Anti-COVID-19 terpenoid from marine sources: a docking, ADMET and molecular dynamics study

Nayim Sepay^{a,*}, Aishwarya Sekar^b, Umesh C Halder^{a,*}, Abdullah Alarifi^c, Mohd Afzal^c

^aDepartment of Chemistry, Jadavpur University, Kolkata-70032, India. ^bDepartment of Bioinformatics, Stella Maris College (Autonomous), Chennai, Tamilnadu-600 086, India.

^cCatalytic Chemistry Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

Methods

The study focused on the SARC-CoV-2 M^{pro}, i.e. PDB ID: 5r7y, 5r7z, 5r80, 5r81, 5r82, 5r83, 5r84, 6lu7 and 6y7m for *in silico* studies to find some SARC-CoV-2 M^{pro} inhibitors from a library of natural products. The three dimensional structure of SARC-CoV-2 M^{pro} enzymes were collected from the RCSB website.¹

Density Functional Theory

The energy minimized structures of all the NPs were obtained with the help of the density functional theory (DFT). The optimization of ground state geometries of the NPs with B3LYP functional at 6-311G level of theory in gaseous state. The job have been performed with the Gaussian 09W Revision D.01 program² on the Windows platform.

Molecular docking

Energy minimized structure of all the investigated NPs which was obtained from DFT optimization were used for docking simulations with the SARC-CoV-2 M^{pro} (PDB ID: 6lu7) protein structure. The docking studies was performed using AutoDock 4.2.0 applications through Autodock tools at the Windows platform.³ The MGL Tools was utilized in the preparation of the structure of the NPs and the proteins in appropriate formats which were required for the calculations. In the case of SARC-CoV-2 M^{pro} enzyme with the NPs, the partial atomic charges (Gasteiger charges) have been allocate after putting hydrogens to all the atoms of the protein as well as the NPs, separately. Here, the NPs structures allowed as flexible moiety and the SARC-CoV-2 M^{pro} enzyme structure kept as rigid during the docking studies. The ten conformers of NPs inside the active site of the SARC-CoV-2 M^{pro} enzyme having minimum potential energy were obtained through subsequent 20 000 precise docking step with 1000 exhaustiveness parameter inside the 60 x 60 x 60 Å³ grid box using a Lamarckian genetic algorithm.

Protein structure modelling.

The protein crystal structure data of all the SARC-CoV-2 M^{pro} enzymes were downloaded from Protein Data Bank (PDB ID: 5r7y, 5r7z, 5r80, 5r81, 5r82, 5r83, 5r84, 6lu7 and 6y7m). The protein structures utilized in all the further studies were prepared by Discovery studio 2017 R2 client. The pictures of the protein used here was made with MolSoft-ICM browser, Meastro 11.1, Samson core and Discovery studio 2017 R2 client. The SARC-CoV-2 M^{pro} protein-NPs docked complex with lowest potential energy structures also analyzed by the aforesaid software.

Molecular Electrostatic Potential (MEP) Analysis

The energy minimized structures of the NPs gained from DFT were further utilized for MEP calculations. The same functional used for DFT has also been employed to generate the

electrostatic potential map throughout the atomic framework of the NPs molecules. Here, the basis set was 6-31g with the 0.03 iso values. All these calculations were performed on the Windows version of Gaussian 09W software with D1 revision.²

ADME study

The SwissADME web server was utilized for all the ADME calculations⁴ of the NPs showed top most binding affinity toward SARC-CoV-2 M^{pro}. The server have a strong data base to predict physicochemical properties like lipophilicity, water solubility, drug likeness, pharmacokinetics and medicinal properties with high accuracy.

Toxicity

The probability of Cardiac toxicity for all the NPs having high binding score in docking studies were calculated by Pred-hERG which is the only web-accessible computational server for this toxicity.⁵ All the other type of toxicity of these NPs and FDA approved anti-viral drugs have been predicted using PROTOX-II.⁶ In this case, we have considered the acute toxicity, organ toxicity, toxicological endpoint, nuclear receptor signaling pathways and stress response pathway.

