
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

This is a very impressive study. The authors document the effect of lesions on brain disconnection by 

analysing the impact of more than 1300 strokes. The work is likely to have substantial scientific and 

clinical impact, given our emerging understanding that lesion-symptom relationships are not well 

understood by examining damage to grey matter alone – and yet this assumption is still central to the 

way we interpret many neuropsychological studies. Although we have had detailed knowledge of 

which areas of the brain are most vulnerable to ischemic stroke for many years, the impact of this 

pattern on disconnections has not been well-characterised. This study uses machine learning and PCA 

to characterise this non-randomness and this approach seems very powerful. 

 

I only have a few comments: 

1. It would be helpful if the lesion characteristics retained in the synthetic lesions could be made more 

explicit and if their characteristics could be better justified. The methods mention that synthetic 

lesions are paired in size and hemisphere – what about shape and grey/white matter ratio – are they 

relevant? Is there any need to pay attention to the type of ischemic stroke – e.g. thrombotic vs. 

embolic strokes? Large vs. small vessel stroke? I wonder if the intention is to produce a synthetic 

control sample that does not retain these characteristics of real strokes, since if they were matched, 

the synthetic strokes might not look different from real strokes -- but articulating this would help 

readers to understand what the overarching aim is. 

2. In Figure 2 (PCA analysis), I lost track of what variance was being explained (please clarify in the 

footnote for Fig. 2a). For this reason, it wasn’t clear to me why synthetic disconnections would explain 

more variance than real lesions as the number of components becomes large. Would it be useful to 

add synthetic lesions alongside stroke lesions, so we can see if the additional variance explained is 

greater for real vs. synthetic disconnections than real vs. synthetic lesions? How many components do 

the various types of data suggest would be an appropriate number? 

3. I think the statement “the non-random distribution of stroke has distorted the taxonomy of brain 

function in task fMRI” needs some unpacking. I couldn’t directly see the evidence for this in Figure 2c. 

4. In the labelling of the components in Fig 3 and 4 (and in the supplementary materials), it would be 

useful if more than a single cognitive or task term could be used to summarise function. These terms 

are derived from Neurosynth and there will be a whole field of terms that relate, with different 

strengths, to each connection component. It would be helpful to present this whole field, at least in 

the supplementary materials, given that each connection component is almost certainly involved in 

multiple tasks or aspects of cognition. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

This paper presents an analysis of an extensive dataset of stroke lesions, in order to characterize the 

“disconnectome” of the human brain. Although there is a long history of meta-analysis in 

neuroimaging and some previous work applying these methods to lesion data, I think it’s fair to say 

that there has been nothing even close to this kind of analysis published before. The visualization in 

Figure 4a is particularly amazing. I think it’s a very important advance, but I do have a few comments 

that I hope will help improve the manuscript. 

 

My only conceptual question is the degree to which the observed components relate to 

cerebrovascular territories. Is there some way to assess what the analyses tell us beyond the fact that 

strokes happen in consistent locations due to consistent vasculature? 



 

Minor comments: 

 

1. page 3: the claim that "our understanding of function within the human brain is largely based upon 

on the observation of patients with focal brain lesions” was true 50 years ago but seems a bit 

overblown today, given how much we have learned from neuroimaging of healthy individuals over the 

last few decades. 

2. I have two comments about the presentation of the t-SNE results. First, it’s a bit odd to call this a 

“machine learning algorithm” - it’s no more so than PCA or any other dimensionality reduction 

method. I would call it a “dimensionality reduction method” instead. Second, t-SNE results can be 

notoriously variable - do the results hold up across multiple runs of the algorithm? 

3. Figure 2a is vey difficult to parse - I would suggest a line graph rather than overlapping colored 

bars. 

4. It would be useful to label all image slices with L/R since different subfields vary in the L/R 

orientation in which data are presented. 

5. It would be useful for the component maps and atlas maps to be uploaded to a data sharing 

repository where they can be viewed in detail, such as Neurovault. 

6. It would be great if the raw lesion maps could also be shared openly. 

 

Signed, 

Russ Poldrack 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Many thanks for giving me the opportunity to review this paper. Here, the authors studied patients 

with stroke lesions to assess disconnection between different brain areas, and to explore functional 

associations. The paper was overall creative and benefitted from inclusion of a large stroke database. 

On the other hand, I missed important details on the patient population and also a cross-validation of 

findings based on patient specific connectome information. Further, I was not clear on the quantitative 

analyses steps performed, specifically wrt the synthetic null models and statistical inferences 

supporting the conclusions. The significance of the neurosynth associations was not fully clear to me. 

Please find my detailed comments below: 

 

1) Figure 1 shows that the actual stroke lesion distribution is more clustered that a synthetic lesion 

distribution, and lesions as well disconnections are shown at more extreme locations in tSNE derived 

embedding space. While this approach is interesting and the visualization elegant, I have two 

questions: 

 

- first, I am wondering whether the authors' synthetic null model is a good one here. From the 

methods, it was not entirely clear to me whether the model actually controls adequately for a) typical 

‘autocorrelation’ in the brain eg with respect to structural but also connectivity related features (which 

should generally lead to higher ‘clustering’) and whether b) vascular territory (which one would 

assume biases the location of stroke lesions in the brain). 

