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1. SV callset quality assessment 

We performed a host of analyses to assess callset quality in terms of sensitivity, accuracy and genotyping 

error. These include: (i) an analysis of validation rate using deep coverage PacBio sequencing of nine samples 

included in our study, (ii) an analysis of SV detection sensitivity using a comprehensive long-read SV callset 

from the Human Genome Structural Variation Consortium (HGSVC)1, and (iii) an analysis of Mendelian 

inheritance among families included in our study. Where possible, we also compared our callset to the two 

most comprehensive short-read callsets published thus far: the 1000 Genomes Project (1KG) Phase3 callset 

based on 2504 individuals and 9 algorithms2, and the HGSVC short-read callset based on 9 individuals and 13 

algorithms1.  

 Taken together, the results described below demonstrate that the SV callsets reported here have (i) 

high variant detection accuracy; (ii) levels of sensitivity that are low compared to the HGSVC long-read SV 

map but comparable to best-in-class short-read maps from 1KG and HGSVC; and (iii) excellent genotyping 

accuracy that is equivalent if not superior to prior large-scale short-read WGS studies from 1KG2 and GTEx3. 

Notably, the sensitivity and accuracy of our callset is weakest at small and repetitive variants that are least 

likely to be functional, and strongest at the subset of variants that are most important for our findings and 

conclusions: variants that are rare, large, or predicted to be functionally relevant based on variant impact 

scores.  

 

1.1. SV validation using long-read whole-genome sequencing data 

We assessed the accuracy of our SV callset by measuring the validation rate of SV calls in nine samples for 

which deep coverage (>52-85X) long-read Pacific Biosciences (PacBio) data was available from an unrelated 

project at our genome center (Supplementary Table 2). We followed the same strategy used in our prior 

work4,5: we used split-read mappings from long-reads to validate SV calls made from short-reads (see 

Methods). We judged a short-read SV call to be validated if the breakpoint coordinates and orientations were 

confirmed by split-read mappings from multiple long-reads. We assessed the validation rate according to SV 



type, frequency, and size. The overall validation rate in the nine genomes with long-read data is 84% 

(Supplementary Table 3a). This compares favorably to the 74% validation rate obtained for the HGSVC short-

read callset (Supplementary Table 3b), which includes a total of three trios, the offspring of which are 

included in our long-read dataset. Importantly, in our callset the validation rate is substantially higher for the 

specific variant classes that are most crucial for our findings and conclusions: deletions (87%), rare SV (90%) 

and singleton SV (95%). Moreover, whereas higher-validating rare and singleton variants comprise a small 

minority of SVs in the nine genomes assessed by long-read WGS (1.9% and 0.33% of sites, respectively), they 

comprise the vast majority of SVs in the larger B38 callset including all samples (35% and 58% of sites). Based 

on the validation rate of different SV frequency classes and their relative abundance in the full dataset, the B38 

dataset has an SV false discovery rate (FDR) of 7.0%. We believe that this is likely to be an overestimate of 

FDR considering that true variants in repetitive regions can be missed by long-read alignment; for example, 3 

of 6 singleton variants failing automated long-read validation (of 133 in total) appear to be true variants based 

on manual review of raw alignment signals (see Methods).  

 

1.2. SV inheritance patterns in families 

A broad measure of callset quality is the extent to which SV calls and genotypes among related samples are 

consistent with the laws of Mendelian inheritance. We first measured Mendelian error (ME) rate within the 

parent-offspring trios that were included in the final public versions of the B37 (n=452 trios) and B38 (n=36 

trios) callsets. For most variant types in both callsets, the ME rate was acceptably low (≤5%) using our default 

variant filtering approach6 (see Methods; Extended Data Figs. 2c and 3g). However, the ME rate was higher 

for tandem duplications (DUP), inversions (INV) and unclassified (BND) variants in the B38 callset. This slightly 

elevated ME rate is in our view tolerable for DUPs since they are often multi-allelic and difficult to genotype, 

and because all DUP variants were detected by at least two independent sources of evidence including 

breakpoint spanning alignments (read-pair and/or split-read) plus read-depth evidence, making false positives 

unlikely. For the INV and BND types, ME rate correlates well with the Mean Sample Quality (MSQ) field used 

to judge site-level confidence (Extended Data Fig. 3g); we therefore redefined "High Confidence" variant calls 

by additionally filtering on the MSQ field at a threshold that yielded ME rate ≤5%.  