Molecular Dynamics simulation

Understanding the stability of protein upon ligand binding is significantly improved by molecular dynamics simulation studies. Molecular dynamics simulation of the SARS CoV2 Main Protease and the ligand **T3** (from marine sponges) was performed with Groningen Machine for Chemical Simulation (GROMACS) version 2020.2. Topology parameters for protein and ligand were generated With GROMOS96 54a7 force field and Ligand topology was obtained from the PRODRG2 server. The protein -ligand system was embedded in a cubic box of approximate size with periodic boundary conditions using a simple point charge water solvation model (38012 water molecules)⁷. The overall system was neutralized by adding 4 Na⁺ ions in solution and the SHAKE algorithm was used to constrain all bond lengths involving hydrogen atoms. Particle Mesh Ewald method with a cutoff of 12 Å was applied to treat the long range electrostatic interactions. The processed system was suitably minimized followed by the NPT and NVT ensemble equilibration steps at a uniform temperature and pressure of 300 K and 1 bar, respectively maintained for each system with Parrinello–Rahman barostat. The trajectories were saved at every 2 fs time step and the production MD simulation of the protein-ligand complex was performed for 95 nanoseconds⁸.

Figure S1: The H41 and C145 amino acid residue inside the active site of SARC-CoV-2 Mpro.

Figure S2: The peptide based ligand attached inside the active site of SARC-CoV-2 M^{pro} with a covalent bond by C145 through (a) conjugated addition to α,β -unsaturated ester and (b) nucleophilic addition to active ketone.

Figure S3: The small ligands found inside the crystal structure of SARC-CoV-2 M^{pro}.

Figure S4: The small ligands-SARC-CoV-2 M^{pro} enzyme interactions found inside the active site of the protein shows hydrophobic preference over hydrophilicity.

Alkaloids

ме-он

нс

A13

o⁄ Me

A14

A15

Figure S5: The structures of natural alkaloids A1-A20.

Terpenoids

T14

Figure S6: The structures of natural terpenoids **T1-T17**.

Polyphenols

Figure S7: The structures of polyphenolic NPs **P1-P9**.

Peptides

Figure S8: The structures of peptide based NPs (**Pep1-Pep4**) and small ligands crystallized with the SARC-CoV-2 M^{pro} enzyme.

Figure S9: Overly of crystal structure and docked structure of SARC-CoV-2 M^{pro} enzyme with (a) **N3** and (b) **Pep0** ligand

(a) Alkaloids

Number of rotatable bond = NRB

A10

A11

Me

A13

A15

A18

(b) Terpenoids

T1

Т3

T7

н

0=

он

T5

NRB = 3

Т9

C

но

٢Ĥ

T10

NRB = 6

(c) Polyphenolic

P4

P5

(d) Peptides

Figure S10: Molecular electrostatic potential surface and number of rotatable bonds of (a) Alkaloids, (b) Terpenoids, (c) Polyphenols and (d) Peptids.

Figure S11: The four sites inside the active site of SARC-CoV-2 M^{pro} enzyme

Figure S12: Docking poses and the binding interactions at the active site of SARC-CoV-2 M^{pro} enzyme of (a) **T1**, (b)**T2**, (c)**T4**, (d)**T10**, (e)**T14** as well as (f)**T16** and overlying docked structures of (g) **T3**, **T14**, **T1**, **T2**, **T4**, **T10** and **T16** at the active site of protein. The pictures also show that His41 and C145 interact the NPs.

Compo	und	Source and Activity	Reference
Alkaloi	d		
A1	HO HO HN HO	Marin microb: mangrove- derived <i>Streptomyces albus</i> .	Nat. Prod. Rep. 2020 ,37, 175-223
A2		Fungi: Cochliobolus lunatus anti-IAV activity.	Nat. Prod. Rep., 2020,37, 175-223
A3	N NH NH HN HN HN HN	Sponge: <i>Stylissa carteri</i> anti HIV1 activity.	Nat. Prod. Rep., 2020 ,37, 175-223
A4		Anibamine , a novel pyridine quaternary alkaloid, Anibamine competed for the binding of I-gp120 to human CCR5 with an IC50 of 1 µM.	Nat. Prod. Rep., 2010 , 27, 1781– 1800
A5	O-Me	Anewcanthin-4-one type alkaloid, drymaritin isolated from <i>Drymaria diandra</i> (also known as <i>Drymaria cordata</i> subsp. diandra) exhibited anti-HIV activity inH9 lymphocytes with an EC50 value of 0.699 µg/mL and a TI of 20.6	Nat. Prod. Rep., 2010 , 27, 1781– 1800