 

- second, the statistical testing carried out to support the conclusions in Figure 1c and d are missing in 

the main description, and would be helpful to add. Specifically, shouldn't a testing against synthetic 

null models be generally based on something like p<0.05 thresholds, similar to typical permutation 

based null models for other questions? If so, while its evident that the lesions have higher eccentricity 

in embedding space than the synthetic null lesions models, the findings do not generally support a 



95% consistency in such a measure (at least visually). Are there some metrics that can be calculated 

to confirm that real lesions are indeed further outside in embedding space than 95% of synthetic 

lesions? 

 

2) The initial description of the methodology in the main text (line 79-92) does not clearly reveal 

whether lesions were placed in a healthy connectome (which is what the authors ultimately did), or 

whether diffusion MRI connectivity changes were directly measured by comparing diffusion MRI data 

in patients relative to controls. I suggest to be more clear on this part in the main part of the paper, 

even already in the abstract and introduction. 

 

3) One question that naturally occurs then is whether the HCP (young adult) dataset connectome is 

representative to the brain of stroke patients, which are suspected to be older and potentially more 

atrophic generally and suffering from pre-existing conditions. A validation of the findings based on 

connectome data from stroke patients could be useful to mitigate some of these concerns. 

 

4) I could not find any socio-demographic or clinical details on the stroke population in the current 

paper, nor a description of how lesions were defined. There was a reference to Ref 38, which however 

also did not provide extensive details on overall clinical and socio-demographic aspects of the stroke 

patients. 

 

5) I am not fully clear about the findings shown in Figure 2b. The authors discovered 30 different 

components (30) and correlated those with neurosynth term maps. Given that the term base in 

neurosynth seems quite large (I think its currently more than 1k), it is not surprising to obtain several 

significant associations here. Are corrections for multiple comparisons carried out in this analysis? 

 

 

Minor comments: 

- Can the authors speculate whether the need for a lower number of PCA components (see lines 112-

119) naturally follows from a less clustered arrangement in t-SNE space (see Fig 1). I would have 

generally expected this, but curious to hear the authors thoughts and experiences. 

 

- In line 123, Neurosynth appears to referred to as a manually curated meta-analytic dataset. Can the 

authors clarify this? It was my understanding that neurosynth is based on automated abstract parsing. 

 

- I'd recommend more details on the structural connectome generation (wrt tractography etc). Its 

currently hard to know which precise methods were used for preprocessing, tract tracing, and 

averaging of connectomes across subjects. 



REVIEWER COMMENTS 
 
We want to thank the reviewers for their very positive and encouraging comments. We also 
thank the reviewers for their suggestions, which significantly improved the manuscript. 
Changes have been highlighted in cyan in the main text and the supplementary material. We 
also systematically reported the manuscript changes in our point by point response below.  
 
 
Reviewer #1 (Remarks to the Author): 
 
This is a very impressive study. The authors document the effect of lesions on brain 
disconnection by analysing the impact of more than 1300 strokes. The work is likely 
to have substantial scientific and clinical impact, given our emerging understanding 
that lesion-symptom relationships are not well understood by examining damage to 
grey matter alone – and yet this assumption is still central to the way we interpret 
many neuropsychological studies. Although we have had detailed knowledge of 
which areas of the brain are most vulnerable to ischemic stroke for many years, the 
impact of this pattern on disconnections has not been well-characterised. This study 
uses machine learning and PCA to characterise this non-randomness and this 
approach seems very powerful. 
 
Thank you for your very positive feedback. 
 
I only have a few comments: 
1. It would be helpful if the lesion characteristics retained in the synthetic lesions 
could be made more explicit and if their characteristics could be better justified. The 
methods mention that synthetic lesions are paired in size and hemisphere – what 
about shape and grey/white matter ratio – are they relevant? Is there any need to pay 
attention to the type of ischemic stroke – e.g. thrombotic vs. embolic strokes? Large 
vs. small vessel stroke? I wonder if the intention is to produce a synthetic control 
sample that does not retain these characteristics of real strokes, since if they were 
matched, the synthetic strokes might not look different from real strokes -- but 
articulating this would help readers to understand what the overarching aim is. 
 
This is an unselected series of strokes that will include thrombotic and embolic strokes. The 
advantage of being unselected is that they are reasonably representative of the 
population.We added the following information in the maintext. 
 
“Lesion data was derived from 1333 patients admitted between 2001 and 2014 to University 
College London Hospitals (UCLH) with a clinical diagnosis of acute ischaemic stroke 
confirmed by diffusion weighted imaging (DWI). Since DWI was routinely performed on the 
majority of attending patients, the sample was representative of the population, constrained 
mostly by contraindications and tolerability. Age ranged from 18 to 97 years (mean 63.89, 
standard deviation 15.91), and the proportion of males was 0.561. The study was performed 
under ethical approval by the local research ethics committee for consentless use of fully 
anonymized data. The majority of the data has been previously published in 
Xu et al. (2018).” 
 



2. In Figure 2 (PCA analysis), I lost track of what variance was being explained (please 
clarify in the footnote for Fig. 2a). For this reason, it wasn’t clear to me why synthetic 
disconnections would explain more variance than real lesions as the number of 
components becomes large. Would it be useful to add synthetic lesions alongside 
stroke lesions, so we can see if the additional variance explained is greater for real vs. 
synthetic disconnections than real vs. synthetic lesions? How many components do 
the various types of data suggest would be an appropriate number? 
 
