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S1: Measurement corrections and variance

Before using the plastic concentration measurements, they are corrected for vertical mixing

using the correction factor introduced by Kukulka et al. 1 :

N

Ntow

=
1

1− e−
dWb
A0

, (1)

where Ntow is the amount of plastics measured by the net tow, N is the corrected amount of

plastic particles, d is the submerged net depth, Wb is the rise velocity of the plastic particles,

and A0 is a parameter defining the near-surface turbulence. The value for d was not provided

for all references used here. Where possible, it was calculated by comparing measurements

in terms of volume with measurements in terms of area. Otherwise the most commonly

occurring values in the data-set were used, which is d = 0.1 m for nets with a height of 0.2

m, and d = 0.15 m for nets with a height larger than 0.2 m. The value for Wb was set to

0.0053 m/s, the median rise velocity of plastic particles found in Reisser et al. 2 . Finally, A0

is given by

A0 = 1.5u∗wκHs, (2)

where u∗w is estimated to be 0.0012 times the wind velocity at 10 meters (U10) as given

by Pugh 3 , with U10 as obtained from wave watch III data4; κ is the von Karman constant

with a value of 0.4; and Hs is the significant wave height. The significant wave height was

estimated from U10 by using the relation from Rossby and Montgomery 5 .

Here we use a tool from spatial statistics called the variogram, in order to assess the

variance γ of plastic measurements separated by a given spatial lag distance h. This can

be used to estimate the amount of subgrid scale variance which can not be captured by

the model. By assessing the variance of the plastic measurements below these scales, an

indication can be obtained of the maximum achievable accuracy. The variogram is calculated

only for samples which were taken within a day of each other, since this is the temporal

resolution of the Lagrangian model output. Since sample information is not available at every
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location, an empirical variogram is constructed, considering the variance of measurements z

separated by a certain distance h ± δ. The variance for the samples within this separation

distance is then calculated using:

γ(h± δ) = 1

2N(h± δ)
∑

(i,j)∈N(h±δ)

(zi − zj)2, (3)

where N(h ± δ) denotes the amount of samples in a given separation distance bin. The

variogram can be calculated for both the plastic abundance and mass. Results are shown

in Figure S1. The samples for γ(h± δ) are colored by the amount of data point pairs used

for the calculations in this figure. A Gaussian variogram was fitted through the points to

show the trends more clearly. Several important observations can be made. For both types

of measurements there seems to be a clear increase in the beginning, until about 20 to 40

kilometers. Afterwards this increasing trend seems to level off, although this is difficult to be

certain about since there is a lack of data points for larger lag distances h, which also shows

in the larger spread for γ(h ± δ). What is also important to notice, is that the variance

at a given lag distance is larger for the mass measurements compared to the abundance

measurements. This means that more variance is expected when comparing the model to

the measurements in terms of mass, and that it is more difficult to obtain information from

the individual mass measurements compared to the abundance measurements for the inverse

modelling process.

S2: Beaching time scale estimate

In order to get a feeling for possible parameter values of τbeach, a beaching analysis was done

for a set of drifters in the Mediterranean.6 A total of 1682 drifters were analysed, to see how

long these drifters in general spend time near the coast before ending up on the beach. The

mesh used for the currents has a spacing of 1/16◦, corresponding to roughly 6.9 km for the

Mediterranean. This distance was used to define whether a buoy is close to the coast. For
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Figure S1: Variograms constructed from the available plastic measurements

each buoy the time it spend near the coast was tracked: the coastal time was binned, and

for each interval the fraction was calculated of the buoys not having beached. A drifter was

assumed to have beached, when at its end-of-life one of the four cells surrounding the drifter

had a positive elevation. A 30 arc-second bathymetry dataset was used for this7. Out of all

buoys, 195 buoys were estimated to have beached at the end-of-life.

This analysis of drifters doesn’t have to reflect the behaviour of plastic particles near the

coast accurately. First of all, the particles have very different sizes, shapes, and properties.

Some of the drifters are drogued, and will therefore be less sensitive to e.g. wave action and

windage compared to floating plastic particles. Secondly, the beaching time scale τbeach will

implicitly have to take in account the recapturing of plastic particles by the water, i.e. it

should be interpreted more as a time scale at which plastic particles remain permanently

buried in the sand. The buoy trajectory dataset was designed to cut off when the buoy was

estimated to be beached; this means that the time scale calculated from this data set should

only account for one beaching event.

