Supporting Information

Harmaline Analogs as Substrate-Selective Cyclooxygenase-2 Inhibitors

Md. Jashim Uddin^{†*}, Shu Xu[†], Brenda C. Crews[†], Ansari M. Aleem[†], Kebreab Ghebreselasie[†], Surajit Banerjee^{*||}, and Lawrence J. Marnett^{†*}

[†]A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Department of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA

^{*}Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA

Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, IL 60439, USA

*Corresponding Authors, M. J. U. at email: <u>Jashim.uddin@vanderbilt.edu</u>, or phone: 615-484-8674, and L.J.M. at email: larry.marnett@vanderbilt.edu

List of Contents

1. Chemical synthe	esis and spectroscopic characterization	pg#2
2. LC-MS/MS Assa	ay	pg#6
3. X-ray data		pg#7

1. Chemical synthesis, spectroscopic, and chromatographic characterization

6-Methoxy-1-methyl-4,9-dihydro-3*H***-pyrido[3,4-***b***]indole (1). To a stirred solution of 2-(5-methoxy-1***H***-indol-3-yl)ethan-1-amine (1.9 g, 10 mmol) in CH₂Cl₂ (100 mL) was added triethylamine (1 g, 10 mmol) followed by acetyl chloride (0.7 g, 10 mmol) at 0 °C. After stirring 5 h at room temperature, toluene (100 mL) followed by POCl₃ (19.68 g, 129 mmol, 12 mL) were added dropwise, and the resultant reaction mixture was refluxed for 7 h. The reaction mixture was cooled to room temperature, and the pH was adjusted to 9 by adding a saturated aqueous Na₂CO₃ solution. The product was extracted with CH₂Cl₂ (3x50 mL). After evaporation of the organic layer, the gummy mass was purified by silica gel column chromatography using CHCl₃:MeOH:NH₄OH (35:7:1) to give 1 g of pure 6-methoxy-1methyl-4,9-dihydro-3***H***-pyrido[3,4-***b***]indole (1) in 50% yield. ¹H NMR (500 MHz, DMSO-***d***₆) δ 1.40 (t,** *J* **= 7.5 Hz, 2H), 1.90 (s, 3H), 2.32 (t,** *J* **= 7.5 Hz, 2H), 3.83 (s, 3H), 6.92 (dd,** *J* **= 9.1, 2.9 Hz, 1H), 7.11 (d,** *J* **= 2.9 Hz, 1H), 7.53 (d,** *J* **= 9.1 Hz, 1H), 11.63 (br s, 1H). Mass (ESI) (M+H)⁺ calcd for 215.11; found 215.21. HRMS** *m/z* **calcd for [C₁₃H₁₄N₂O + H]⁺ 215.1125; found, 215.1156. HPLC purity 99.9%.**

7-Methoxy-1-methyl-4,9-dihydro-3*H***-pyrido[3,4-***b***]indole (2). To a stirred solution of 2-(6-methoxy-1***H***-indol-3-yl)ethan-1-amine (1.9 g, 10 mmol) in CH_2CI_2 (100 mL) was added triethylamine (1 g, 10 mmol) followed by acetyl chloride (0.7 g, 10 mmol) at 0 °C. After stirring 5 h at room temperature, toluene (100 mL) followed by POCI₃ (19.68 g, 129 mmol, 12 mL) were added dropwise, and the resultant reaction mixture was refluxed for 7 h. The reaction mixture was cooled to room temperature, and the pH was adjusted to 9 by adding a saturated aqueous Na₂CO₃ solution. The product was extracted with CH_2CI_2 (3x50 mL). After evaporation of the organic layer, the gummy mass was purified by silica gel column chromatography using CHCI_3:MeOH:NH₄OH (35:7:1) to give 1.12 g of pure 7-methoxy-1-** methyl-4,9-dihydro-3*H*-pyrido[3,4-*b*]indole (2) in 56% yield. ¹H NMR (500 MHz, DMSO d_6) δ 1.39 (t, J = 7.5 Hz, 2H), 1.92 (s, 3H), 2.33 (t, J = 7.5 Hz, 2H), 3.86 (s, 3H), 6.90-6.95 (m, 2H), 7.53 (d, J = 9.2 Hz, 1H), 11.63 (br s, 1H). HRMS *m*/*z* calcd for [C₁₃H₁₄N₂O + H]⁺ 215.1125; found, 215.1163. HPLC purity 99.9%.