The number of components chosen is subjective, the more components chosen the higher 
the percentage of variance represented. Here we displayed 33 components that correspond 
to 90% of the variance explained for the disconnectome of stroke lesions. By percentage of 
variance explained we mean the R2 between the original lesion and or disconnectome and 
the lesion or disconnectome reconstructed from the linear combination of the components.  
 
We now added the synthetic lesions in Fig 2a and clarified in the caption what we mean as 
‘explained variance’ 

 
“the cumulative percentage of explained variance for the first 30 components of the stroke 
disconnectome (red), synthetic disconnectome (blue), stroke lesion (green), synthetic stroke 
lesion (yellow) distribution. By percentage of variance here we mean the R2 between the 
original lesion and or disconnectome and the lesion or disconnectome reconstructed from 
the linear combination of the components”  
 
 
3. I think the statement “the non-random distribution of stroke has distorted the 
taxonomy of brain function in task fMRI” needs some unpacking. I couldn’t directly 
see the evidence for this in Figure 2c. 
 
We now unpacked this statement as follows 
“These statistical differences suggest that on the one hand, the disconnectome corresponds 
with the underlying functional architecture (as revealed by fMRI) better than lesions alone. 
Hence brain disconnections are more appropriate to study the localisation of brain functions 
than brain lesions alone. On the other hand, our results also suggest that the non-random 
distribution of stroke has distorted the taxonomy of brain function underpinning the 



behavioural paradigms used in task-related fMRI and other brain mapping methods. In other 
words, the stereotyped location of stroke lesions has induced an observational bias in jointly 
impaired functions that, in turn, has biased the functional taxonomy used with fMRI in 
healthy subjects.”  
 
 
4. In the labelling of the components in Fig 3 and 4 (and in the supplementary 
materials), it would be useful if more than a single cognitive or task term could be 
used to summarise function. These terms are derived from Neurosynth and there will 
be a whole field of terms that relate, with different strengths, to each connection 
component. It would be helpful to present this whole field, at least in the 
supplementary materials, given that each connection component is almost certainly 
involved in multiple tasks or aspects of cognition 
 
This is an important point. We now added a supplementary table 2 that includes all 
correlations for each component. 
This information has been added in the main text accordingly. 
 
“(all r > 0.202, significant after Bonferroni correction for multiple comparisons— all p < 
0.00008;  see supplementary material for a full description of main correlations for each 
component and supplementary table 2 for a complete report of all correlations).” 
 
 
Reviewer #2 (Remarks to the Author): 
 
This paper presents an analysis of an extensive dataset of stroke lesions, in order to 
characterize the “disconnectome” of the human brain. Although there is a long 
history of meta-analysis in neuroimaging and some previous work applying these 
methods to lesion data, I think it’s fair to say that there has been nothing even close 
to this kind of analysis published before. The visualization in Figure 4a is particularly 
amazing. I think it’s a very important advance, but I do have a few comments that I 
hope will help improve the manuscript. 
 
Thank you! We’re very grateful for your highly positive feedback. 
 
My only conceptual question is the degree to which the observed components relate 
to cerebrovascular territories. Is there some way to assess what the analyses tell us 
beyond the fact that strokes happen in consistent locations due to consistent 
vasculature? 
 
The structure of vascular damage imposes a structure downstream on the patterns of 
functional deficits that reflects the intersection between the vascular patterns and the 
underlying functional organisation -- both white matter and grey matter. Our aim is to clarify 
the interaction between the vascular structure and the white matter structure in a way that 
reveals commonalities in the observed patterns of functional deficits. 
Additionally to the fact that strokes happen in consistent locations due to consistent 
vasculature we can see that strokes typically have a concentric distribution with a 



progressively increasing probability of damage from the surface of the brain to the deep 
white matter.  
 
This information has been added in the text 
“Noteworthy, strokes also seems to have a concentric distribution with a progressively 
increasing probability of damage from the surface of the brain to the deep white matter (a 
similar distribution can be found in Husain and Nachev 2006; Mah et al. 2014 and Corbetta 
et al. Neuron 2015)” 
 
Minor comments: 
 
1. page 3: the claim that "our understanding of function within the human brain is 
largely based upon on the observation of patients with focal brain lesions” was true 
50 years ago but seems a bit overblown today, given how much we have learned from 
neuroimaging of healthy individuals over the last few decades. 
 
Thank you we rephrased this claim accordingly 
“our understanding of function within the human brain originates from the observation of 
patients with focal brain lesions” 
 
 
2. I have two comments about the presentation of the t-SNE results. First, it’s a bit odd 
to call this a “machine learning algorithm” - it’s no more so than PCA or any other 
dimensionality reduction method. I would call it a “dimensionality reduction method” 
instead. Second, t-SNE results can be notoriously variable - do the results hold up 
across multiple runs of the algorithm? 
 
We changed the text accordingly for 
“we used a high-dimensional data non linear embedding method (i.e. T-distributed 
Stochastic Neighbor Embedding, T-SNE, van der Maaten & Hinton, 2008) to visualise the 
redundancy existing within the distribution of brain lesions (Figure 1c) and their subsequent 
estimated disconnections (Figure 1d).” 
 