Table S1:	Chemical structures,	, source and re	ported a	nctivities	of the NPs
~	_				-

A6	N N O Me Me	Norruffscine Plant: <i>Pericampylus glaucus</i> , a climbing shrub widely distributed in the southwest of China. Compound showed EC50 values of 10.9 and SI values of 45.7 against HIV-1 in C8166 cells.	Nat. Prod. Rep., 2010 , 27, 1781– 1800
A7		Decarine Plant: root bark of <i>Zanthoxylum ailanthoides</i> potent anti-HIV, EC50 values of <0.1 mg/mL and TI values of >226.	Nat. Prod. Rep., 2010 , 27, 1781– 1800
A8	С С С С С С С С С С С С С Н С С Н С С Н С С Н С С Н С С Н С С С Н С	(E)-3-(3-hydroxymethyl-2- butenyl)-7-(3-methyl- 2-butenyl)-1H-indole was isolated from the twigs and leaves of <i>Glycosmis</i> <i>montana</i> native to China. Potent anti-HIV activity with an IC50 value of 1.17 mg/mL and an SI of 11.68	Nat. Prod. Rep., 2010 , 27, 1781– 1800
A9	Me-O H H	Glybomine was isolated from the twigs and leaves of <i>Glycosmis montana</i> . Earlier these alkaloids were reported from <i>G. arborea. in vitro</i> inhibitory activity against HIV replication in C8166 cells.Anti-HIV activity with an IC50 of 9.73 µ/mL.	Nat. Prod. Rep., 2010 , 27, 1781– 1800
A10	O H H	Glycoborinine (7), was isolated from the twigs and leaves of <i>Glycosmis montana</i> . Earlier these alkaloids were reported from <i>G. arborea. in vitro</i> inhibitory activity against HIV replication in C8166 cells. Anti-HIV activity with an IC50 of 4.47 µg/mL.	Nat. Prod. Rep., 2010 , 27, 1781– 1800

A11	Q	O-methylmukonal	Nat. Prod.
	Me N H	isolated from the rhizomes and roots of the plant: <i>Clausena excavata.</i> Compound showed anti-HIV- 1 activity in a syncytial assay, with EC50 values of 12.0 uM	<i>Rep.</i> , 2010 , <i>27</i> , 1781– 1800
		and TI of 56.7	
A12	Me Ne	3-formyl-2,7- dimethoxycarbazole isolated from the rhizomes and roots of the plant: <i>Clausena excavata</i> . Compound showed anti-HIV- 1 activityin a syncytial assay, with EC50 values of 29.1μM and TI 8.0	<i>Nat. Prod.</i> <i>Rep.</i> , 2010 , 27, 1781– 1800
A13	Me Ne	clauszolineJ isolated from the rhizomes and roots of plant: Clausena excavata. Compounds showed anti- HIV-1 activity in a syncytial assay, with EC50 values of 34.2 mM and TI of 1.6	<i>Nat. Prod.</i> <i>Rep.</i> , 2010 , 27, 1781– 1800
A14		Amaryllidaceae alkaloids lycorine) isolated from the bulbs of of the plant: <i>Leucojum vernum</i> , possess anti-HIV-1 activity in MT4 cells with ID50 values of 0.4 µg/mL.	<i>Nat. Prod.</i> <i>Rep.</i> , 2010 , 27, 1781– 1800
A15		Amaryllidaceae alkaloids homolycorine isolated from the bulbs of the plant: <i>Leucojum vernum</i> possess anti-HIV-1 activity in MT4 cells with ID50 values 7.3 µg/mL.	<i>Nat. Prod.</i> <i>Rep.</i> , 2010 , 27, 1781– 1800

OH OH HIOUGIOUT Asia, showed anti-HIV activity with EC50 values of 0.8 µg/mL and TI values of >125.	
A17 Me Me Me HO Me HO Me HO Me Me Me Me Me Me Me Me Me Me	r <i>od.</i> 2 010 , 31—
A18 Me ⁻ , Ne ⁻ , Me	rod. 2 010 , 31–
A19Isioated from a marine invertebrate animal Didemnum $sp.(a tunicate).$ Nat. P. Rep. 2 175-22	rod. 020 ,37, 23
A20 Ac0 Ac0 Ac0 Ac0 Ac0 Ac0 Ac0 Ac0 Ac0 Ac0 Ac0 Ac0 Ac0 Ac0 Ac0 Ac0 Ac0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C1	r <i>od.</i> 2 010 , 31–

