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Supplementary Figures

Supplementary Figure 1: Visualization of proportion estimates for section mb-ST1 (ST array, 100 micron spots) of
the mouse brain, scaled within each cell type.
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Supplementary Figure 2: Visualization of proportion estimates for section mb-ST2 (ST array, 100 micron spots) of
the mouse brain, scaled within each cell type.
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Supplementary Figure 3: Visualization of proportion estimates for section mb-V1 (Visium array, 55 micron spots),
scaled within each cell type.
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Supplementary Figure 4: Comparison between visualization of marker genes’ relative expression (top) and propor-
tion estimate (middle) in section mb-ST1, with Allen Brain Atlas ISH images (bottom) as reference. The relative
gene expression is obtained by dividing the number of observed transcripts at a given spot (xsg) by the total number
of observed transcripts in the given spot. The relative gene expression values are visualized according to the same
procedure as the proportion values (Methods).
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Supplementary Figure 5: Comparison between visualization of marker genes’ relative expression (top) and propor-
tion estimate (middle) in section mb-ST2, with Allen Brain Atlas ISH images (bottom) as reference. The relative
gene expression is obtained by dividing the number of observed transcripts at a given spot (xsg) by the total number
of observed transcripts in the given spot. The relative gene expression values are visualized according to the same
procedure as the proportion values (Methods).
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Supplementary Figure 6: Comparison between visualization of marker genes’ relative expression (top) and propor-
tion estimate (middle) in section mb-V1, with Allen Brain Atlas ISH images (bottom) as reference. The relative
gene expression is obtained by dividing the number of observed transcripts at a given spot (xsg) by the total number
of observed transcripts in the given spot. The relative gene expression values are visualized according to the same
procedure as the proportion values (Methods).
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Supplementary Figure 7: Visualization of proportion estimates for section dh-A (from a series of eight independent
sections from the same developmental heart, named A-H), scaled within each cell type.
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Supplementary Figure 8: Visualization of proportion estimates for section dh-B (from a series of eight independent
sections from the same developmental heart, named A-H), scaled within each cell type.

9



Supplementary Figure 9: Visualization of proportion estimates for section dh-C (from a series of eight independent
sections from the same developmental heart, named A-H), scaled within each cell type.
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Supplementary Figure 10: Visualization of proportion estimates for section dh-D (from a series of eight independent
sections from the same developmental heart, named A-H), scaled within each cell type.
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Supplementary Figure 11: Visualization of proportion estimates for section dh-E (from a series of eight independent
sections from the same developmental heart, named A-H), scaled within each cell type.
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Supplementary Figure 12: Visualization of proportion estimates for section dh-F (from a series of eight independent
sections from the same developmental heart, named A-H), scaled within each cell type.
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Supplementary Figure 13: Visualization of proportion estimates for section dh-G (from a series of eight independent
sections from the same developmental heart, named A-H), scaled within each cell type.
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Supplementary Figure 14: Visualization of proportion estimates for section dh-H (from a series of eight independent
sections from the same developmental heart, named A-H), scaled within each cell type.
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Supplementary Figure 15: Visualization of the proportion estimates for the Slide-seq mouse brain hippocampus
data. The alpha value is proportional to the estimated proportion value, meaning that dark blue areas correspond
to regions where the given cell type constitutes a high proportion of the cells while the opposite is true for those of
white color.

16



Supplementary Figure 16: A) Visualization of proportion estimates for six clusters (Oligos 5, Neurons 59, Ependy-
mal 47, Neurons 27, Neurons 22 and Vascular 68) present in the single cell data. These clusters are colored using
the same palette as the corresponding cell types in the Slide-seq method paper. [1] B) Aggregation of the six types
visualized in A, produced by plotting their respective proportion values in one single plot. C) Modified version of
Fig. 1C from the Slide-seq method paper. [1]
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Supplementary Figure 17: Visualization of the proportion estimates for the Slide-seq mouse brain cerebellum data.
Visualized by the same procedure as outlined in Figure 15.

