 𝐿 = {𝐿1, 𝐿2, . . 𝐿𝑀}. 

 

𝐿𝑒𝑡 𝑃(𝐼𝑖)= Number of labels actually occurring in the image  𝐼𝑖  .  

 

𝐿𝑒𝑡 𝑁(𝐼𝑖)= Number of labels from the set  𝐿 that are not occurring in the image  𝐼𝑖 .  

Thus 𝑁(𝐼𝑖) = 𝐿 − 𝑃(𝐼𝑖) 

 

Let  𝑇𝑃(𝐼𝑖)=The number of labels selected by the machine (or residents) for image  𝐼𝑖 which belong to 

𝑃(𝐼𝑖) 
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Let  𝑇𝑁(𝐼𝑖)=The number of labels not selected by the machine (or residents) for image  𝐼𝑖 which belong to 

𝑁(𝐼𝑖) 

 

And 𝐹𝑃(𝐼𝑖)=The number of labels selected by the machine (or residents) for image  𝐼𝑖 which belong to 𝐿  

but not  𝑃(𝐼𝑖) 

 

Then Image-based positive predictive value (PPV) or image-based precision is defined per image as  

   

PPV(𝐼𝑖)=TP(𝐼𝑖)/(TP(𝐼𝑖)+FP(𝐼𝑖))                                                       (5) 

 

Image-based sensitivity is defined as  

 

Sensitivity(𝐼𝑖)=TP(𝐼𝑖)/P(𝐼𝑖)                                                              (6) 

 

Image-based specificity is defined as  

 

Specificity(𝐼𝑖)=TN(𝐼𝑖)/N(𝐼𝑖)                                                             (7) 

 

 

Now averaging across the K images, we get   

 

Average PPV(I)=
1

𝐾
∑ 𝑃𝑃𝑉(𝐼𝑖)

𝐾
𝑖=1                                                     (8) 

    

  

    Average sensitivity(I)=
1

𝐾
∑ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝐼𝑖)

𝐾
𝑖=1                      (9) 

 

                Average specificity(I)=
1

𝐾
∑ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝐼𝑖)

𝐾
𝑖=1                      (10) 

 

 

The above equations 8, 9, and 10 were used in the paper and ANOVA test for comparing the performance 

used the above formulas for computing image-based specificity and sensitivity respectively. As can be 

seen, the above measure is less sensitive to prevalence of labels as the PPV and sensitivity are measured per 

image by normalizing with respect to the respective prevalence within the image itself. It is also a more 

appropriate measure for the preliminary read use case, where the goal is to flag as few incorrect findings 

per image while still not missing many relevant findings. Optimizing on individual label’s sensitivity or 

specificity would introduce false positives that can cumulatively impact the per image decision making 

sufficiently for  a large of images, with the net effect of reducing the overall preliminary read quality (in 

terms of misses or overcalls). 

 