T1		Isolated from the marine	J. Nat.
	OH O	Sponge	Prod. 2018,
		Cacospongia mycofijiensis	81, 2539-2544
		Exhibit nanomolar	
		cytotoxicity toward the HL-	
	\downarrow	60 cell line, are antimitotic,	
	II	and induce in vitro tubulin	
		polymerization.	
T2		Isolated from the marine	J. Nat.
	OH	Sponge	<i>Prod.</i> 2018 ,
		Cacospongia mycofijiensis	81, 2539-2544
		Exhibit nanomolar	
		cytotoxicity toward the HL-	
		60 cell line, are antimitotic,	
	., , , , , , , , , , , , , , , , , , ,	and induce in vitro tubulin	
T 2		polymerization.	
13		Isolated from the marine	J. Nat.
	OH O	Sponge	<i>Proa.</i> 2018 , 91, 2520, 2544
		Exhibit papomolar	01, 2339-2344
		extratoxicity toward the HI	
		60 cell line are antimitatic	
	Y '	and induce in vitro tubulin	
	I	polymerization	
T4		Isolated from the marine	J. Nat.
		Sponge	Prod. 2018.
		Cacospongia mycofijiensis.	81, 2539-2544
	0,,, N	Exhibit nanomolar	
		cytotoxicity toward the HL-	
		60 cell line, are antimitotic,	
	γ	and induce in vitro tubulin	
	I	polymerization.	
T5	$\overline{\mathbf{o}}$	Microb: bacteria Excoecaria	Nat. Prod.
		venenta	<i>Rep.</i> , 2016 ,
		The anti-viral activity of these	33,1227
	HO	compounds against the	
	HO	chikungunya virus.	
TT (A : 1 (22)	
16	- 0H	Apicularen (22)	Nat. Prod.
		anti-HIV and anti-HCV nits, inhibitor of UDV	<i>Rep.</i> , 2015 , <i>32</i> ,
	Y P a L	$\frac{1111101101}{101} 01 \Pi \Gamma V$	27-40
		cells)	
		cc115 <i>j</i> .	
	$\sum_{i=1}^{n}$		
	НО		

T7		Plant:Platanus acerifolia	Nat.Prod.
		(London plane tree)	<i>Rep.</i> , 2019 , <i>36</i> ,
	ОН	Usable Part: bark	1654-1686
		Induces apoptosis through the	
		mitochondrial pathway. A	
		typical decrease in bcl-2 and	
	0	cyclin D1gene, expression	
		and increase in bax gene	
		expression was observed in	
		several cancer cell lines;	
		inhibits NF-kB expression in	
		androgen refractory, human	
		prostate cancer cells (PC-3).	
T8	1	Plant: Platanus acarifolia	Nat Prod
10	In.	(London plane tree)	Ren 2016
	н	Usable Part: bark	33.1227
	ОН	Activity induces apoptosis	00,122/
		through the mitochondrial	
		pathway. A typical decrease	
	HO	in bcl-2 and cyclin D1	
	Л	gene, expression and increase	
		in bax gene expression was	
		observed in several cancer	
		cell lines; inhibits NF-kB	
		expression in	
		androgenrefractory,human	
		prostate cancer cells (PC-3).	
ТО		Maslinic acid an oleanane	Nat Prod Ren
19		triterpene identified from	2009 , <i>26</i> , 1321–
	. н.	Cratageus orvacantha apple	1344
		peel and was also isolated	
	HO,	quantitatively from olive fruit	
		and show effect only on the	
	HO	Caco-2 cell line (EC50: 15.4	
	/ \	mM), anti-proliferative effect	
		against the HT-29 cell line	
		(EC50: 101.2 mM) without	
		any necrotic effects.	
T10		Isolated from Crataegus	<i>Nat. Prod. Rep.</i> , 2009 , 26, 1321
	, "√ ,	oxyacantha, showed minor	2009 , 20, 1321– 1344
		antiproliterative effects	
	о он	against HepG2 (EC50: $17.9-$	
		20.0 MNI), MCF-7 (EC50:	