We have explored a wide range of tSNE parameters with no substantial impact on the final 
pattern and have replicated essentially the same result with umap (i.e.:brain lesions show 
some redundancy and cluster together more than synthetic lesions and disconnections in 
strokes demonstrated a higher level of clustering in comparison to the disconnection that 
was derived from paired synthetic lesions) now in supplementary material. 
 



 
Supplementary figure 1: Replication of The biased distribution of ischemic stroke with TSNE 
(a,b: perplexity = 40; c,d: perplexity = 60; e,f: perplexity = 80) and U-map. Left panel 
corresponds to the two-dimension space visualisation of stroke (red) and synthetic lesion 
(blue) distribution. Right panel corresponds to the two-dimension space visualisation of 
stroke (red) and synthetic disconnectome (blue) distribution. 
 
 
 
3. Figure 2a is vey difficult to parse - I would suggest a line graph rather than 
overlapping colored bars. 
We modified the figure accordingly. 



 
 
4. It would be useful to label all image slices with L/R since different subfields vary in 
the L/R orientation in which data are presented. 
Done 
 
5. It would be useful for the component maps and atlas maps to be uploaded to a data 
sharing repository where they can be viewed in detail, such as Neurovault. 
The component maps and atlas maps are already available as supplementary material. 
Additionally following your recommendation we uploaded these maps on Neurovault 
The component maps can be found here https://identifiers.org/neurovault.collection:7735 
The atlas of white matter function here  
A to C terms: https://identifiers.org/neurovault.collection:7756 
D to H terms: https://identifiers.org/neurovault.collection:7757 
I to N terms: https://identifiers.org/neurovault.collection:7758 
O to R terms: https://identifiers.org/neurovault.collection:7759 
S to U terms: https://identifiers.org/neurovault.collection:7760 
V to Z terms: https://identifiers.org/neurovault.collection:7761 
These links have been added to the manuscript 
 
6. It would be great if the raw lesion maps could also be shared openly.   
The regulatory terms under which the lesion maps are made available to researchers are 
that they should be supplied on request rather than published on a public website. 
 
Signed, 
Russ Poldrack 
 
 
Reviewer #3 (Remarks to the Author): 
 
Many thanks for giving me the opportunity to review this paper. Here, the authors 
studied patients with stroke lesions to assess disconnection between different brain 
areas, and to explore functional associations. The paper was overall creative and 
benefitted from inclusion of a large stroke database. On the other hand, I missed 



important details on the patient population and also a cross-validation of findings 
based on patient specific connectome information. Further, I was not clear on the 
quantitative analyses steps performed, specifically wrt the synthetic null models and 
statistical inferences supporting the conclusions. The significance of the neurosynth 
associations was not fully clear to me. Please find my detailed comments below:  
 
1) Figure 1 shows that the actual stroke lesion distribution is more clustered that a 
synthetic lesion distribution, and lesions as well disconnections are shown at more 
extreme locations in tSNE derived embedding space. While this approach is 
interesting and the visualization elegant, I have two questions:  
 
- first, I am wondering whether the authors' synthetic null model is a good one here. 
From the methods, it was not entirely clear to me whether the model actually controls 
adequately for a) typical ‘autocorrelation’ in the brain eg with respect to structural but 
also connectivity related features (which should generally lead to higher ‘clustering’) 
and whether b) vascular territory (which one would assume biases the location of 
stroke lesions in the brain). 
 
The null model seeks to represent a set of lesions of comparable volume and central spatial 
location but a pattern of covariance of detailed spatial features determined by the 
intersection of a sphere with the parenchyma of the brain, i.e. to approximate a real lesion in 
every way *other* than vascular anatomy and the way in which it interacts with occlusion and 
stenosis to produce ischaemic lesions. This is because our main model is addressed to the 
question of how the vascular anatomy interacts with white matter tracts to generate 
characteristic patterns of disconnection we are here seeking to map definitively.   
In order to help with the replication and extension of our findings we now also provide the 
code that produced the matched synthetic lesion that can be applied to any other datasets. 
 
- second, the statistical testing carried out to support the conclusions in Figure 1c 
and d are missing in the main description, and would be helpful to add. Specifically, 
shouldn't a testing against synthetic null models be generally based on something 
like p<0.05 thresholds, similar to typical permutation based null models for other 
questions? If so, while its evident that the lesions have higher eccentricity in 
embedding space than the synthetic null lesions models, the findings do not 
generally support a 95% consistency in such a measure (at least visually). Are there 
some metrics that can be calculated to confirm that real lesions are indeed further 
outside in embedding space than 95% of synthetic lesions?  
 
There is no established statistical test for the heterogeneity of a non-linear latent embedding: 
the purpose of Figure 1 is to demonstrate visually the differences in the latent structure that 
are formalised in subsequent analyses. 
 
2) The initial description of the methodology in the main text (line 79-92) does not 
clearly reveal whether lesions were placed in a healthy connectome (which is what the 
authors ultimately did), or whether diffusion MRI connectivity changes were directly 
measured by comparing diffusion MRI data in patients relative to controls. I suggest 
to be more clear on this part in the main part of the paper, even already in the abstract 
and introduction.  



 
It is essentially impossible to obtain high quality tractographic data from a stroke population 
owing to the limited tolerance of the long scanning times involved. It is true that some 
differences are to be expected but the broad organisation of the white matter tracts that is 
the driver of the disconnectome can be reasonably expected to be preserved. 
 