From the drifter buoy analysis, it followed that for each day spend near the coast, the

drifter buoys have a probability of beaching of 1.2%. This translates into a time scale τbeach

of roughly 76 days, when assuming this probability remains constant when spending time

near the coast. Since the drifter data set is sparse especially for longer coastal times, this

is only a very first order estimate. For the inverse modelling step of the floating plastics,
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the prior for τbeach was centred at 102 days which is close to the buoy estimate. The inverse

modelling was done on log10 of the values in order to span multiple orders of magnitude,

with the bounds on the prior (99.7th percentile) ranging from 1 (101 days) to 3 (103 days).
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Figure S2: Beaching time scale τbeach estimated from drifter buoy data

S3: Inverse modelling implementation

The most likely values for the parameters are estimated by solving a minimization problem.

The cost function can be minimized by linearising the forward model around an estimate

for the parameters m, and iteratively updating the parameters using e.g. a gradient descent

algorithm. The update steps were done by using a quasi-Newton method (see Tarantola 8):

mn+1 = mn − µn
(
GT
nC
−1
D Gn + C−1M

)−1
(
GT
nC
−1
D (dn − dobs) + C−1M (mn −mprior)

)
, (4)

where µn ≤ 1 defines the step-size of the update, and G is a matrix containing the partial

derivatives of the forward model with respect to the model parameters (i.e. the local lineari-

sation of the problem): (Gn)
i
α = (∂gi/∂mα))mn . This matrix was calculated using forward

finite differences.

After finding the most likely posterior estimate using the quasi-Newton method presented
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above, it is also possible to estimate the posterior covariance matrix C̃M , using:

C̃M ' CM −CMGT (GCMGT + CD)
−1GCM . (5)

A second method was used for the inverse modelling step to verify the results from

the least-squares solution. A Markov Chain Monte Carlo (MCMC) method was used to

explore the parameter space which best matches the measurements and the given prior

model parameters. The posterior of the model parameters is explored by using a random

walk, where steps in the direction of likely parameter values have a higher probability of

being accepted by making use of Metropolis-Hastings algorithm. This method does not rely

on linearisation of the problem and is able to handle non-Gaussian assumptions on model

parameters and measurement uncertainties. The MCMC method was implemented using

the PyMC3 package in python9. The same prior is used for the MCMC method as for the

least-squares approach. Results comparing the MCMC method to the least-squares approach

are presented in the next section, see Figure S3.

In Table S1 the different parameters tuned in the inverse modelling process are presented.

The lower and upper values for the prior were defined as 3 times the standard deviation.

An extra parameter not discussed in the text is the kernel density estimation bandwidth

(KDEbw). Lower and upper estimates for this parameters were set by hand, by seeing

whether the predicted field for the plastic concentrations was not overly noisy or overly

smoothed out. The parameter riverlow−high corresponds to the parameter representing the

riverine input from Lebreton et al. 10 in terms of the lower, mid, and upper estimate as

explained in the main text.

S4: Parameter estimation sensitivity study

Figure S3 presents the sensitivity study done for various tracer diffusivity values K, and

different time thresholds at which particles are deleted. As explained in the main text, three
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Table S1: Parameters optimized in this paper, possible values, and lower/upper bounds
used in the inverse modelling process. For parameters denoted by a power of 10, the inverse
modelling process was done on the exponent, in order to be able to cover a wide range of
scales. Values displayed using ± indicate one times the standard deviation.

Parameter Prior, lower
estimate

Prior, upper
estimate

notes

τbeach [days] 101 103 See drifter buoy analysis
τsink [weeks] 100.30 101.72 Corresponds to 2–52 weeks
rsink [days] 3 15
Psink,0 [-] 0.17 0.44

riverlow−high [-] -1 1 Lower to higher riverine in-
put estimate from Lebreton
et al. 10

Spop:riv [-] 10−1.3 101.3 Maximum contribution
each source: 95%

Sfis:riv [-] 10−1.3 101.3 See above
KDEbw [-] 0.05 0.2

different values for K were studied: K = 1 m2/s, K = 10 m2/s, and K = 100 m2/s, of which

K = 10 m2/s is likely the most appropriate value, given e.g. the relation used in Neumann

et al. 11 :

K = K0 · (l/l0)
4
3 , (6)

where K0 is set to 1 m2/s, l is the local grid resolution (1/16◦, or approximately 7 km in our

case), and l0 is set to 1 km.