		20.9–29.2 mM),and Caco-2 (EC50: 8 9–14 2 mM)	
T11		<i>Stauntonia obovatifoliola</i> anti-HIV-1 protease activity (EC50: 17.8 mM).	<i>Nat.Prod.</i> <i>Rep.</i> , 2019 , <i>36</i> , 1654-1686
T12	HO HO	Fungi: Mushroom <i>Ganoderma colossum.</i> anti-protease activity (tested against HIV-1) with EC50 values of 14.6.	<i>Nat.Prod.</i> <i>Rep.</i> , 2019 , <i>36</i> , 1654-1686
T13		Fungi: Mushroom <i>Ganoderma colossum.</i> anti-protease activity (tested against HIV-1) with EC50 values of 24.7	<i>Nat.Prod.</i> <i>Rep.</i> , 2019 , <i>36</i> , 1654-1686
T14		Fungi: Mushroom <i>Ganoderma colossum.</i> anti-HIV-1 protease inhibition activity. with EC50 values of 15.3	<i>Nat.Prod.</i> <i>Rep.</i> , 2019 , <i>36</i> , 1654-1686
T15	Me HO HO HO HO HO HO HO HO HO HO HO HO HO	Isolated from the plant <i>Dichrocephala benthamii</i> (Asteraceae) possess anti-HIV integrase activity.	<i>Nat.Prod.</i> <i>Rep.</i> , 2019 , <i>36</i> , 1654-1686

T16	0,	Known as micafungin	Nat.Prod.
	() Y	or FK463,41 is now marketed	<i>Rep.</i> , 2019 , <i>36</i> ,
		as the intravenous antifungal	1654-1686
		drug Mycamine essential	
		component of fungal cell	
		walls.	
	o o o o o o o o o o o o o o o o o o o		
T17		Plant: Symphonia globulifera	Nat.Prod.
		purified from other	<i>Rep.</i> , 2016 , <i>33</i> ,
		species, belonging to the	372-381
		Clusiaceae family, such as	
	} →√ (=) →√	Garcinia livingstonei, and G.	
		macrophylla	
	HO	Usable Part: Roots	
	l i i i i i i i i i i i i i i i i i i i	antibacterial, anti-HIV,	
		trypanocidal, anti-malarial,	
		anti-cancer, and	
		leisnmanicidal activities, anti-	
		IC50 volve 2.05 vM	
Phonoli	c Compounds	IC30 value 2.95 μM.	
P1		Plant: Curcuma longa	Nat Prod
••	Me O Me	HIV1 protease	Ren. 2011
			28, 1937
P2		Synthesised derivatives of P1	,
D 2	HO		
P3	Me ⁻⁰ HN-N O ⁻ Me	Synthesised derivatives of PI	
	но		
P4	OH O	Plant: <i>Cleistocalyx</i>	Nat. Prod.
		operculatus	<i>Rep.</i> , 2012 <i>29</i> ,
		have neuraminidase(NA)	11
	но ү ү	inhibiting properties, with	
	l Me	(E)-4,2,4- trihydroxy-6-	
		methoxy-3,5-	
		dimethylchalcone	
		$(1C50 \ 3.31 - 20.45 \ \mu M)$	
		Strongest effects against NA	
		f	
		from the novel influenza	
		from the novel influenza H1N1.	

P5		Plant: <i>Cleistocalyx</i> <i>operculatus</i> with 2,2,4-trihydroxy-6- methoxy-3,5- dimethylchalcone (IC50 2.55–28.12 μM) strongest effects against NA from the oseltamivir resistant H1N1 (H274Y mutant).	Nat. Prod. Rep., 2012 29, 11
P6	OHO OHO Me Me Me	Tiegusanin G (29) was one of 14 new lignans isolated from a 70% aqueous acetone extract of the aerial parts of plant <i>Schisandra propinqua</i> var. sinensis, popularly known as <i>'tie-gusan'</i> in China. anti-HIV-1 activity in theC8166 cell line, with an EC50 value of 7.9 mM and TI of > 25.	Nat. Prod. Rep., 2010 , 27, 1781– 1800
P7		6-(g,g- dimethylallyl)dihydroquerceti n-7-O-b-D-glucoside) Plant: <i>Ochna integerrima</i> (Methanolic extract) anti-HIV-1 activity with an EC50 of 14.0 μg/mL.	<i>Nat. Prod.</i> <i>Rep.</i> , 2010 , 27, 1781– 1800
P8		Methyl-5-O-caffeoyl-3-O- sinapoylquinate Plant: <i>Gardenia jasminoides</i> (isolated by bioactivity- guided fractionation of the ethyl acetate extract of this plant) HIV-1IN inhibitory activity with an IC50 of 20 µg/mL.	Nat. Prod. Rep., 2010 , 27, 1781– 1800