Supplementary Figure 18: Number of cell types confidently assigned to each bead in the mouse brain cerbellum
data set. Confidently cell types are those (within a given bead) with a proportion value higher than half the
L2-norm of the associated proportion vector, see Supplementary Section 1.6 for further details.
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Supplementary Figure 19: Correlation between cell types (Methods) within the developmental heart. Gray areas
represent correlation values where the correlation is not significant (p ≤ 0.01). The correlation values are computed
over all 8 sections (n = 1375 capture locations).

19



Supplementary Figure 20: In the mb-V1 sample; spatial gene expression of 12 genes listed, by the database
panglaodb.se, as markers for different cell types found within the mouse brain [2]
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Supplementary Figure 21: Expression-based clustering of mb-V1, the normalization and clustering was obtained
by using Seurat (v.3.0). A total of 15 clusters were obtained using a resolution of 0.8 in the SNN (Shared Nearest
Neighbor) approach. Capture locations belonging to the same cluster share the same color. For more details, see
Supplementary Section 1.1.1
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Supplementary Figure 22: Fitted vs. Empirical Distributions for Cluster 0. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal
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Supplementary Figure 23: Fitted vs. Empirical Distributions for Cluster 1. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal
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Supplementary Figure 24: Fitted vs. Empirical Distributions for Cluster 2. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal
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Supplementary Figure 25: Fitted vs. Empirical Distributions for Cluster 3. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal
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Supplementary Figure 26: Fitted vs. Empirical Distributions for Cluster 4. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal
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Supplementary Figure 27: Fitted vs. Empirical Distributions for Cluster 5. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal
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Supplementary Figure 28: Fitted vs. Empirical Distributions for Cluster 6. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal
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Supplementary Figure 29: Fitted vs. Empirical Distributions for Cluster 7. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal

29



Supplementary Figure 30: Fitted vs. Empirical Distributions for Cluster 8. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal

30



Supplementary Figure 31: Fitted vs. Empirical Distributions for Cluster 9. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal
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Supplementary Figure 32: Fitted vs. Empirical Distributions for Cluster 10. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal
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Supplementary Figure 33: Fitted vs. Empirical Distributions for Cluster 11. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal
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Supplementary Figure 34: Fitted vs. Empirical Distributions for Cluster 12. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal
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Supplementary Figure 35: Fitted vs. Empirical Distributions for Cluster 13. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal
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Supplementary Figure 36: Fitted vs. Empirical Distributions for Cluster 14. Gray - empirical distribution, Red -
Negative Binomial, Green - Poisson, Blue - Normal
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Supplementary Figure 37: BIC score for the different distributions fitted to each marker gene and across clusters.

Supplementary Figure 38: Comparison between stereoscope and other methods designed to estimate proportions
of cell types in bulk data with the help of single cell data. The boxes spans the range between the lower and upper
quartiles of the data. The red line indicates the median. Whiskers show the full range. The dashed line indicates
the average value from computing the RMSE from n = 1000 proportion estimate vectors (of each spatial location)
generated from a Dirichlet distribution (concentration set to 1 for all types).
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Supplementary Figure 39: Similar to Supplementary Figure 38 but for the synthetic data where cell density is set
to range between 1− 10 cells.

Supplementary Tables

Data Set Accession Comment

Mouse Brain (ST1K)
https://github.com/almaan/stereoscope/

blob/master/data/mousebrain/mouse-st-data.zip
1 password : zNLXkYk3Q9znUseS

Mouse Brain (Visium)
https://support.10xgenomics.com/spatial-gene-expression

/datasets/1.0.0/V1_Adult_Mouse_Brain
N/A

Mouse Brain Hippocampus (Slide-seq)
https://singlecell.broadinstitute.org/single_cell/

study/SCP354/slide-seq-study
Puck : 180413 7

Mouse Brain Cerebellum (Slide-seq)
https://singlecell.broadinstitute.org/single_cell/