Most differences are observed when selecting a high tracer diffusivity of K = 100 m2/s.

A higher diffusivity leads to less particles remaining close to the coastal zone in the model.

The beaching time scale remains relatively similar, which leads to a reduction in the sinking

time scale in order to keep the right mass balance in the basin. For all simulations all source

importance ratios S are relatively equal, except from Sfis:riv for K = 100 m2/s. There is

an increase in the Kernel Density Estimate bandwidth (KDEbw) when the tracer diffusivity

increases. Possibly this could mean that a lower tracer diffusivity leads to a more realistic

simulation, as results with a higher diffusivity are more smoothed out to reach a better

agreement with the measured plastic concentrations.
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Little differences are observed between the simulation where no particles are deleted, the

simulation where particles are removed after 300 days, and where particles are removed after

180 days, all at K = 10 m2/s. In order for the mass balance to hold, it was calculated

that after about 50 days, 99.9% of the mass input is gone from the surface water. Keeping

track of all particle trajectories indefinitely is therefore not necessary, and induces a lot of

computational costs. Instead, by deleting the particles after a certain amount of time, a

lot more particles can be released for less computational effort. This is important in an

inverse modelling study, as multiple model iterations are necessary to converge to the right

parameter estimate.

Results from the Markov Chain Monte Carlo (MCMC) analysis are consistent with the

results found using the least-squares approach. Since the parameter riverlow−high converged

consistently to the lower bound for the least-squares analysis, it was fixed to -1. For the rest

of the parameters, minimal differences are found for the most likely MCMC values compared

to the least-squares analysis for K = 10 m2/s and removal at 180 days. Values in order

of appearance in Figure S3 (left to right, top to bottom) for the MCMC and least-squares

analysis respectively are: 24 days (24 days), 80 days (81 days), 63 days (67 days), 0.38 (0.36),

2.2 (1.9), 0.2 (0.2), 0.32 (0.31).

A summary of the total input of plastics and where plastics end up, for different tracer

diffusivity values is presented in Table S2. As explained before, the higher tracer diffusivity

leads to less particles remaining close to the coast, and hence less particles ending up on

coastlines. Differences are quite minimal between K = 1 m2/s and K = 10 m2/s. The total

input of plastics is relatively similar for all three tracer diffusivity values, as there is not

much difference in the source importance ratios. Finally, the cost function value resulting

from the inverse modelling process is presented. Although the mismatch is slightly lower for

K = 1 m2/s, the difference is too little to prefer this tracer diffusivity value over the others

from this result alone.

Figure S4 presents the sensitivity study when adjusting the specified confidence interval
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Figure S3: Sensitivity study: days until deletion and K, and the MCMC analysis

Table S2: Sensitivity study tracer diffusivity, input and sinks presented for 2006–2016 in
terms of percentages and metric tonnes

Tracer diffusivity Beaching Sinking Total input Cost function value
K = 1 m2/s 56%, 14,300 tonnes 43%, 11,000 tonnes 25,500 tonnes 1253
K = 10 m2/s 54%, 13,800 tonnes 45%, 11,500 tonnes 25,600 tonnes 1255
K = 100 m2/s 33%, 9,400 tonnes 67%, 19,100 tonnes 28,400 tonnes 1255
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of the parameter bounds, and adjusting the specified variation of the measurements (all for

K = 10 m2/s, and deletion of particles after 180 days). The baseline simulation is presented,

where the parameter bounds specify the 3σ confidence interval, and the variation of the

measurements on a log10 scale is specified as γn = 0.1376 (measurements reported in terms

of abundance), and γm = 0.2201 (measurements reported in terms of mass).