 We next examined inheritance patterns within a set of large 3-generation CEPH pedigrees comprising 

576 individuals and 142 founders, which have 4-14 grandchildren in the F2 generation (median=8) (Extended 

Data Fig. 6a) and include a total of 409 trios. We calculated the transmission rate for different SV frequency 

classes, and found that all classes exhibit rates that are close to the expected 50% (Extended Data Fig. 6b). 

We examined the ME rate by frequency class and found acceptably low ME rates for all classes (Extended 

Data Fig. 6c). Notably, of the 3,359 variants that were private to a single family and were observed in the 329 

samples from the third generation (F2), we observed only 82 Mendelian errors (Extended Data Fig. 6d), and 

100% of these were caused by predicted de novo mutations. These could potentially be caused by three 

sources: (1) true de novo mutations, (2) false positive SV calls, (3) an ultra-rare inherited SV with a genotyping 

error in the parental carrier. To distinguish these, we examined the transmission of mutation predictions in the 

F1 generation, and found that 18 of 21 (86%) predicted de novo SVs from the F1 were transmitted to at least 



one individual in the F2. This demonstrates that most de novo mutation calls – and, by extension, most 

singleton variants in the larger set of unrelated samples – are bona fide germline variants rather than false 

positives. The third explanation, genotyping error, is unlikely considering the size of the families examined 

here, where a heterozygote parental variant will typically be transmitted to more than one progeny, and have 

more opportunities to be detected as an inherited rather than spontaneous variant. Consistent with this, of the 

775 family private variants carried by at least two siblings in the F2 generation, only 1.7% were not carried by a 

single parent from the P0 generation, suggesting that the genotype "undercall" rate is low (i.e., <1.7%). 

 

1.3. SV detection sensitivity based on comparison to long-read SV maps 

A key challenge for measuring sensitivity is the availability of a high quality "truthset" in which the entire set of 

true variants in some individual(s) are known. The most comprehensive SV map published thus far is from the 

recent HGSVC study1, which used deep long-read sequencing and local reference-guided assembly to report 

72,297 autosomal variant calls calls among 3 samples. These same 3 samples were included in our short-read 

callset, enabling a direct comparison. A challenge is that there are false positives in the HGSVC callset. To 

reduce the effects of false positives, we derived a higher-confidence set of variant calls by imposing the 

additional requirement that HGSVC-derived calls must be validated by split-read mapping analysis of the 

WashU PacBio data, which was generated and analyzed independently from the HGSVC study (see 

Methods). Of the 72,297 variant calls reported by the HGSVC (mean 24,099 per person), we were able to 

validate 66,239 (91.6%) using this strategy. These calls comprise an initial truthset. A caveat is that the 

majority of SV calls from HGSVC correspond to short tandem repeat (STR) variants caused by expansion or 

contraction of smaller repeat units, which are more conventionally referred to in the literature as microsatellites, 

minisatellites or variable number tandem repeats (VNTRs). These STR variants are more repetitive, more 

difficult to detect, and functionally less potent than SVs reported by microarray or short-read WGS studies, 

which typically affect ≥50bp of relatively unique non-STR sequence. Indeed, sensitive detection of STR 

variants from short-read WGS data requires highly specialized algorithms (e.g., see 7-11). To distinguish these 

abundant STR variants from other SVs, we derived a second truthset that includes the 21,566 SV calls at 

which ≥50% of the structurally variable interval is not covered by annotated STRs. We report results using both 

truthsets (Supplementary Tables 4a and 4b) but focus the discussion below on the latter more restricted set 

which is more relevant to the goals and methods of our study.  