P9		Flavonoid glycosides 6-(g,g- dimethylallyl)dihydrokaempf erol-7-O-b-D-glucoside Plant: <i>Ochna integerrima</i> (Methanolic extract) anti-HIV-1 activity with an EC50 of 29.1 µg/mL.	Nat. Prod. Rep., 2010 , 27, 1781– 1800
Pepfide Pep1	S HO HO HO HO HO HO HO HO HO HO	Muraymycin C1 found to have good enzyme inhibitory activity and no toxicity.	<i>Nat. Prod.</i> <i>Rep.</i> , 2016 , <i>33</i> , 372-381
Pep2		antipain a microbial alkaline protease inhibitor Bacterium: <i>Streptomyces</i> <i>albulus</i> NRRL B-3066.	Nat. Prod. Rep., 2019 , 36, 1654-1686
Pep3		glidobactins Syrbactins are potent and irreversible inhibitors of the eukaryotic proteasome by oxa-Michael-type addition of a catalytic threonine at the a,b-unsaturated amide.	<i>Nat. Prod.</i> <i>Rep.</i> , 2019 , <i>36</i> , 1654-1686
Pep4		syringolins Syrbactins are potent and irreversible inhibitors of the eukaryotic proteasome by oxa-Michael-type addition of a catalytic threonine at the a,b-unsaturated amide.	Nat. Prod. Rep., 2019 , 36, 1654-1686

	A7	T3	T14	T1	T2	T4	T10	T16
							·	
iLOGP	3.35	4.31	4.05	4.31	4.31	4.31	5.2	3.89
XLOGP3	4.12	3.51	5.57	3.51	3.51	3.51	9.17	3.37
WLOGP	3.98	4.33	6.17	4.33	4.33	4.33	8.36	3.73
MLOGP	2.08	2.49	4.9	2.49	2.49	2.49	6.15	3.27
Silicos-IT	3.86	3.54	5.54	3.54	3.54	3.54	7.19	3.98
Consensus	3.48	3.63	5.25	3.63	3.63	3 63	7.21	3 65
Log P	5.40	5.05	5.25	5.05	5.05	5.05	/.21	5.05
81					1			
ESOL Log S	-4.9	-4.79	-6.33	-4.79	-4.79	-4.79	-9.13	-4.04
ESOL	3.98E-	7.96E-	2.47E-	7.96E-	7.96E-	7.96E-	4.51E-	3.53E-
Solubility	03	03	04	03	03	03	07	02
(mg/ml)								
ESOL	1.25E-	1.61E-	4.72E-	1.61E-	1.61E-	1.61E-	7.49E-	9.08E-
Solubility	05	05	07	05	05	05	10	05
(mol/l)								
ESOL	M.S.	M.S.	P.S.	M.S.	M.S.	M.S.	P.S.	M.S.
Class								
Ali Log S	-5.1	-5.33	-6.99	-5.33	-5.33	-5.33	-10.83	-4.58
Ali	2.52E-	2.30E-	5.37E-	2.30E-	2.30E-	2.30E-	8.97E-	1.03E-
Solubility	03	03	05	03	03	03	09	02
(mg/ml)								
Ali	7.88E-	4.63E-	1.03E-	4.63E-	4.63E-	4.63E-	1.49E-	2.64E-
Solubility	06	06	07	06	06	06	11	05
(mol/l)			DC	140			T 1	140
Ali Class	M.S.	M.S.	P.S.	M.S.	M.S.	M.S.	Insolu.	M.S.
Silicos-IT LogSw	-6.34	-3.33	-5.81	-3.33	-3.33	-3.33	-8.01	-3.3
Silicos-IT	1.47E-	2.32E-	8.06E-	2.32E-	2.32E-	2.32E-	5.85E-	1.93E-
Solubility	04	01	04	01	01	01	06	01
(mg/ml)								
Silicos-IT	4.60E-	4.69E-	1.54E-	4.69E-	4.69E-	4.69E-	9.71E-	4.98E-
Solubility	07	04	06	04	04	04	09	04
(mol/l)					ļ			
Silicos-IT	P.S.	Solu.	M.S.	Solu.	Solu.	Solu.	P.S.	Solu.
class								

Table S2: Predicted data of lipophilicity and water solubility of the NPs

Solu. = Soluble, M.S. = Moderately soluble, P.S. = Poorly soluble, Insolu. = Insoluble.