We clarified the text accordingly 
“Taking advantage of an extensive set of 1,333 real stroke lesions paired with a synthetic set 
of randomly distributed artificial lesions of the same size and lateralisation (Figure 1b) we 
used a high-dimensional data non-linear embedding method (i.e. T-distributed Stochastic 
Neighbor Embedding, T-SNE, 29) to visualise the redundancy existing within the distribution 
of brain lesions (Figure 1c) and their subsequent estimated disconnections (Figure 1d). 
Lesions were placed in healthy disconnectomes to estimate disconnections19, 26, 30, 31, 32, 33 . 
The result indicates, as previously shown 13 that brain lesions show some redundancy and 
cluster together more than synthetic lesions (Figure 1c).” 
 
3) One question that naturally occurs then is whether the HCP (young adult) dataset 
connectome is representative to the brain of stroke patients, which are suspected to 
be older and potentially more atrophic generally and suffering from pre-existing 
conditions. A validation of the findings based on connectome data from stroke 
patients could be useful to mitigate some of these concerns.  
 
This is a good point. We previously demonstrated that there is no effect of age on the shape 
and trajectory of white matter tracts (supplementary material of Rojkova et al BSAF 2016). 
We also previously explored in the supplementary material of Foulon et al. 2018 the effect of 
age on the disconnectome and found no difference. We reproduced below the previously 
published analysis in full for your assessment. 
In sum, there is no effect of age on the macrostructural anatomy of the disconnectome. 
 
The optimal number of participants was calculated for disconnectome maps from separate 
paired populations of equal gender distribution. This approach was repeated for groups 
consisting of 4, 6, 8, 10, 12, 14, 16, 18 and 20 subjects. Squared spatial Pearson’s 
correlations between each pair (i.e. square of fslcc from FSL) were employed to calculate 
the percentage of shared variance (i.e. the similarity). This analysis indicates a steep 
increase of shared variance between disconnectome maps produced from 4 to 10 
participants followed by a slower increase from 10 to 20 participants. This result indicates 
that, using the disconnectome, 10 subjects are sufficient to produce a good enough 
disconnectome map that matches the overall population (above 70% of shared variance). A 
larger dataset (n = 36) can be downloaded on our website 
(http://www.bcblab.com/opendata). Additionally, HCP 7T data (n = 166) have been prepared 
for the disconnectome and are available on demand to the authors 
(hd.chrisfoulon@gmail.com  or michel.thiebaut@gmail.com). 
We also measured whether the shape of the disconnectome changes over age. We 
assessed this question by producing disconnectome maps for each decade. We quantified 
similarities using squared spatial Pearson’s for the 21-30-year-old maps and the maps for 
the other decades. The result indicates that disconnectome maps show a very high 
anatomical similarity between decades. Hence disconnectome maps in our sample did not 
show any age-related changes. 



 
Disconnectome maps 
optimisation. a) 
Percentage of shared 
variance according to 
sample size. Red 
areas indicate standard 
deviations b) Cross-
correlation between 
decades. Red bars 
indicate standard 
deviations. 
 

 
4) I could not find any socio-demographic or clinical details on the stroke population 
in the current paper, nor a description of how lesions were defined. There was a 
reference to Ref 38, which however also did not provide extensive details on overall 
clinical and socio-demographic aspects of the stroke patients.  
 
This is an unselected series of strokes that will include thrombotic and embolic strokes. The 
advantage of being unselected is that they are reasonably representative of the population. 
We added the following information in the maintext. 
 
“Lesion data was derived from 1333 patients admitted between 2001 and 2014 to University 
College London Hospitals (UCLH) with a clinical diagnosis of acute ischaemic stroke 
confirmed by diffusion weighted imaging (DWI). Since DWI was routinely performed on the 
majority of attending patients, the sample was representative of the population, constrained 
mostly by contraindications and tolerability. Age ranged from 18 to 97 years (mean 63.89, 
standard deviation 15.91), and the proportion of males was 0.561. The study was performed 
under ethical approval by the local research ethics committee for consentless use of fully 
anonymized data. The majority of the data has been previously published  
In Xu et al., 2017” 
 ” 
 
5) I am not fully clear about the findings shown in Figure 2b. The authors discovered 
30 different components (30) and correlated those with neurosynth term maps. Given 
that the term base in neurosynth seems quite large (I think its currently more than 1k), 
it is not surprising to obtain several significant associations here. Are corrections for 
multiple comparisons carried out in this analysis?  
 
Yes we did correct for multiple comparisons and have now  clarified this point in the 
manuscript. 
 
“In order to assess the relationship between disconnection and brain function, the probability 
of disconnection of each component was compared to a manually curated version of the 
most extensive fMRI meta-analytic dataset available (25). The manual curation consisted in 
the previously published selection of 590 maps related to specific cognitive processes out of 
the whole Neurosynth database (30).  Strikingly, 40 out of the 46 components disconnected 



a set of brain regions that significantly correlated with a set of specific task-related fMRI 
meta-analytic maps (Figure 2b) with a small to large effect size (all r > 0.202, significant after 
Bonferroni correction for multiple comparisons— all p < 0.00008;  see supplementary 
material for a full description of main correlations for each component and supplementary 
table 2 for a complete report of all correlations).”  
 