 Based on this truthset, our callset achieves an overall sensitivity of 49%. This is inferior to the most 

comprehensive short-read callset generated to date – HGSVC – which achieves a sensitivity of 63%. It is not 

surprising that our callset is less sensitive than HGSVC considering that HGSVC used a compendium 

approach involving 13 variant callers (one of which is the same used for our study, LUMPY), which improves 

sensitivity but limits scalability for large datasets, and also incurs a greater burden of false positives as 

apparent by the lower overall validation rate of HGSVC calls in section 1.1 above (74% vs. 84%). However, the 

difference in sensitivity between our study and HGSVC is due primarily to small and repetitive SVs such as Alu 

insertions, and the sensitivity of our callset improves when restricting to the subset of variant calls that are 

most crucial for our results. For example, if we limit the truthset to variants that are most likely to be functional 



by restricting to >1 kb in size (n=3728), our study achieves superior sensitivity to HGSVC (63% vs. 53%). 

Similarly, if we restrict the truthset to SVs in the top 10% of predicted impact scores, which are more likely to 

be functionally relevant, the two studies achieve similar sensitivity (82% vs. 86%). Our callset also achieves 

higher overall sensitivity than the 1KG callset (52% vs. 36%) to detect in at least one parent variants in the two 

individuals subjected to long-read WGSs (1KG did not analyze the children) (Supplementary Tables 4c and 

4d), which is notable considering that the 1KG callset has served as the gold standard SV reference resource 

for several years. 

 

1.4. Additional evidence supporting SV callset quality 

A number of additional lines of evidence support the quality of our SV callsets. First, the number and types of 

variants that we report are roughly consistent across samples, cohorts and sequencing center, and with 

previous studies that used similar methods, including 1KG2 and GTEx3 (Extended Data Figs. 2 and 3). 

Second, the distribution of linkage disequilibrium between an SV and it's most tightly linked SNV (Extended 

Data Fig. 2e) is consistent with our callset from the GTEx study3, which used very similar methods and 

characterized the SV calls and genotypes extensively in the context of eQTL mapping, including a comparison 

to 1KG data. Third, there is a broadly consistent number of ultra-rare singleton variants per sample, and the 

number of singleton variants is lowest in Finnish samples and highest in African American samples (controlling 

for sample size), as expected (Extended Data Fig 3d). Fourth, principal components analysis using SV calls 

reveals population structure that is consistent with self reported ancestry (Extended Data Fig. 4). Fifth, the site 

frequency distribution of SVs is broadly similar to that of SNPs (Fig. 1e and Extended Data Fig. 2d). Sixth, the 

SV size distribution shows increased mean length with decreased frequency, which is expected considering 

the strength of selection against large variants. Seventh, assessment of these tools in a recent publication 

demonstrated that they achieve expected variant detection performance on 1KG project samples, as compared 

to the 1KG project callset6. Eighth, the dosage sensitivity analyses reported in Fig. 4 are consistent with 

independent measures of functional constraint including pLI and dosage sensitivity scores from ExAC12, 

haploinsufficiency scores from DECIPHER13, evolutionary conservation scores from PHASTCONS14, and non-

coding impact prediction scores from LINSIGHT15.  

 Finally, comparison of SV genotypes at variants discovered by both our study and 1KG shows that the 

two datasets are broadly consistent, with a genotype concordance of 91% (kappa=0.852) across 2,643 

variants and 13,201 observations, with most discordant genotypes occurring at mobile element insertions 

(MEIs) (Extended Data Fig. 7c and 7d). These discordant genotype observations are more likely to be 

caused by errors in 1KG than our dataset for two reasons: (i) MEIs in our callset are well-tagged by 

neighboring SNVs based on the distribution of max R2 values plotted in Extended Data Fig. 2e, which should 

not be possible with a high genotyping error rate; and (ii) at discordant sites we observe a strong correlation in 

our dataset between SV genotypes determined by breakpoint-spanning reads and independently derived copy 

number estimates based on read-depth information, and this correlation is much less strong when using 

genotypes from the 1KG dataset (Extended Data  Fig. 7e).  
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3. Supplementary Tables 

 

See accompanying Supplementary Table files provided in excel format 

 

Supplementary Table 1. Description of which callset and sample subsets were used for each of the major 

analyses in the study. 

 



Supplementary Table 2. Description of PacBio long-read datasets used for SV validation analyses. 