When changing the parameter bounds to the 2σ confidence interval, this means that less

weight is given to deviations from the prior; when changing to the 4σ confidence interval

more weight is given to deviations from the prior. Two sets of measurement variation levels

were tested: one where γn = γm = 0.32, which comes from the reported coefficient of

variation for abundance measurements from de Haan et al. 12 , and γn = 0.32 and γm = 0.75

as calculated from data reported in de Haan et al. 12 for abundance and mass measurements

separately. These measurement variation levels are larger than the one calculated here using

the variogram method, which means that less weight is given to deviations of the model from

measurements, hence it will have a similar effect as putting more weight on deviations from

the prior (the C.I. = 4σ case). The main observed effect is that putting more weight to the

prior will cause the Kernel Density Estimate bandwidth to be smaller. The initial sinking

fraction Psink,0 gets higher for the C.I. = 2σ case as well. In turn, to keep the right mass

balance, the beaching time scale seems to increase. Almost no changes are observed in the

sinking time scale, and minimal variations are present for the source importance ratios and

the expected riverine input.

In the main text it was mentioned that there is likely not enough information in the data

to say something about the parameter rsink: its posterior is almost the same as the prior.

To verify this, we did the same analysis, but changed the prior of rsink to a much higher

value (16 weeks instead of 9 weeks). Results are presented in Figure S5. As can be seen

the posterior distribution of rsink is still almost exactly the same as the prior distribution,

further underlining our hypothesis there is no information in the data about this parameter.
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Figure S4: Sensitivity study: specified confidence interval for the prior, and coefficient of
variation specified for the measurements
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Figure S5: After changing the prior of rsink, the posterior of rsink is still almost exactly the
same as its prior after running the inverse modelling process

S5: Model-measurement scatter plots and mass correction

factor

Scatter plots showing agreement between the model and measurements (the baseline case:

K = 10 m2/s, deletion of particles after 180 days, γn = 0.1376, γm = 0.2201) are presented

in Figure S6, for abundance measurements (left) and mass measurements (right). As can be

seen, there is quite a lot of variability, and the correlation is not very high.

As discussed in the main text, variability is high due to several reasons. First of all,

there is natural subgrid-scale variability which can not be captured by the model. Secondly,

variance in the measurements is likely further increased due to the fact that different mea-

surement campaigns might have slightly different measurement methodologies. The expected

subgrid-scale variability was estimated in section S1 using the variogram method.

The maximum achievable correlation between the model and measurements is limited

due to the high subgrid-scale variability. This is illustrated using the red solid lines in
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Figure S6, which represent the model ± 2 times the standard deviation as estimated using

the variogram. In case of a perfect model and accurate variability estimates, 95% of the

data should lie between the red solid lines. In this case, this is 77.4% for the abundance

measurements and 78.4% mass measurements. There is still room for improvement of the

model, but even when 95% of the points would fall between the red lines, the maximum

achievable correlation remains limited.
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Figure S6: Model versus measurements: K = 10 m2/s, deletion at 180 days, γn = 0.1376,
γm = 0.2201

Even with high variability and low correlation, there is still information to be obtained

from the observational data. In order to illustrate this, we varied the value of one parameter,

τsink around its most likely posterior value (81 days) to observe what happens with the

correlation and the cost function. Results are shown in Figure S7. As can be seen, the cost

function value clearly attains its minimum at the most likely posterior value. The maximum

correlation values are not attained at exactly the same value for τsink, but the optimization

algorithm converges to a value where both are relatively high. We see however that when

moving away from the most likely posterior point, there is reduction in either the correlation

for the abundance concentrations or the mass concentrations.

What is also important to note, is that we are not only interested in the correlation,

but also the bias of the model with respect to the measurements. By keeping the bias at
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Figure S7: Effect of varying τsink around the most likely posterior value on the correlation
and cost function value

a minimum, we ensure that the mass balance in the basin is consistent with the measured

mass concentrations. In Figure S8 we illustrate this by choosing a too small value for τsink.