Minor comments:  
- Can the authors speculate whether the need for a lower number of PCA components 
(see lines 112-119) naturally follows from a less clustered arrangement in t-SNE space 
(see Fig 1). I would have generally expected this, but curious to hear the authors 
thoughts and experiences.  
 
It is rather hard to infer the number of linear components that could be extracted looking at 
the non-linear embedding of the data. 
What we observed in our dataset was that the apparently more clustered data in the non-
linear embedding, the higher the redundancy in the dataset and the lower the number of 
components needed to capture the variance of the dataset. We think this is because the 
tighter the adherence to whatever structure we observe the lower the number of components 
likely required to capture given variance. Happy to further discuss this.  
 
- In line 123, Neurosynth appears to referred to as a manually curated meta-analytic 
dataset. Can the authors clarify this? It was my understanding that neurosynth is 
based on automated abstract parsing.  
 
“Manual curation” corresponds to a selection of maps we previously published. We clarified 
this point in the methods of the manuscript 
 
“ The manual curation consisted in the previously published selection of 590 maps related to 
specific cognitive processes out of the whole Neurosynth database.” 
 
- I'd recommend more details on the structural connectome generation (wrt 
tractography etc). Its currently hard to know which precise methods were used for 
preprocessing, tract tracing, and averaging of connectomes across subjects. 
 
These information were reported in previously published papers cited in the manuscript 
We now reproduced this information in full in the supplementary material in order to ensure 
clarity/transparency. 
 
“Structural connectome  
Structural connectome data were derived from the diffusion-weighted imaging dataset of 163 
participants acquired at 7 Tesla by the Human Connectome Project Team (Vu et al. 2015) 
(http://www.humanconnectome.org/study/hcp-young-adult/) (WU-Minn Consortium; Principal 
investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657). This was funded by the 
16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research, 
and by the McDonnell Center for Systems Neuroscience at Washington University. 
 
The scanning parameters have previously been described in Vu et al.62. In brief, each 
diffusion-weighted imaging consisted of a total of 132 near-axial slices acquired with an 
acceleration factor of 3 (Moeller et al. 2010), isotropic (1.05 mm3) resolution and coverage of 



the whole head with a TE of 71.2 ms and with a TR of 7000 ms. At each slice location, 
diffusion-weighted images were acquired with 65 uniformly distributed gradients in multiple 
Q-space shells (Caruyer et al. 2013) and 6 images with no diffusion gradient applied. This 
acquisition was repeated four times with a b-value of 1000 and 2000 s mm−2 in pairs with 
left-to-right and right-to-left phase-encoding directions. The default HCP preprocessing 
pipeline (v3.19.0) was applied to the data (Anderson et al. 2012; Sotiropoulos et al. 2013). In 
short, the susceptibility-induced off-resonance field was estimated from pairs of images with 
diffusion gradient applied with distortions going in opposite directions (Anderson et al. 2003) 
and corrected for the whole diffusion-weighted dataset using TOPUP (Smith et al. 2004). 
Subsequently, motion and geometrical distortion were corrected using the EDDY tool as 
implemented in FSL. 
 
ExploreDTI toolbox for Matlab (http://www.exploredti.com; Leemans and Jones 2009, Vos et 
al. 2017) has been used to extract estimates of axonal water fraction (Fieremans et al. 
2011). Next, we discarded the volumes with a b-value of 1000 s mm−2 and whole-brain 
deterministic tractography was subsequently performed in the native DWI space using 
StarTrack software (https://www.mr-startrack.com). A damped Richardson-Lucy algorithm 
was applied for spherical deconvolutions (Dell’acqua, F. et al. 2010). A fixed fibre response 
corresponding to a shape factor of α = 1.5 × 10–3 mm2 s−1 was adopted, coupled with the 
geometric damping parameter of 8. Two hundred algorithm iterations were run. The absolute 
threshold was defined as three times the spherical fibre orientation distribution (FOD) of a 
grey matter isotropic voxel and the relative threshold as 8% of the maximum amplitude of the 
FOD (Thiebaut de Schotten, M. et al. 2011). A modified Euler algorithm (Dell’acqua, F. et al. 
2013) was used to perform the whole-brain streamline tractography, with an angle threshold 
of 35°, a step size of 0.5 mm and a minimum streamline length of 15 mm. 
 
We co-registered the structural connectome data to the standard MNI 2 mm space using the 
following steps: first, whole-brain streamline tractography was converted into streamline 
density volumes where the intensities corresponded to the number of streamlines crossing 
each voxel. Second, a study-specific template of streamline density volumes was generated 
using the Greedy symmetric diffeomorphic normalisation (GreedySyN) pipeline distributed 
with ANTs (Avants, B. B. et al. 2011). This provided an average template of the streamline 
density volumes for all subjects. The template was then co-registered with a standard 2 mm 
MNI152 template using flirt tool implemented in FSL. This step produced a streamline 
density template in the MNI152 space. Third, individual streamline density volumes were 
registered to the streamline density template in the MNI152 space template and the same 
transformation was applied to the individual whole-brain streamline tractography using the 
trackmath tool distributed with the software package Tract Querier (Wassermann, D. et al. 
2016), and to the axonal water fraction maps, using ANTs GreedySyn. This step produced a 
whole-brain streamline tractography and axonal water fraction maps in the standard MNI152 
space.” 
 

 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have addressed all of my queries and comments in full. I feel this paper will make an 

excellent addition to the literature. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors have addressed all of my concerns from the previous version of the manuscript. 