study/SCP354/slide-seq-study
Puck : 180819 11

Mouse Brain Hippocampus (Single Cell)
https://storage.googleapis.com/

linnarsson-lab-loom/l1_hippocampus.loom
N/A

Mouse Brain Cerebellum (Single Cell)
https://storage.googleapis.com/

linnarsson-lab-loom/l1_cerebellum.loom
N/A

Developmental Heart
(ST1K and Single Cell)

https://www.spatialresearch.org/

resources-published-datasets/

doi-10-1016-j-cell-2019-11-025/

N/A

Supplementary Table 1: Data access, links to all the data sets presented in the manuscript, additional information
is given in the “Comments” columns when relevant.
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Cell Type Number of Cells
1 Astrocytes 14 250
2 Astrocytes 40 250
3 Astrocytes 41 31
4 Astrocytes 42 250
5 Astrocytes 44 41
6 Blood 73 46
7 Ependymal 47 27
8 Excluded 30 30
9 Excluded 38 25
10 Excluded 44 56
11 Excluded 6 87
12 Immune 14 63
13 Immune 32 131
14 Immune 34 250
15 Immune 35 38
16 Neurons 10 35
17 Neurons 11 250
18 Neurons 12 250
19 Neurons 14 250

Type Number of Cells
20 Neurons 15 250
21 Neurons 16 52
22 Neurons 17 250
23 Neurons 18 248
24 Neurons 19 55
25 Neurons 20 38
26 Neurons 21 250
27 Neurons 22 27
28 Neurons 23 249
29 Neurons 24 250
30 Neurons 25 250
31 Neurons 26 250
32 Neurons 27 250
33 Neurons 28 250
34 Neurons 30 26
35 Neurons 48 183
36 Neurons 49 25
37 Neurons 51 250
38 Neurons 52 241

Type Number of Cells
39 Neurons 54 30
40 Neurons 58 48
41 Neurons 59 250
42 Neurons 60 250
43 Neurons 61 106
44 Neurons 62 42
45 Neurons 63 250
46 Oligos 0 250
47 Oligos 1 158
48 Oligos 14 101
49 Oligos 5 250
50 Oligos 53 250
51 Vascular 14 75
52 Vascular 46 61
53 Vascular 67 250
54 Vascular 68 250
55 Vascular 69 41
56 Vascular 70 33

Total 8449

Supplementary Table 2: Composition of the subsampled single cell mouse brain hippocampus data set.

Cluster Number of Cells
1 1 156
2 2 126
3 3 434
4 4 378
5 6 44
6 7 48
7 8 58
8 9 187
9 10 69
10 11 30
11 12 29
12 13 28
13 16 282
14 17 92
15 18 33
16 19 144
17 20 49
18 21 500

Cluster Number of Cells
19 22 62
20 23 500
21 24 466
22 25 317
23 26 151
24 27 48
25 30 27
26 31 499
27 32 498
28 33 91
29 36 499
30 37 125
31 38 76
32 40 499
33 42 467
34 44 133
35 45 361

Total 7506

Supplementary Table 3: Composition of the subsampled single cell mouse brain cerebellum data set.
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Cell Type Number of Cells
1 Atrial cardiomyocytes 152
2 Capillary endothelium 662
3 Cardiac neural crest cells Schwann progenitor ... 75
4 Endothelium pericytes adventitia 127
5 Epicardial cells 128
6 Epicardium-derived cells 392
7 Erythrocytes 11 113
8 Erythrocytes 6 186
9 Fibroblast-like cardiac skeleton connective ti... 463
10 Fibroblast-like larger larger vascular develop... 150
11 Fibroblast-like smaller vascular development 337
12 Immune cells 76
13 Myoz2-enriched cardiomyocytes 97
14 Smooth muscle cells fibroblast-like 263
15 Ventricular cardiomyocytes 496

Total 3717

Supplementary Table 4: Composition of the single cell developmental heart data set.

Cell Type Number of Cells
1 Astrocyte 250
2 Astrocyte,Neurons 58
3 Astrocyte,Oligos 47
4 Blood 40
5 Immune 250
6 Neurons 250
7 Neurons,Cycling 94
8 Neurons,Oligos 33
9 Oligos 250
10 Vascular 250

Total 1522

Supplementary Table 5: Composition of the generation and validation single cell data sets (the two share identical
compositions).