Not only do we see a decreased correlation which was also illustrated in Figure S7, we also

see that the model generally underpredicts the mass (most of the points now lie above the

1:1 line), leading to an incorrect mass balance.
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(a) τsink at the most likely posterior point

100 101 102 103 104

Modelled plastic density [g/km2]

10 1

100

101

102

103

104

105

M
ea

su
re

d 
pl

as
tic

 d
en

sit
y 

[g
/k

m
2 ]

Measured vs. modelled plastic densities, R: 0.215249 
 percentage within 2 : 67.5

Ruiz-Orejón et al., 2016
Galgani et al. 2011
Galgani et al. 2012
Gaj t et al. 2016
Cozar et al., 2015
Suaria et al., 2016
Ruiz-Orejón et al., 2018
de Haan et al., 2019
1:1
2x std from variogram

(b) At a too small τsink (12 days)

Figure S8: Moving away from the most likely posterior point not only impacts the correlation
between the model and measurements negatively, it also creates a bias in the mass balance

In future work, it is recommended to look for sets of measurement campaigns with a larger
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amount of data points, which are taken in a consistent manner. To illustrate this, we plotted

the same scatter plots for the measurement campaign by Cózar et al. 13 only, which is the

only dataset which spans both the western and the eastern Mediterranean basin. Although

this is only one sample study, we do see in this case an increased correlation, and almost

90% of the data points falling within the expected 2σ bounds.
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Figure S9: Model versus measurements: K = 10 m2/s, deletion at 180 days, γn = 0.1376,
γm = 0.2201 for measurements by Cózar et al. 13 only

Figure S6 also illustrates more clearly why there is an underestimation of the total floating

mass in the model compared to previous estimates based on measurements only by Cózar

et al. 13 . In the mass scatter plot, the model data points range from roughly 101 to 103.

The measurement data points have a higher range due to their high variability, ranging from

roughly 100 to 104. Since we are working on a log-log scale, the missing of the upper tails in

the model distribution has a relatively high influence on the total estimated mass. A mass

correction was applied, by introducing noise to the modelled plastic concentrations, where

the noise is equal to the subgrid-scale variance calculated using the variogram for the mass

measurements.
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S6: Which sinks are neglected and why?

We will illustrate why certain sinks are neglected in this work by considering a simple mass

balance model, where the floating mass inside the basin is modelled over time using

dm(t)

dt
= Source− Sink. (7)

We will consider two cases here: the a priori case, taking numbers from previous studies for

the unknowns, and an a posteriori case, where we plug in our own estimates for the sources

and sinks to see whether our assumptions are still valid, or whether they should be adjusted

in future studies.

a priori

As a priori knowledge, we can use the numbers from Cózar et al. 13 where the total amount

of floating plastic in the Mediterranean was estimated to be approximately 1000-3000 tonnes.

Furthermore, we can use data from previous modelling studies to get an estimate on how

much plastic is thought to enter the basin a priori : >100,000 tonnes per year.14,15 Since

the estimated input is much larger than the amount which is floating, we assume we are

at least in a quasi-equilibrium, and that the estimated floating mass is approximately the

steady-state value. We assume that the magnitude of the sink is dependent on the amount of

floating mass: each unit of plastic mass has a certain constant probability of being removed

from the surface water per unit time, defined by the sinking rate psink, from which we write:

dm(t)

dt
= Source− psink ·m(t) = 0. (8)

The value of psink can be related to a time scale τ by assuming a constant probability over

time:

psink = 1− e−1/τ . (9)
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Solving (8) for the a priori estimated input and estimated floating mass, yields a sinking

rate psink of about 0.1 to 0.3 day−1, or a time scale τ of about 3 to 10 days.

One question is whether we can neglect fragmentation in our model. In the main text it

was already addressed that in Song et al. 16 weathering experiments were done, from which we

can get some feeling for possible time scales. We take the volume loss of 10% for polyethylene

samples subjected to 12 months of UV radiation and 2 months of mechanical abrasion, which

was estimated to correspond roughly to 4 years of weathering in the environment. We can

again assume this volume loss is constant over time, defined by the fragmentation rate pfrag.

(or time scale τfrag.). This results in a pfrag. of about 7·10−5 day−1. We can separate the

fragmentation rate from the other sinks, which will be denoted by psink,other and τsink,other:

dm(t)

dt
= Source− psink,other ·m(t)− pfrag. ·m(t) = 0. (10)

From this it is clear that psink,other and pfrag. should add up to psink in (8) in order to have

a mass balance, meaning that fragmentation has no significant effect in terms of mass.