Signed, 

Russ Poldrack 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Overall the authors revised the manuscript appropriately and I would like to thank them for their 

clarifications. I however felt that some of the previous comments could have been further addressed. 

 

1) With respect to their response to my previous point #3, the authors argue for the absence of an 

effect of age on the dysconnectome. What my previous comment was mainly alluding to, however, 

was also whether dysconnectome-derived measures are affected by the composition of the population 

(with respect to age and clinical signs) that is used to build the normative connectome. Both questions 

are slightly different, but equally relevant in my opinion. 

 

A) Please acknowledge aging related effects on structural connectome measures in some part of the 

discussion and how these could contribute to findings that place lesions into normative connectomes 

based on a particular age range (see eg https://doi.org/10.1016/j.neuroimage.2017.01.077). 

 

B) The conclusions of the work could be stronger by replicating the main findings based on 

dysconnectome findings that were derived from a cohort that is age and sex matched to the stroke 

population and not just the young adult HCP. Lifespan connectome data with adequate quality should 

be openly accessible in minimally preprocessed form (e.g. 

https://www.humanconnectome.org/study/hcp-lifespan-aging/data-releases). 

 

C) As mentioned in previous comment, a replication based on a stroke dataset may be desirable as 

well, but I understand the authors point it may be difficult to come by a diffusion MRI dataset in stroke 

(note: I only found https://ww5.aievolution.com/hbm1901/index.cfm?do=abs.viewAbs&abs=1494 via 

google, but am not sure the work is already openly accessible). If the authors cannot get a hold on a 

stroke dwi dataset, the authors may at least want to do A-B and acknowledge the limitation of not 

showing effects in a stroke connectome in the discussion. The authors mentioned that DWI was used 

for stroke diagnosis in all patients. Was this DWI sequence not appropriate for tractography? 

 

2) Please briefly discuss pros/cons of using a broad and unselected spectrum of strokes compared to a 

more narrowly defined cohort of strokes. 

 

3) As a minor point, I would recommend to upload preprocessed diffusion data to a repository that is 

different from dropbox (e.g. OSF, Dryad, ....). 



REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have addressed all of my queries and comments in full. I feel this paper will make an 

excellent addition to the literature. 

 

Thank you! 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have addressed all of my concerns from the previous version of the manuscript. 

Signed, 

Russ Poldrack 

 

Thank you 

 

Reviewer #3 (Remarks to the Author): 

 

Overall the authors revised the manuscript appropriately and I would like to thank them for their 

clarifications.  

Thank you for your appreciation 

 

I however felt that some of the previous comments could have been further addressed.  

 



1) With respect to their response to my previous point #3, the authors argue for the absence of an 

effect of age on the dysconnectome. What my previous comment was mainly alluding to, 

however, was also whether dysconnectome-derived measures are affected by the composition of 

the population (with respect to age and clinical signs) that is used to build the normative 

connectome. Both questions are slightly different, but equally relevant in my opinion.  

We apologise for the misunderstanding and now hope that the following revision of the manuscript 

will be satisfying for you. 

 

A) Please acknowledge aging related effects on structural connectome measures in some part of 

the discussion and how these could contribute to findings that place lesions into normative 

connectomes based on a particular age range (see eg 

https://doi.org/10.1016/j.neuroimage.2017.01.077).  

 

Thank you for pointing at this excellent reference that we now cite in the main manuscript as follows 

Maintext P. 12 “Importantly, we privileged the quality of the connectome rather than the age match 

when deriving the probability of disconnection induced by each lesion. While age-related changes in 

fractional anisotropy, number of streamlines/trajectories reconstructed, graph theoretical indices 

have been previously reported in the literature (Damoiseaux et al. 2017), none of these measures 

were used in our analyses. In the present case, age is not a confounding factor as we previously 

demonstrated that the shape and spatial extent of tracts (Rojkova et al. 2017), as well as the 

disconnection estimates  (Foulon et al. 2018) are invariant across decades.” 

 

B) The conclusions of the work could be stronger by replicating the main findings based on 

dysconnectome findings that were derived from a cohort that is age and sex matched to the stroke 

population and not just the young adult HCP. Lifespan connectome data with adequate quality 

should be openly accessible in minimally preprocessed form (e.g. 

https://www.humanconnectome.org/study/hcp-lifespan-aging/data-releases).  

 

Thank you for this suggestion.  

We sampled 10 out of the 27 participants of the HCP to create a group matched in age and sex with 

the stroke dataset.   



Despite the spatial resolution of the diffusion of the lifespan human connectome (1.50mm3) project 

is almost triple the voxel size of the young adult HCP 7T (1.05mm3) we’re happy to report that the 

‘disconnectome maps’ had a good reproducibility (r = 0.866 ± 0.066, see supplementary material 

section E, also reported below for simplicity). 

 

Maintext P. 12 “In order to confirm this point the disconnection estimates were replicated in a lower 

resolution age matched sample of 10 participants (Bookheimer et al. 2019; Harms et al. 2018) and 

indicated a good reproducibility (r = 0.866 ± 0.066; see supplementary material).” 

 

Supplementary material P. 47-48 “E. Replication in an age matched dataset. 

The ‘disconnectomes maps’ were replicated in a lower resolution age matched sample of 10 

participants (average age = 60 with a proportion of male = 0.6). 

