Supplemental material for:

Functions of the BamBCDE lipoproteins revealed by bypass mutations in BamA

Elizabeth M. Hart¹ and Thomas J. Silhavy^{1*}

* Correspondence to: Thomas J. Silhavy, tsilhavy@princeton.edu

Strain	Linkage frequency (%) bamB::kan xyz::cam	Standard deviation
MC4100	45%	9.2%
$\Delta bamC\Delta bamE$ Tn7att:: $bamA$	0%	0%
$\Delta bam C \Delta bam E$ Tn7att:: $bam A_{E470K}$	12.7%	4%
$\Delta bam C \Delta bam E$ Tn7att:: $bam A_{A496P}$	0%	0%
$\Delta bam C \Delta bam E$ Tn7att:: $bam A_{A499S}$	0%	0%
$\Delta bamC\Delta bamE \Delta rcsF$ Tn7att:: $bamA$	0%	0%
$\Delta bamC\Delta bamE \Delta rcsF$ Tn7att:: $bamA_{E470K}$	13.7%	7.1%
$\Delta bamC\Delta bamE \Delta rcsF$ Tn7att:: $bamA_{A496P}$	10.9%	6.3%
$\Delta bamC\Delta bamE \Delta rcsF$ Tn7att:: $bamA_{499S}$	4.5%	3.3%

Table S1: Linkage disruption analysis with *bamB*::kan xyz::cam*.

*P1 phage carrying *bamB*::kan *xyz*::cam was used to infect the indicated strains. Linkage frequency represents the number of kanamycin resistant transductants over the total chloramphenicol resistant transductants. Transductions were performed in biological triplicate.

Strain	Linkage frequency (%) bamD::kan nadB::Tn10	Standard deviation
$bamD^+ \lambda_{att} P_{BAD} bamD (+ara)$	26.7%	4.7%
Tn7att::bamA	0%	0%
$Tn7att:: bamA_{A496P}$	14%	7.2%
$Tn7att:: bamA_{A499S}$	0%	0%
$\Delta rcsF$ Tn7att:: $bamA$	0%	0%
$\Delta rcsB$ Tn7att:: $bamA$	0%	0%
$\Delta rcsF$ Tn7att:: $bamA_{A496P}$	12.3%	5.5%
$\Delta rcsF$ Tn7att:: $bamA_{A499S}$	17.9%	1.4%
$\Delta rcsB$ Tn7att:: $bamA_{A499S}$	0%	0%
<i>∆bamC bamE</i> ::cam Tn7att:: <i>bamA</i>	0%	0%
Δ <i>bamC bamE</i> ::cam Tn7att:: <i>bamA</i> _{E470K}	10%	1.7%
$\Delta bamC \ bamE$::cam Tn7att:: $bamA_{A496P}$	8.8%	2.5%
Δ <i>bamC bamE</i> ::cam Tn7att:: <i>bamA</i> _{A499S}	0%	0%
$\Delta bamC \ bamE::cam \ \Delta rcsF \ Tn7att::bamA$	0%	0%
$\Delta bamC \ bamE::$ cam $\Delta rcsF \ Tn7att:: bamA_{E470K}$	4.9%	3.6%
$\Delta bamC \ bamE::$ cam $\Delta rcsF \ Tn7att:: bamA_{A496P}$	8.8%	2.3%
$\Delta bamC \ bamE::$ cam $\Delta rcsF \ Tn7att:: bamA_{A499S}$	14.9%	2.6%

 Table S2: Linkage disruption analysis with bamD::kan nadB::Tn10*.

*Linkage disruption was performed by infecting the indicated strains with P1 phage carrying *bamD*::kan *nadB*::Tn10. The number of kanamycin resistant colonies over the total number of tetracycline resistant colonies was reported as linkage frequency.

Figure S1: RcsF/OMP assembly in the *bamA* suppressor alleles as measured P_{rprA} -lux activity. The labeled strains carrying pCS26(cam):: P_{rprA} -lux were grown to mid-log at 30°C. Lux activity was normalized by OD600 and data represents the average of three biological replicates with errors bars being SEM.