Compared to. W estimate p-value CI-upper
deconvSeq 33148.0 -0.110118 6.571734e-107 -0.105184

DWLS 59784.0 -0.035190 2.970104e-77 -0.032272

Supplementary Table 6: Results from an one-sided paired Wilcoxon signed-rank test between ours (stereoscope) and
other methods devised for bulk deconvolution aided by single cell data. In short, this tests whether the difference
between the location-wise paired RMSE values are symmetrically distributed around zero, or if this distribution is
skewed in favor of stereoscope. W is the test statistic, estimate is the estimated location of the difference between
the estimates from stereoscope and the other methods. The p-value represents the probability of no assymetry
existing between the methods. CI-upper is the upper 95% confidence level. Hence, a negative estimate with
a significant p-value is to be interpreted in favor of stereoscope. The test was conducted using the wilcox.test
function in R (v.3.5) with a total of n = 1000 synthetic data spots

Compared to. W estimate p-value CI-upper
deconvSeq 103377.0 -0.046208 1.176005e-48 -0.041459

DWLS 127372.0 -0.024165 2.110848e-32 -0.020732

Supplementary Table 7: Similar to Supplementary Table 6 but for the synthetic data where cell density is set to
range between 1− 10 cells.
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1 Supplementary Notes

1.1 Characterization of Spatial Expression Data

Our method assumes that gene expression data can be sufficiently modeled by a Negative Binomial (NB) distribu-
tion. This idea is by no means novel; several methods designed for analysis of either bulk or single cell RNA-seq
data relies on variations of the very same assumption (e.g., edgeR, DeSeq2, ZINB-WaVE and sctransform) [3–6].
Spatial data generated from capture based technologies, like those discussed within this work, share several features
with single cell data; the most obvious being how both are constituted of positive integer values representing the
number of transcripts associated with a given observation (cell alternatively capture location). The experimental
methods by which such spatial data is obtained nevertheless differ substantially from those of single cell data, and
thus caution should be payed to extrapolation of assumptions between the data modalities. Aware of this, we here
seek to justify our assumptions and present support for our spatial data being NB-distributed, as to ensure we’re
not working on false premises.

To briefly recapitulate some of the terminology and properties of the NB distribution: We let xsgc denote the
observable transcripts of a given gene (g), from a specific cell (c), at a given capture location (s). Our main
assumption is that xsgc ∼ NB(., pg), as a consequence of the additive property of NB distributions with shared
second parameters (pg), we therefore have that xsg =

∑
c∈Cs

xsgc ∼ NB(., pg) as well.

There are however two prominent issues that must be addressed in the context of this quest, namely that: (1)
xsgc is not observed in any of the experimental platforms included in this study, and we are therefore limited to
computational inferences of these values; (2) while we do observe xsg (being entries of the count matrices), we only
have one such observation per distribution that we wish to characterize; this sparsity prevents us from making any
general statement regarding the distributions. Due to (1) we will focus our efforts on characterization of xsg rather
than xsgc, to then consider support for the former being NB distributed as strongly implicating the latter having
the same property. In order to circumvent (2), we will cluster the capture locations based on their gene expression
profiles and assume that members within the same cluster (k) can be taken to have approximately the same first
parameter (rkg); meaning that xsg|s ∈ k = xkg ∼ NB(rkg, pg). As a result of this simplification, we have multiple
observations from respective distribution (xkg) and are able evaluate how well the NB distribution approximates
this.