	A7	T3	T14	T1	T2	T4	T10	T16
GI	High	High	High	High	High	High	Low	High
absorption								
BBB	Yes	No	No	No	No	No	No	Yes
permeant								
CYP1A2	Yes	Yes	Yes	Yes	Yes	Yes	No	No
inhibitor								
CYP2C19	Yes	No	No	No	No	No	No	No
inhibitor								
CYP2C9	Yes	No	No	No	No	No	No	No
inhibitor								
CYP2D6	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
inhibitor								
CYP3A4	Yes	Yes	No	Yes	Yes	Yes	No	Yes
inhibitor								

Table S3: Predicted data of pharmacokinetics, drug likeness and medicinal chemistry of the NPs

Table S4: Predicted data of cardiotoxicity of NPs compounds⁵

Compo- und	Prediction / Potency	Confi- dence	Applicability domain (AD)	Probabilty Map
A7	Non- cardiotoxic (-)	50%	No (Value= 0.23 and limit = 0.26)	
Τ3	Non- cardiotoxic (-)	50%	No (Value= 0.19 and limit = 0.26)	

T14	Weak or	60%	No	o
	Moderate		(Value=0.22and	
	Dotontial	50%	limit = 0.60)	C C C C C C C C C C C C C C C C C C C
	cardiotoxic (+)	50%		
	curdiotoxic (1)			
T1	Non-	50%	No	
	cardiotoxic (-)		(Value=0.19 and limit=0.26)	OH -
			mm = 0.20)	
				U.S. C.S. C.S. C.S. C.S. C.S. C.S. C.S.
T2	Non-	50%	No	
	cardiotoxic (-)		(Value=0.19 and)	
			iiiiit = 0.20)	Pro o in
T4	Non-	50%	No	
	cardiotoxic (-)		(Value= 0.19 and	
			limit = 0.26)	
				States of the
				HCF:
T10	Weeker	600/	No	
110	Weak or Moderate	00%	(Value= 0.25 and	
			limit = 0.26)	
	Potential	50%		
	cardiotoxic (+)			

T16	Weak or	60%	No	
	Moderate		(Value= 0.21 and	ð
			limit = 0.26)	OH OH
	Potential	50%		
	cardiotoxic (+)			

Table S5: Predicted data of toxicity of NPs compounds⁶

	A7	T3	T14	T1	T2	T4	T10	T16
Predicted LD50: mg/kg	778	10000	55	10000	10000	10000	6000	55
Predicted Toxicity Class:	4	6	3	6	6	6	6	3
Average similarity	80.07	64.92	59.66	64.92	64.92	64.92	65.49	67.09
Prediction accuracy: %	70.97	68.07	63.38	68.07	68.07	68.07	68.07	68.07
Organ toxicity							•	
Hepatotoxicity (Probability)	0.60	0.68	0.80	0.68	0.68	0.68	0.79	0.84
Toxicity end points			•					
Carcinogenicity	0.60	0.54	0.50	0.54	0.54	0.54	0.54	0.57
Immunotoxicity	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.98
Mutagenicity	0.75	0.65	0.92	0.65	0.65	0.65	0.91	0.82
Cytotoxicity	0.60	0.57	0.67	0.57	0.57	0.57	0.86	0.71
Tox21-Nuclear receptor s	ignalling pa	athways						
Aryl hydrocarbon Receptor (AhR)	0.68	0.96	0.98	0.96	0.96	0.96	0.98	0.98
Androgen Receptor (AR)	0.96	0.96	0.58	0.96	0.96	0.96	0.67	0.60
Androgen Receptor Ligand Binding Domain (AR-LBD)	0.91	0.97	0.64	0.97	0.97	0.97	0.72	0.61
Aromatase	0.89	0.87	0.63	0.87	0.87	0.87	0.89	0.69
Estrogen Receptor Alpha (ER)	0.91	0.88	0.57	0.88	0.88	0.88	0.74	0.58
Estrogen Receptor Ligand Binding Domain (ER-LBD)	0.90	0.93	0.70	0.93	0.93	0.93	0.90	0.97
Peroxisome Proliferator Activated Receptor Gamma (PPAR-Gamma)	0.96	0.94	0.97	0.94	0.94	0.94	0.96	0.92