Figure S2: **Testing minimal BAM complexes.** $\Delta bamB \Delta bamC \Delta bamE$ mutants expressing an arabinose-inducible copy of *bamD* were grown overnight at 30°C in media containing arabinose. Cells were normalized by OD600, serially diluted, and spotted onto media containing arabinose to induce expression of *bamD* or fucose to prevent expression.

Figure S3: OMP assembly is impaired in $\Delta bamB\Delta bamC\Delta bamE bamA_{E470K}$ BamD-depleted cells. Immunoblot analysis of BamD-depleted cells from the depletion shown in Figure 4D. Stationary phase samples were electrophoresed and probed for BamABCDE and several OMPs. RpoA served as a loading control.

Figure S4: Cell viability upon liquid depletion of BamD. (A-D) Cells (+/- rcsF) expressing (A) BamA⁺, (B) BamA^{E470K}, (C) BamA^{A496P}, or (D) BamA^{A499S} and carrying an arabinose inducible copy of *bamD* were grown overnight in arabinose. Cells were normalized by OD600 and inoculated into media supplemented with arabinose or fucose. Cultures were grown to and OD600 ~ 0.5 at 37°C and back-diluted into fresh media. The cycling was repeated once more. Depletions were performed at 37°C.

Strains	Genotype	Reference
MC4100	F-araD139 (argF-lac)U169	(1)
	rpsL150 relA1 flb5301 deoC1	(2)
	ptsF25 thi	
JCM158	MC4100 ara ^{r/-}	(3)
JCM255	$\lambda_{att} P_{BAD}::bamD$	(4)
JCM500	$\Delta bamA \ recA$::kan $\lambda_{att} P_{BAD}$:: $bamA$	(4)
BH315	<i>bamB</i> ::kan <i>xyz</i> ::cam	This study
BH1417	Δ <i>bamA</i> Tn7att:: <i>bamA</i> FRT	(4)
BH1418	Δ <i>bamA</i> Tn7att:: <i>bamA</i> _{E470K} FRT	(4)
BH1779	$\Delta bamC \Delta bamE \Delta bamA$	This study
	Tn7att:: <i>bamA</i> FRT	-
BH1780	$\Delta bamC \Delta bamE \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{E470K} FRT	-
BH2076	$\Delta bamA$ Tn7att:: $bamA_{A496P}$ FRT	This study
BH2077	$\Delta bamA$ Tn7att:: $bamA_{A499S}$ FRT	This study
BH2084	$\Delta bamC \Delta bamE \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{A496P} FRT	
BH2093	$\Delta rcsF \Delta bamA$ Tn7att:: $bamA$ FRT	This study
BH2094	$\Delta rcsF \Delta bamA$	This study
	Tn7att:: <i>bamA_{E470K}</i> FRT	
BH2109	$\Delta bamC \Delta bamE \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{A499S} FRT	
BH2142	$\Delta rcsF \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{A4998} FRT	
BH2222	$\Delta bamC \Delta bamE \Delta rcsF \Delta bamA$	This study
	Tn7att:: <i>bamA</i> FRT	
BH2223	$\Delta bamC \Delta bamE \Delta rcsF \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{A499S} FRT	
BH2259	$\Delta bamC \Delta bamE \Delta rcsF \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{A496P} FRT	
BH2305	<i>bamD</i> ::kan <i>nadB</i> ::Tn10 λ _{att} P _{BAD}	(5)
	bamD	
BH2308	$\Delta bamA$ Tn7att:: $bamA_{E470K}$ FRT	(5)
	<i>bamD</i> ::kan	
BH2312	$\Delta bamA$ Tn7att:: $bamA_{A496P}$ FRT	This study
	<i>bamD</i> ::kan	
BH2316	$\Delta rcsF \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{A4995} FRT <i>bamD</i> ::kan	
BH2320	$\Delta bamC \Delta bamE \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{E470K} FRT <i>bamB</i> ::kan	

Table S3: Strains, plasmids, and oligonucleotides used in this study.