For the purpose of this inquiry, we use the mb-V1 section (Visium) and a set of genes (n = 12) listed as markers
for cell types within the brain (taken from panglaodb.se), these genes also exhibit varying spatial distributions,
see Supplementary Figure 20. [2] We used the Seurat package in R to normalize and cluster our data, from this we
obtained 15 clusters, shown in Figure 21. See Supplementary Section 1.1.1 for more details regarding the cluster-
ing. Next, within each cluster and for each marker gene, we fitted 3 different parametric distributions (Negative
Binomial, Normal and Poisson) to the observed expression (using the R package fitdistrplus). The empirical and
fitted distributions for each cluster and marker gene are visualized in Supplementary Figures 22-36. As can be seen
in the aforementioned figures, the NB distribution (red) tends to provide a good approximation for the observed
empirical distribution (gray). Some deviations and ill-fits are observed, but these are mainly confined to clusters
with few members or where the specific gene’s expression do not overlap very well with the cluster (in the spatial
domain). For a more quantitative assessment of how well the different distributions were able to describe the data,
we compared their respective BIC (Bayesian information criterion) values, once the distributions had been fitted
to the data. For all marker genes, the NB distribution outperformed the alternative distributions, as shown in
Supplementary Figure 37.

We believe these results support and speak in favor of our assumption that xsg is well approximated by an NB
distribution, hence also being affirmative of our model’s design. Furthermore, from a theoretical standpoint it’s
also motivated to take the spatial data as NB-distributed; the NB distribution is often interpreted as an “overdis-
perssed” Poisson distribution, which represents the number of iid events that occur in given interval of time or
space - a definition that translates well to the capture of mRNA at specific locations in the spatial assays. If we
were to accept this as sufficient support for our assumption regarding the sum xsg, it’s also motivated to assume
that the respective constituents are NB-distributed, as this would indeed produce a new NB-distributed variable
like that of xsg.

All results related to the discussion regarding the assumption of spatial capture-based data being Negative Bino-
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mial distribution, can be reproduced by running the script test-NB.R (found in the referenced github and Zenodo
repositories), where the only input needed is the mb-V1 count file and a list of genes (the marker genes used) to
be analyzed.

1.1.1 Seurat Clustering

To cluster the data, we followed the steps outlined in the Seurat Vignette [7], without any modifications (meaning,
resolution = 0.8). In total 15 clusters were identified, as presented in Supplementary Figure 21.

1.2 Method Comparison

To compare and benchmark our method against alternative methods designed for deconvolution of bulk RNA-seq
data using single cell RNA-seq data, we generated synthetic data according to the procedure outlined in Table
1 (Methods). The synthetic data generation produces sets with known proportion values, which can be used to
quantitatively evaluate method performance. We conducted two comparative analyses:

• Comparison 1, 10-30 cells per capture location: For this comparison; cell density (cells per capture
location) was set to 10− 30 cells during synthetic data generation. The intention was to generate data that
resembled that obtained from the older ST (1k array) platform. Results are shown in Supplementary Figure
38 and Supplementary Table 6, where it can be seen how stereoscope outperforms the other methods.

• Comparison 2, 1-10 cells per capture location: For this comparison; cell density (cells per capture
location) was set to 1 − 10 cells during synthetic data generation. For this set the intetion was to generate
data that resembled that produced by the Visium platform. Results are shown in Supplementary Figure 39
and Supplementary Table 7, stereoscope performs better than the alternative methods in this comparison as
well.

1.3 Data : Mouse Brain

Single Cell
Single cell data was downloaded from mousebrain.org, where data from Hippocampus and Cerebellum were provided
as loom-files containing a total of 29519 cells (hippocampus) and 27998 cells (cerebellum). As stated in the methods
section: for the hippocampus data, the labels given as ”Clusters” and ”Class” were joined together in order to define
more granular cell types; while for the cerebellum data we used the “Clusters” labels. Applying the subsampling
scheme described in Methods, data sets consisting of 8449 (hippocampus) and 7506 (cerbellum) cells were assembled,
the exact compositions of these sets are found in Supplementary Table 2 and 3.

ST/Visium
We analyzed two 100 micron array ST sections (mb-ST1 and mb-ST2), data can be accessed at the github page,
original source in currently in press. We excluded all spots that were not covered by the tissue. We downloaded
Visium (55 micron array) data from the website of 10x GenomicsTM, listed under ”Support”, ”Spatial Gene
Expression” and ”Datasets”, selecting the set listed as ”Mouse Brain Section (Coronal)”. [8] For the Visium data
we only included spots under the tissue in our analysis.