Sequencing data can be found in SRA using the accessions shown at bottom.  

 

Supplementary Table 3. SV validation rate analysis using split-read mapping with deep coverage (>60x) 

PacBio long-read WGS data. (a) validation rate for our CCDG B38 callset ("ccdg") and the HGSVC short-read 

callset27 ("hgsvc") for 3 genomes analyzed in both studies. Various subsets of variants are shown according to 

the value in the "Group" column, such as SV length ("len"), SV type, and frequency class. The frequency 

classes are as follows: singletons SVs are present in 1 family; "rare" SVs are present at <1% frequency; "low" 

are low-frequency SVs at 1-5% frequency; common SV are >5% frequency. Note that allele frequencies were 

not available for SVs reported by HGSVC since that study analyzed only 9 samples, and we therefore defined 

rare SVs as those observed in 1 of the 6 trio founders and <1% of samples from the 1KG Phase3 callset. The 

"quality bin" column refers to whether the SVs are classified as high confidence ("PASS") or low-confidence 

("LOW") (see Methods).  

 

Supplementary Table 4. SV detection sensitivity analysis based on long-read SV calls from the Human 

Genome Structural Variation Consortium (HGSVC)27. (a) Sensitivity for non-STR structural variants, where 

STRs were defined as SV calls at which >50% of the SV interval and/or breakpoint sequences correspond to 

annotated STR sequences in the reference genome. Sensitivity is shown for short-read calls from our study 

("ccdg") and the HGSVC study ("hgsvc") by SV length ("len"), SV impact prediction score percentile ("impact") 

and SV type ("type"), as indicated by the "comparison" and "group" columns at left. The "Total" column refers 

to the total number of observations accounting for each variant reported by the HGSVC long-read callset in 

each of the three genomes in the truthset. Note that SV types used here correspond directly to the SV types 

reported by the HGSVC for long-read calls, where the "INS" class includes both MEI and DUP variants (see 

Methods). (b) Sensitivity at all SVs, including STRs. (c) Sensitivity comparison to 1KG4 at non-STR SVs using 

the two sets of parents of the samples used in parts (a) and (b), under the logic that variants in the truthset 

derived from children should also be present in one of their parents. Here, sensitivity measures the fraction of 

variants from the offspring that were detected in either of the two parents. This approach was necessary to 

enable a comparison to 1KG because none of the offspring and only two sets of parents were included in the 

1KG Phase3 callset. (d) Sensitivity analysis as in part (c), including STRs.  

 

Supplementary Table 5. Number of variants represented in Fig 2d. (a)  Number of rare (<1% MAF) gene-

altering variants in each variant subclass. (b)  Number of gene-altering SV in each variant subclass, excluding 

genes with pLI<0.1. 

 

Supplementary Table 6.  Number of variants for each category in Fig. 3a and 3b.  For SNV and indel and for 

each of the functional annotations, the number of variants above each impact score quantile are shown. 

 

Supplementary Table 7.  Data Availability.  (a) dbGaP accession identifiers for CRAM files and their locations 

on the AnVIL. (b) dbGap accessions identifiers for joint callsets. 

 

 

4. Supplementary Files 

 



Supplementary File 1.  Site frequency map for the B38 shareable callset in vcf and bedpe format 

(https://github.com/hall-lab/sv_paper_042020/blob/master/Supplementary_File_1.zip). 
 

Supplementary File 2.  Site frequency map for the B37 shareable callset in vcf and bedpe format 

(https://github.com/hall-lab/sv_paper_042020/blob/master/Supplementary_File_2.zip). 

 

Supplementary File 3.  HGSVC SV calls used in sensitivity analyses.  HGSVC assembly-only vcfs annotated 

with status of validation by >=2 PacBio long reads (see Methods; https://github.com/hall-
lab/sv_paper_042020/blob/master/Supplementary_File_3.zip). 
 

Supplementary File 4.  DEL and DUP sensitivity scores for each gene based on the observed frequency of 

CNV in the combined dataset of 17,795 samples (https://github.com/hall-

lab/sv_paper_042020/blob/master/Supplementary_File_4.zip). 
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