	-	
BH2323	$\Delta bamC \Delta bamE \Delta rcsF \Delta bamA$	This study
DU2227	In/att:: <i>bamA</i> _{A496P} FKI <i>bamB</i> ::kan	
BH2327	$\Delta bam C \Delta bam E \Delta rcsF \Delta bam A$	I his study
DU2220	In/att:: <i>bamA</i> _{A499S} FRI <i>bamB</i> ::Kan	
BH2339	$\Delta rcsF \Delta bamA$	(5)
D1102.42	In/att:: <i>bamA</i> _{E470K} FRI <i>bamD</i> ::kan	
BH2342	$\Delta bamC \Delta bamE \Delta rcsF \Delta bamA$	This study
	In/att:: <i>bamA</i> _{E470K} FRI <i>bamB</i> ::kan	
BH2366	ΔbamA ΔbamD Tn/att::bamAFRT	I his study
	$\lambda_{\text{att}} P_{\text{BAD}}$::bamD	
BH2368	$\Delta bamA \Delta bamD$	This study
	Tn7att:: $bamA_{E470K}$ FRT λ_{att}	
	P_{BAD} :: <i>bamD</i>	
BH2369	$\Delta rcsF \Delta bamA \Delta bamD$	This study
	Tn7att:: $bamA_{E470K}$ FRT λ_{att}	
	P _{BAD} :: <i>bamD</i>	
BH2370	$\Delta bamA \Delta bamD$	This study
	$Tn7att:: bamA_{A496P}FRT \lambda_{att}$	
	P _{BAD} :: <i>bamD</i>	
BH2372	$\Delta bamA \Delta bamD$	This study
	Tn7att:: $bamA_{A499S}$ FRT λ_{att}	
	P _{BAD} :: <i>bamD</i>	
BH2373	$\Delta rcsF \Delta bamA \Delta bamD$	This study
	Tn7att:: $bamA_{A499S}$ FRT λ_{att}	
	P _{BAD} :: <i>bamD</i>	
BH2410	$\Delta bamA \Delta bamD$ Tn7att:: $bamAFRT$	This study
	$bamB$::kan $\lambda_{att} P_{BAD}$:: $bamD$	
BH2412	$\Delta rcsF \Delta bamA \Delta bamD$	This study
	Tn7att:: <i>bamA</i> _{E470K} FRT <i>bamB</i> ::kan	
	$\lambda_{\text{att}} P_{\text{BAD}}$:: <i>bamD</i>	
BH2413	$\Delta bamA \ \Delta bamD$	This study
	Tn7att:: <i>bamA</i> _{E470K} FRT <i>bamB</i> ::kan	
	$\lambda_{\text{att}} P_{\text{BAD}}$:: <i>bamD</i>	
BH2414	$\Delta bamA \Delta bamD$	This study
	Tn7att:: <i>bamA</i> _{A496P} FRT <i>bamB</i> ::kan	
	$\lambda_{\text{att}} P_{\text{BAD}}::bamD$	
BH2416	$\Delta bamA \Delta bamD$	This study
	Tn7att:: <i>bamA</i> _{A499S} FRT <i>bamB</i> ::kan	
	$\lambda_{\text{att}} P_{\text{BAD}}::bamD$	
BH2417	$\Delta rcsF \Delta bamA \Delta bamD$	This study
	Tn7att:: <i>bamA</i> _{A4998} FRT <i>bamB</i> ::kan	
	$\lambda_{\text{att}} P_{\text{BAD}}::bamD$	
BH2435	$\Delta rcsB \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{A4995} FRT	