We can also analyse whether fragmentation could act as a significant source in terms of

abundance, due to the production of secondary plastics. In Song et al. 16 about 20 fragments

per parent particle were observed for the same scenario as described above (roughly 4 years

of weathering in the environment). We write a similar balance in terms of abundance:

dN(t)

dt
= Source− psink,other ·N(t) + pfrag. ·N(t) = 0. (11)

We assume that the sinks have a similar influence in terms of mass as in terms of abundance:

every single unit of mass, and every single plastic particle, has the same rate of being removed

from the system (i.e. psink is still about 0.1 to 0.3 day−1). In this case, 20 fragments over 4

years would translate to a pfrag. of about 2·10−3 day−1. This is significantly more than the

influence in terms of mass, but still two orders of magnitude lower than the magnitude of

psink,other that we expect.
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Finally, UV radiation might convert plastic polymers into carbon dioxide and dissolved

organic carbon by itself: in Ward et al. 17 the average lifetime until partial oxidation of

polystyrene was estimated to range between 10 to 50 years. Assuming this process is constant

over time, would lead to a UV degradation rate pUV of about 3.8·10−5 to 1.9·10−4 day−1.

This is about three orders of magnitude lower than the psink required for the mass balance,

and therefore neglected.

a posteriori

We can do the same analysis with the values from the mass balance obtained from the inverse

modelling study. We estimated a total input of about 2,100–3,400 tonnes, and a total floating

mass of 170–420 tonnes. Using these numbers, we get a required sink magnitude ranging

from psink = 1.3 · 10−2 to psink = 5.5 · 10−2 day−1. Using the same reasoning as above, this

would mean that in terms of mass, the fragmentation rate is still expected to be significantly

lower (7·10−5 day−1, so at least two orders of magnitude) than the sinks required for the mass

balance. In terms of time scales, we have τsink ranging from approximately 17 to 72 days.

Removing the influence of fragmentation from the total sink would result in τsink increasing

by at most 0.5%. On a similar note, considering partial oxidation of polymers (which was

calculated to be 1.9·10−4 day−1 for the decadal time scale reported in Ward et al. 17 ), could

lead to an increase in τsink of about 1.4%. Although these effects are much more important

now than for the a priori case, it will not change the inverse modelling results dramatically.

In terms of abundance, fragmentation starts to play a bigger role, with a rate which is

approximately five times lower than the lowest estimated sink magnitude (pfrag. = 2 · 10−3

versus psink = 1.3 · 10−2).

For a first order estimate we think that leaving out fragmentation is reasonable. Its

influence was estimated to be mainly in terms of an increase in abundance. However, frag-

mentation will act as a net source (in terms of abundance) of secondary plastics only at the

beginning of the fragmentation process. After a while a lot of the fragments will become too
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small to measure (i.e. below the neuston net mesh size), leading to a net loss of particles.

What is also seen in previous studies,14,18 is that beaching patterns in generally correspond

quite well with the pattern of the source itself (i.e. a majority of plastics will not travel far

from its original source). This means it is likely the pattern of secondary plastic sources is

quite similar to the primary sources. This likely diminishes the influence of fragmentation

on the patterns of plastic concentrations in the water as modelled here. The combined effect

of fragmentation as a sink for mass and a source in terms of abundance is very interesting,

and is recommended to be taken in account in future studies, also because it is clear from

the a posteriori calculations it is more important than one would think from the numbers

given for the a priori case.

We can also turn the line of reasoning around: perhaps the discrepancy between our esti-

mated input and the one from literature is due to neglecting fragmentation and degradation.

We can take the estimated value for pfrag. (7·10−5 day−1) and the most conservative (largest)

value for pUV (1.9·10−4 day−1), keep psink,other at our a posteriori range (1.3 ·10−2 to 5.5 ·10−2

day−1), and estimate the source strength which would result in a steady-state floating mass

of 170–420 tonnes. In the extreme case of taking the smallest psink,other (1.3 · 10−2) and the

maximum floating mass (420 tonnes) we would get a required input in the system of 8,500

tonnes. This is much higher than our estimated input (2,100 - 3,400), but one has to keep in

mind that here we combined our very highest floating mass (420 tonnes), with the psink,other

corresponding to the very lowest input mass (2,100). These extremes correspond to the

upper and lower tail of the 95% confidence interval: the probability of both occuring would

be less than 0.05%. Still this increased number does not explain the difference with respect

to previous studies,14 where the input was estimated to be >100,000 tonnes per year.
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