  

Structural connectome data were derived from the diffusion-weighted imaging dataset of 10 

participants acquired at 3 Tesla by the Human Connectome Project Lifespan study Team 124,125 

(https://www.humanconnectome.org/lifespan-studies) 

  

Each diffusion-weighted imaging consisted of a total of 120 near-axial slices acquired with an 

acceleration factor of 3 (Moeller et al. 2010) , isotropic (1.50 mm3) resolution and coverage of the 

whole head. At each slice location, diffusion-weighted images were acquired with 75 uniformly 

distributed gradients in multiple Q-space shells (Caruyer et al. 2013) and 5 images with no diffusion 

gradient applied. This acquisition was repeated four times with a b-value of 1000 and 2500 s mm−2 

in pairs with left-to-right and right-to-left phase-encoding directions. The default HCP preprocessing 

pipelines (v3.19.0) (Glasser et al. 2013) was applied to the data (Sotiropoulos et al. 2013) . Data 

processing was subsequently performed as described in section A of this supplementary material but 

for left-to-right and right-to-left phase-encoding directions and ended up with whole-brain 

streamline tractography in the standard MNI152 space for each subject of this new dataset. 

The probability of disconnection induced by each of the 1333 lesions was then computed with the 

‘disconnectome map’ tool of the BCBToolkit software using the new processed dataset. Subsequently, 

similarity between the two set of ‘disconnectome map’ (original and age matched) was assessed 

using Pearson correlation. Despite the spatial resolution of the diffusion of the lifespan human 

connectome (1.50mm3) project being almost triple the voxel size of the young adult HCP 7T 

(1.05mm3) and the lower number of subjects (10 vs 163 subjects), the two datasets showed a good 

reproducibility (r = 0.866 ± 0.066).” 



 

C) As mentioned in previous comment, a replication based on a stroke dataset may be desirable as 

well, but I understand the authors point it may be difficult to come by a diffusion MRI dataset in 

stroke (note: I only found 

https://ww5.aievolution.com/hbm1901/index.cfm?do=abs.viewAbs&abs=1494 via google, but am 

not sure the work is already openly accessible).  

Thank you for pointing at this dataset. Unfortunately, this is not a multidirectional dataset so cannot 

be used for tractography. 

Nevertheless, we would like to insist that most of our analyses were replicated using a split-half 

approach of our large dataset.    

 

If the authors cannot get a hold on a stroke dwi dataset, the authors may at least want to do A-B 

and acknowledge the limitation of not showing effects in a stroke connectome in the discussion.  

Practically, the acquisition of DTI sequence of sufficient directionality is infeasible in the acute 

setting because of reduced patient tolerance of long acquisitions and the need to obtain multiple 

sequences at the same imaging session for clinical purposes. Imaging purely for research purposes is 

very difficult to justify ethically in the acute setting, and in any event would result in a biased sample, 

excluding those too ill to tolerate a clinically redundant session. Second, in the presence of a lesion, 

the tractographic signal will be inevitably disrupted, making it impossible to characterise the white 

matter architecture in the vicinity of the lesion. This would make estimates of the underlying 

connectivity patterns substantially worse to an extent likely to obliterate any advantage in closer 

population matching. 

We now acknowledge this point clearly in the main text. 

P. 12 “As we could not directly collect high-resolution diffusion-weighted imaging from each patient 

due to limited clinical settings, instead, lesions were placed in healthy connectomes to estimate 

disconnections (Thiebaut de Schotten et al. 2015; Foulon et al. 2018; Theiabut de Schotten et al. 

2018; Pacella et al. 2019; Dalla Barba et al. 2018; Salvalaggio et al. 2020).” 

 

The authors mentioned that DWI was used for stroke diagnosis in all patients. Was this DWI 

sequence not appropriate for tractography?  

 



Clinical DWI sequences applied in the acute setting are not designed for tractography, and to our 

knowledge no sufficiently rapid sequence is in widespread use. 

 

 

2) Please briefly discuss pros/cons of using a broad and unselected spectrum of strokes compared 

to a more narrowly defined cohort of strokes.  

We now added this point in the text accordingly. 

P. 13 “Lesion data was derived from 1333 patients admitted between 2001 and 2014 to 

University College London Hospitals (UCLH) with a clinical diagnosis of acute ischaemic 

stroke confirmed by diffusion-weighted imaging (DWI). Since DWI was routinely performed 

on the majority of attending patients, the sample was representative of the population, 

constrained mostly by contraindications and tolerability. The advantage of using a  broad 

and unselected spectrum of strokes compared to a more narrowly defined cohort of stroke is 

that it is clinically relevant and generates characteristic patterns of disconnection that are 

the main variable of interest of our study. In contrast, narrowly defined cohorts of stroke still 

suffer from a biased distribution and are not representative of the stroke population and 

consequently cannot be used for data-driven clinical predictions” 

 

3) As a minor point, I would recommend to upload preprocessed diffusion data to a repository 

that is different from dropbox (e.g. OSF, Dryad, ....). 

 

Thank you for the suggested repository. This is great! We now also uploaded the dataset on OSF as 

per your request and provided the link P. 20  

 

 

 

 

 

 



 
 



Reviewers' Comments: 

 

Reviewer #3: 

Remarks to the Author: 

The authors have addressed my comments and i would like to congratulate them for their work. 