BH2488	$\Delta bamC \Delta bamE \Delta rcsF \Delta bamA$ Tp7att::bam 4 provEPT	This study
DU2500	$\frac{111}{auau} = \frac{1}{auau} = \frac{1}{auau} = \frac{1}{auau} = \frac{1}{auau}$	This study
ВП2300	$\Delta bam C \Delta bam E \Delta r csF \Delta bam A$	This study
	$\Delta bamD$ In/att: $bamA_{E470K}$ FRI λ_{att}	
DU2512	PBAD:: <i>bamD bamB</i> ::kan	
BH2513	$\Delta bamC \ \Delta bamE \ \Delta rcsF \ \Delta bamA$	I his study
	$\Delta bamD$ Tn/att:: $bamA_{A499S}$ FRT λ_{att}	
	P _{BAD} :: <i>bamD bamB</i> ::kan	
BH2514	$\Delta rcsF$ $\Delta bamA$ $\Delta bamD$	This study
	$Tn7att::bamAFRT \lambda_{att} P_{BAD}::bamD$	
BH2515	$\Delta rcsF \Delta bamA \Delta bamD$	This study
	Tn7att:: $bamA_{A496P}$ FRT λ_{att}	
	P _{BAD} :: <i>bamD</i>	
BH2518	$\Delta rcsF \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{A496P} FRT	
BH2527	$\Delta rcsF \Delta bamA \Delta bamD bamB::kan$	This study
	Tn7att:: <i>bamA</i> FRT λ _{att} P _{BAD} :: <i>bamD</i>	
BH2534	$\Delta rcsF \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{A496P} FRT <i>bamD</i> ::kan	
BH2543	$\Delta bamC \Delta bamE \Delta bamA \Delta bamD$	This study
	Tn7att:: $bamA_{E470K}$ FRT λ_{att}	
	P _{BAD} :: <i>bamD bamB</i> ::kan	
BH2546	$\Delta bamC \Delta bamE \Delta rcsF \Delta bamA$	This study
	$\Delta bamD$ Tn7att:: $bamA_{A496P}$ FRT λ_{att}	
	P _{BAD} :: <i>bamD bamB</i> ::kan	
BH2556	$\Delta bamC \Delta bamE \Delta bamA \Delta bamD$	This study
	Tn7att::bamA _{F470K} FRT λ _{att}	
	P _{BAD} :: <i>bamD bamB</i> ::kan (depleted in	
	fucose)	
BH2559	$\Delta bamC \Delta bamE \Delta bamA$	This study
	Tn7att:: <i>bamA_{E470K}</i> FRT <i>bamD</i> ::kan	2
BH2560	$\Delta bamC \Delta bamE \Delta rcsF \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{F470} KFRT <i>bamD</i> ::kan	5
BH2572	$\Lambda bamC \Lambda bamE \Lambda bamA$	This study
	Tn7att:: <i>bamA</i> 4496PFRT <i>bamD</i> ::kan	5
BH2573	$\Delta bam C \ \Delta bam E \ \Delta rcs F \ \Delta bam A$	This study
	Tn7att: <i>bamA</i> 4406PFRT <i>bamD</i> : kan	
BH2574	$\Delta bam C \ \Delta bam E \ \Delta rcs E \ \Delta bam A$	This study
	Tn7att: <i>hamA</i> 4400sFRT <i>hamD</i> : kan	
BH2588	AbamC AbamA Tn7att: bamAFRT	This study
	<i>bamE</i> cam	
BH2589	AbamC Abam 4	This study
	Tn7att··hamA _{E470} /FRT hamF··cam	1 1115 Study
1	111/ auound1E4/0A1 IX1 Ound2valli	