9-(4-Chlorobenzyl)-6-methoxy-1-methyl-4,9-dihydro-3*H***-pyrido**[**3,4-***b*]**indole (3).** To a cold (0 °C) stirred slurry of NaH (0.3 g, 12.5 mmol) in DMF (50 mL) was added 6-methoxy-1-methyl-4,9-dihydro-3*H*-pyrido[**3**,4-*b*]**indole** (1.07 g, 5 mmol). After stirring for 1 h at 0 °C, 1-(bromomethyl)-4-chlorobenzene (1 g, 5 mmol) was added, and the mixture was stirred 1 h at room temperature. The reaction mixture was then poured into a crushed ice/water bath (100 g) and acidified with 10% aqueous HCl (pH 4). The resultant solid was filtered, washed with cold water, and dried under vacuum. The crude product was purified using silica gel column chromatography (35 : 7 : 1, CHCl₃ : MeOH : NH₄OH) to give 1 g pure 9-(4-chlorobenzyl)-6-methoxy-1-methyl-4,9-dihydro-3*H*-pyrido[**3**,4-*b*]indole **(3)** in 72% yield. ¹H NMR (500 MHz, DMSO-*d*₆) δ 2.35 (s, 3H), 2.73 (t, *J* = 7.5 Hz, 2H) 3.75 (t, *J* = 7.5 Hz, 2H), 3.83 (s, 3H), 5.81 (s, 2H), 6.72 (dd, *J* = 9.1, 2.9 Hz, 1H), 7.10 (d, *J* = 8.5 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 7.53 (d, *J* = 2.9 Hz, 1H), 7.95 (d, *J* = 9.1 Hz, 1H). HRMS *m/z* calcd for [C₂₀H₁₉ClN₂O + H]⁺ 339.1247; found, 339.1239. HPLC purity 99.9%.

9-(4-Chlorobenzyl)-7-methoxy-1-methyl-4,9-dihydro-3*H***-pyrido[3,4-***b***]indole (4). To a cold (0 °C) stirred slurry of NaH (0.6 g, 25 mmol) in DMF (100 mL) was added 7-methoxy-1-methyl-4,9-dihydro-3***H***-pyrido[3,4-***b***]indole (2.14 g, 10 mmol). After stirring for 1 h at 0 °C, 1-(bromomethyl)-4-chlorobenzene (2.05 g, 10 mmol) was added, and the mixture was stirred 1 h at room temperature. The reaction mixture was then poured into a crushed ice/water bath (100 g) and acidified with 10% aqueous HCI (pH 4). The resultant solid was filtered, washed with cold water, and dried under vacuum. The crude product was purified using silica gel column chromatography (35 : 7 : 1, CHCl₃ : MeOH : NH₄OH) to give 2.1 g**

pure 9-(4-chlorobenzyl)-7-methoxy-1-methyl-4,9-dihydro-3*H*-pyrido[3,4-*b*]indole (4) in 64% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 1.36 (t, *J* = 7.5 Hz, 2H), 2.22 (t, *J* = 7.5 Hz, 2H), 3.80 (s, 3H), 6.93 (dd, *J* = 9.1, 2.9 Hz, 1H), 7.12 (d, *J* = 2.9 Hz, 1H), 7.34 (d, *J* = 9.1 Hz, 1H). HRMS *m/z* calcd for [C₂₀H₁₉ClN₂O + H]⁺ 339.1247; found, 339.1254. HPLC purity 99.9%.

6-Methoxy-4,9-dihydro-3H-pyrido[3,4-b]indole-1-carboxylic acid (5). To a stirred solution of 2-(5-methoxy-1H-indol-3-yl)ethan-1-amine (1.9 g, 10 mmol) in CH₂Cl₂ (100 mL) was added triethylamine (1 g, 10 mmol) followed by t-butyl 2-chloro-2-oxoacetate (1.65 g, 10 mmol) at 0 °C. After stirring 5 h at room temperature, toluene (100 mL) followed by POCl₃ (19.68 g, 129 mmol, 12 mL) were added dropwise, and the resultant reaction mixture was refluxed for 7 h. The reaction mixture was cooled to room temperature, and the pH was adjusted to 9 by adding a saturated aqueous Na_2CO_3 solution. The product was extracted with CH₂Cl₂ (3x50 mL). The combined organic layers were evaporated to dryness to give *tert*-butyl 6-methoxy-4,9-dihydro-3*H*-pyrido[3,4-*b*]indole-1-carboxylate as a gummy mass, to which 2.2.2-trifluoroacetic acid (5 mL) was added. After the reaction mixture was stirred for 1 h at room temperature, it was evaporated to dryness, and the crude product was purified using silica gel column chromatography (35 : 7 : 1, CHCl₃ : MeOH : NH₄OH) to give 2.2 g of pure 6-methoxy-4,9-dihydro-3*H*-pyrido[3,4-*b*]indole-1carboxylic acid (5) in 90% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 3.78 (s, 3H), 6.59 (dd, J = 9.2, 2.4 Hz, 1H), 7.42 (d, J = 2.4 Hz, 1H), 7.65 (d, J = 8.6 Hz, 2H), 7.80 (d, J = 8.6 Hz, 2H), 8.45 (d, J = 9.2 Hz, 1H), 11.53 (br s, 1H), 12.63 (s, 1H). HRMS m/z calcd for [C₁₃H₁₂N₂O₃ - H]⁻ 243.0874; found, 243.0869. HPLC purity 99.9%.