Slide-seq
We analyzed two Slide-seq pucks: the puck visualized in Fig.1C (hippocampus) and one of the pucks used to generate
Fig.2C (cerebellum) - figure numbers refer to the publication where the method was first presented. [1] The data
was accessed from the ”Single Cell Portal” provided by Broad Institute, pucks with ID 180413 7 (hippocampus) and
180819 11 (cerebellum) were downloaded. We used the files MappedDGEForR.csv and MappedLocationsForR.csv,
associated with pucks of said IDs, to assemble an expression matrix with beads as rows and genes as columns. [9]
We also replaced the original row names containing the barcode ids with each bead’s spatial coordinates given as
”[x coordinate]x[y coordinate]”. All beads with non-zero total counts were used in the analysis.

1.4 Data : Developmental Heart

Both single cell and ST data for the analysis of the developmental heart are taken from the publication ”A
spatiotemporal organ-wide gene expression and cell atlas of the developing human heart.”. [10] The complete set of
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single cells was used, while only the 8 ST sections from PCW (Post Conceptional Week) 6.5 were used as spatial
data. Supplementary Table 4 gives the specifics of the single cell data set.

1.5 Data : Synthetic Data

Single Cell
To generate synthetic single cell data, the data set originating from hippocampal tissue was downloaded from
mousebrain.org (the same set as used for the analysis of the mouse brain) where the ”Subclass” annotations were
used as cell type identifiers. A generation and validation set of equal compositions (in terms of number of cells
from each cell type) were generated, exact structure given in Supplementary Table 5.

Spatial Data
A total of 1000 spots were synthesized according to the procedure described in the Methods section. Only data
from the top 500 highest expressed genes in the generation data set were used, hence a 1000 × 500 count matrix
was generated. All synthetic data sets and the code used for the ”synthesis” is available in the github repository
of this paper, where also a tutorial to reproduce the results is presented.

1.6 Slide-seq analysis

With no histological image being provided for the Slide-seq data, we depict the obtained proportion estimates in a
similar fashion to the ST data – each bead is represented by a circular marker where the alpha value is proportional
to the estimated proportion for each cell type – but without a background tissue image. Due to the large number
of beads present in the Slide-seq assays (and thus data points to visualize) the proportion estimates are multiplied
by the scalar 0.6 in Fig.15, rendering a result which is easier to inspect and interpret. While Slide-seq provides high
resolution, a one-to-one mapping between bead and cell is not guaranteed, given how beads tend to have between
1-3 cells contributing to them. [1] We therefore do not apply ”hard” cluster assignments (i.e., assigning each bead
to the type with highest associated proportion estimate) but rather use the proportion estimates. No scaling within
cell type nor section is performed upon visualization.

Our main reason for including the cerebellum Slide-seq data was to assess whether we obtained the same number
of cell types distributed across the beads as reported in the original Slide-seq study. The authors report that for
the 7 Cerebellum pucks approximately 65.8± 1.4% of the beads are matched to a single cell type while 32.6± 1.2%
mapped to two cell types (numbers reported as mean ± standard deviation).

To compare our results with those obtained in the Slide-seq study, we implemented an approach similar to what
the Slide-seq authors used when calling the number of cell types assigned to a bead; in our case a cell type was
“confidently assigned” to a bead if the proportion value of a cell type was greater than half the L2 norm of a bead’s
proportion vector. By doing so we could observe how 60.2% and 37.6% of beads had one respectively two cell
types confidently assigned to them, see Figure 18. While these values both fall outside of the reported error range,
it should be noted that we used a different single cell data set with a larger number of cell types; it’s therefore
plausible to suggest that what was called as contribution from one cell type in the Slide-seq study might in some
cases (since we are operating at a higher granularity) be matched to two types in our data - explaining the slight
discrepancies between the reported values.
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