BH2592	$\Delta bamC \Delta rcsF \Delta bamA$	This study
	In/att:: <i>bamA_{E470K}</i> FRT <i>bamE</i> ::cam	
BH2593	$\Delta bamC \Delta bamA$	This study
	In/att:: <i>bamA</i> _{A496P} FRT <i>bamE</i> ::cam	
BH2600	$\Delta bamC \Delta rcsF \Delta bamA$	This study
	In/att:: <i>bamA</i> FRT <i>bamE</i> ::cam	
BH2601	$\Delta bamC \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{A4995} FRT <i>bamE</i> ::cam	
BH2649	$\Delta bamC \Delta rcsF \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{A496P} FRT <i>bamE</i> ::cam	
BH2650	$\Delta bamC \Delta rcsF \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{A4995} FRT <i>bamE</i> ::cam	
BH2666	Δ <i>bamA</i> Tn7att:: <i>bamA</i> FRT	This study
	pCS26(cam):: P _{rprA} -lux	
BH2667	Δ <i>rcsF</i> Δ <i>bamA</i> Tn7att:: <i>bamA</i> FRT	This study
	pCS26(cam):: P _{rprA} -lux	
BH2669	$\Delta bamA$ Tn7att:: $bamA_{E470K}$ FRT	This study
	pCS26(cam):: P _{rprA} -lux	
BH2668	$\Delta rcsF \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{E470K} FRT	
	pCS26(cam):: P _{rprA} -lux	
BH2677	$\Delta bamA$ Tn7att:: $bamA_{A496P}$ FRT	This study
	pCS26(cam):: P _{rprA} -lux	
BH2678	$\Delta rcsF \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{A496P} FRT	
	pCS26(cam):: P _{rprA} -lux	
BH2680	$\Delta bamA$ Tn7att:: $bamA_{A499S}$ FRT	This study
	pCS26(cam):: P _{rprA} -lux	
BH2681	$\Delta rcsF \Delta bamA$	This study
	Tn7att:: <i>bamA</i> _{A499S} FRT	_
	pCS26(cam):: P _{rprA} -lux	
BH2695	$\Delta rcsF \Delta bamA \Delta bamD$	This study
	Tn7att:: <i>bamA</i> _{A496P} FRT <i>bamB</i> ::kan	
	$\lambda_{\text{att}} P_{\text{BAD}}$:: bamD	
Plasmids	Relevant features	Reference
pGRG25Modular::bamA	<i>bamA</i> under control of the native	(4, 6)
	promoter (defined as 1000bp	(5)
	upstream of ATG) for insertion at	
	Tn7 attachment site. Kanamycin	
	resistance cassette is located	
	downstream and flanked by FRT	
	sequences.	
pGRG25Modular:: <i>bamA</i> _{A496P}	$bamA_{A496P}$ on plasmid for Tn7	This study
	attachment site integration	

pGRG25Modular:: <i>bamA</i> _{A499S}	$bamA_{A499S}$ on plasmid for Tn7	This study
	attachment site integration	
Oligonucleotides	Sequence $(5' \rightarrow 3')$	Information
BH102-bamC-Fwd	GCGTCTGATGCCATTAC	To amplify
	ACAAC	chromosomal <i>bamC</i>
BH103-bamC-Rev	CTTTTGCTGTCTGGTGTG	
	CC	
BH310	ATGGCGATGAAAAAG	To amplify <i>bamA</i> alleles
	TTG	from pZS21 plasmid for
		Gibson into
		pGRG25Modular::bamA
BH311	ATAGGAACTTCAAAA	
	GGGCCTTACCAGGTTT	
	TACCGATG	

References

- 1. Silhavy TJ, Berman ML, Enquist LW. Experiments with Gene Fusions. Cold Spring Harbor Laboratory.
- Boyd D, Weiss DS, Chen JC, Beckwith J. 2000. Towards Single-Copy Gene Expression Systems Making Gene Cloning Physiologically Relevant: Lambda InCh, a Simple *Escherichia coli* Plasmid-Chromosome Shuttle System. Journal of Bacteriology 182:842– 847.
- 3. **Malinverni JC**, **Werner J**, **Kim S**, **Sklar JG**, **Kahne D**, **Misra R**, **Silhavy TJ**. 2006. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in *Escherichia coli*. Mol Microbiol **61**:151–164.
- 4. Hart EM, Mitchell AM, Konovalova A, Grabowicz M, Sheng J, Han X, Rodriguez-Rivera FP, Schwaid AG, Malinverni JC, Balibar CJ, Bodea S, Si Q, Wang H, Homsher MF, Painter RE, Ogawa AK, Sutterlin H, Roemer T, Black TA, Rothman DM, Walker SS, Silhavy TJ. 2019. A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier. Proc Natl Acad Sci USA 116:21748– 21757.
- 5. **Hart EM**, **Gupta M**, **Wühr M**, **Silhavy TJ**. 2020. The gain-of-function allele $bamA_{E470K}$ bypasses the essential requirement for BamD in β -barrel outer membrane protein assembly. Proc Natl Acad Sci USA 117:18737–18743.
- Hart EM, Gupta M, Wühr M, Silhavy TJ. 2019. The Synthetic Phenotype of ΔbamBΔbamE Double Mutants Results from a Lethal Jamming of the Bam Complex by the Lipoprotein RcsF. mBio 10:189–12.