9-(4-Chlorobenzyl)-6-methoxy-4,9-dihydro-3*H***-pyrido[3,4-***b***]indole-1-carboxylic acid (6). To a cold (0 °C) stirred slurry of NaH (0.6 g, 25 mmol) in DMF (100 mL) was added 6-** methoxy-4,9-dihydro-3*H*-pyrido[3,4-*b*]indole-1-carboxylic acid (2.44 g, 10 mmol). After stirring for 1 h at 0 °C, 1-(bromomethyl)-4-chlorobenzene (2 g, 10 mmol) was added, and the mixture was stirred 1 h at room temperature. The reaction mixture was then poured into a crushed ice/water bath (100 g) and acidified with 10% aqueous HCl (pH 4). The resultant solid was filtered, washed with cold water, and dried under vacuum. The crude product was purified using silica gel column chromatography (35 : 7 : 1, CHCl₃ : MeOH : NH₄OH) to give 2.3 g pure 9-(4-chlorobenzyl)-6-methoxy-4,9-dihydro-3*H*-pyrido[3,4-*b*]indole-1-carboxylic acid (**6**) in 63% yield. ¹H NMR (500 MHz, DMSO-*d*₆) δ 1.43 (t, *J* = 7.5 Hz, 2H) 2.24 (t, *J* = 7.5 Hz, 2H), 3.85 (s, 3H), 5.84 (s, 2H), 6.71 (dd, *J* = 9.1, 2.9 Hz, 1H), 7.11 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 7.54 (d, *J* = 2.9 Hz, 1H), 7.85 (d, *J* = 9.1 Hz, 1H), 12.55 (s, 1H). HRMS *m*/z calcd for [C₂₀H₁₇ClN₂O₃ - H]⁻ 367.0935; found, 367.0941. HPLC purity 99.9%.

2. LC-MS/MS Assay

We evaluated the substrate-selective COX-2 inhibitory activity of compound **3** in presence of both aa and 2-AG. The assay was performed using a reaction mixture containing 15 nM purified murine COX-2, 30 nM heme, 10 μ M AA and 2-AG, 1 μ M 5-phenyl-4-pentenyl-1-hydroperoxide (PPHP), and compound **3** or vehicle (DMSO at a final concentration of 5%) in a buffer of 50 mm tris-HCl, pH 8.0, 0.5 mM phenol. following addition of compound **3**, the mixture was incubated for 15-min, and then the reaction was initiated by the addition of both AA and 2-AG together. After 10s, the reaction was quenched by addition of ethyl acetate containing internal standards (PGE₂-d₄ and PGE₂g-d₅) at 0.3 μ m. analytes of interest were detected by selected reaction monitoring MS/MS using the following transitions: PGE₂/D₂ *m*/*z* 370 \rightarrow 317; PGE₂-d₄ *m*/*z* 374 \rightarrow 321; PGE₂/d₂-G *m*/*z* 444 \rightarrow 391; PGE₂-G-d₅ *m*/*z* 449 \rightarrow 396. Analyte peak areas were normalized to those of their deuterated internal standards for the quantification of product formation and inhibition.

		COX-2•compound 3
Data Collection		PDB: 6V3R
	Wavelength (Å)	0.9792
	Resolution range (Å)	102.4 - 2.66 (2.76 - 2.66)
	Space group	C2
	Unit cell a, b, c (Å)	217.2, 124.4, 136.5
	α, β, γ (°)	90, 123.8, 90
	Total reflections	262,849 (22,097)
	Unique reflections	84,726 (7,446)
	Multiplicity	3.1 (3.0)
	Completeness (%)	98.0 (85.9)
	Mean //σ (/)	8.43 (1.05)
	Wilson B-factor (Å ²)	43.03
	R-merge	0.1566 (1.074)
	CC _{1/2}	0.988 (0.513)
	CC*	0.997 (0.823)
Refinement		
	R _{work} /R _{free} (%)	22.7/26.7 (36.5/38.9)

 Table 1s.
 Statistics of X-ray Data Collection and Structure Refinement

Number of atoms 18,844

protein/ligands/water	17,996/532/316
Protein residues	2,208
Root Mean Square bonds/angles (Ų/º)	0.01/0.78
Ramachandran favored /outlier (%)	96/0.18
Average B-factor (Å ²)	50
protein/ligands/water	49.9/58.3/40.3

*Number of crystals for both datasets = 1; the values in parentheses are for the highest resolution shell; $R_{merge} = \frac{\sum_{hkl} \sum_i |I_i(hkl) - \overline{I_i(hkl)}|}{\sum_{hkl} \sum_l I_i(hkl)} \times 100\%$; $R = \frac{\sum_{hkl} ||F_o| - |F_c||}{\sum_{hkl} |F_o|} \times 100\%$, where F_o and F_c are the observed and calculated structure factors, and R_{free} is the value from the test set (3.0% of all reflections).