Tox21-Stress response pa	Tox21-Stress response pathways								
Nuclear factor	0.59	0.90	0.95	0.90	0.90	0.90	0.56	0.90	
2/antioxidant responsive									
element (nrf2/ARE)									
Heat shock factor	0.59	0.90	0.95	0.90	0.90	0.90	0.56	0.90	
response element (HSE)									
	0.55	0.04	0.60	0.04	0.04	0.04	0.64	0.50	
Mitochondrial Membrane	0.55	0.84	0.69	0.84	0.84	0.84	0.64	0.59	
r otentiai (wiwir)									
Phosphoprotein (Tumor	0.81	0.81	0.93	0.81	0.81	0.81	0.92	0.81	
Suppressor) p53									
ATPase family AAA	0.87	0.94	0.94	0.94	0.94	0.94	0.94	0.94	
domain containing	0.07	0.74	0.94	0.74	0.94	0.74	0.74	0.74	
protein 5 (ATAD5)									
-									
	[]	[[]	
Toxicity Target									
Veak Active, Strong Active, Weak Inactive, Strong Inactive									

Table S6: Predicted data of toxicity of some FDA approved anti-viral drugs⁶

	Rilpivirine	Dolutegravir	Glecaprevir	Grazoprevir	Paritaprevir
Predicted LD50: mg/kg	2450	1600	68	68	200
Prediction accuracy: %	67.38	54.26	23	54.26	54.26
Organ Toxicity		•	•	•	•
Hepatotoxicity (Probability)	0.55	0.76	0.56	0.59	0.51
Toxicity end points					
Carcinogenicity	0.69	0.62	0.58	0.58	0.63
Immunotoxicity	0.94	0.98	0.96	0.99	0.99
Mutagenicity	0.60	0.56	0.64	0.62	0.63
Cytotoxicity	0.76	0.62	0.50	0.54	0.54
Nuclear receptor signalling pathy	ways				
Aryl hydrocarbon Receptor (AhR)	0.66	0.89	0.90	0.87	0.90
Androgen Receptor (AR)	0.99	0.94	0.94	0.92	0.95
Androgen Receptor Ligand Binding Domain (AR-LBD)	0.98	0.97	0.91	0.93	0.93
Aromatase	0.82	0.88	0.83	0.92	0.94
Estrogen Receptor Alpha (ER)	0.61	0.84	0.87	0.88	0.89

Estrogen Receptor Ligand Binding Domain (ER-LBD)	0.95	0.95	0.95	0.97	0.97
Peroxisome Proliferator Activated Receptor Gamma (PPAR-Gamma)	0.98	0.97	0.92	0.85	0.88
Stress response pathways					
Nuclear factor (erythroid- derived 2)-like 2/antioxidant responsive element (nrf2/ARE)	0.96	0.95	0.88	0.88	0.92
Heat shock factor response element (HSE)	0.96	0.95	0.88	0.88	0.92
Mitochondrial Membrane Potential (MMP)	0.81	0.76	0.62	0.61	0.73
Phosphoprotein (Tumor Suppressor) p53	0.84	0.76	0.85	0.85	0.87
ATPase family AAA domain containing protein 5 (ATAD5)	0.83	0.94	0.92	0.95	0.95

- 1. <u>https://www.rcsb.org/</u>
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 3. Sousa; S. F.; Fernandes, P. A.; Ramos, M. J. Protein-ligand docking: current status and future challenges. *Proteins*. **2006**, *65*, 15-26.
- 4. Daina, A.; Michielin, O.; Zoete, V., SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, *Scientific Reports*, **2017**, *7*, 42717
- 5. <u>http://predherg.labmol.com.br/</u>
- 6. <u>http://tox.charite.de/protox_II/index.php?site=compound_input</u>

- Mishra, P., Günther, S. New insights into the structural dynamics of the kinase JNK3. Sci Rep 8, 9435 (2018). <u>https://doi.org/10.1038/s41598-018-27867-3</u>
- 8. Hospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: advances and applications, Advances and applications in bioinformatics and chemistry : AABC, 8, 37–47. https://doi.org/10.2147/AABC.S70333