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S0 Preliminaries1

This supplement to the manuscript is compiled from the source file S1_Text.Rnw using R2

version 4.0.2 (2020-06-22) [1] and these R package versions:3

## knitr tikzDevice colorRamps RColorBrewer scales
## 1.29 0.12.3.1 2.3 1.1-2 1.1.1
## deSolve adaptivetau
## 1.28 2.2-3

Our primary aim here is to make our results entirely reproducible by the reader. Our4

secondary aim is to make our methods available to potential users. To this end, we5

introduce our R package fastbeta, which implements6

– the FC, S, and SI methods for estimating time-varying transmission rates β(t) from7

time series data; and8

– peak-to-peak iteration (PTPI) for estimating the initial number of susceptible9

individuals S0 from time series data.10

All methods are based on the SIR model with time-varying rates of birth, death, and11

transmission:12

dS
dt

= ν(t)N̂0 − β(t)SI − µ(t)S , (1a)

dI
dt

= β(t)SI − γI − µ(t)I , (1b)

dR
dt

= γI − µ(t)R , (1c)

where γ = 1/tgen.13

The most recent version of fastbeta is located in our GitHub repository and can be14

installed using install_github() from the remotes package.15

if (!require(remotes)) install.packages("remotes")
remotes::install_github("davidearn/fastbeta")

However, readers attempting to compile this document from source must install fastbeta16

from the plos branch of the repository, which houses the version used at the time of this17

writing.18

if (!require(remotes)) install.packages("remotes")
remotes::install_github("davidearn/fastbeta", ref = "plos")
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For complete compilation instructions, refer to README.md .19

Here is a list of functions implemented in the plos version of fastbeta:20

library(fastbeta)
ls("package:fastbeta")

## [1] "compute_rrmse" "estimate_beta_FC" "estimate_beta_S"
## [4] "estimate_beta_SI" "get_peak_times" "make_data"
## [7] "make_par_list" "ptpi" "test_s2dgbeta"
## [10] "test_s2dgpars" "test_s2inpars"

We will introduce these on the fly. More complete documentation can be accessed by21

running ?fastbeta .22

In the sections to follow, we annotate the R code needed to reproduce results reported23

in the manuscript. Plotting commands have been suppressed, but are preserved in24

S1_Text.Rnw . Since our work involves millions of simulations, we have retained certain25

output in the directory RData/ to significantly reduce compilation time.26

S1 Example of β(t) estimation using the FC, S, and SI27

methods28

Fig 1 in the manuscript compares the output of the FC, S, and SI methods for a simulated29

time series of reported incidence. To reproduce Fig 1, we simulate time series data using30

system (1) with constant vital rates νc and µc and a seasonally forced transmission rate31

that includes environmental noise:32

βφ(t) = 〈β〉
[
1 + α cos

( 2πt

1 year
+ φ(t; ε)

)]
. (2)

Doing so, we obtain observations of reported incidence at equally spaced time points33

tk = t0 + k∆t , k = 0, . . . , n . (3)

We then apply each algorithm (FC, S, SI) to reconstruct the seasonally forced transmission34

rate from the data.35

As this simulate-estimate routine is our main investigative approach going forward, we36

describe each step in detail here (and reproduce Fig 1 in the process), but we do not repeat37

these details in later sections.38

S1.1 Creating a list of parameter values39

Simulating a reported incidence time series from system (1) requires a list of values for all40

data-generating parameters. Our function make_par_list() simplifies the task of41
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creating such a list. It does this by “filling in the blanks” when we want R0, 〈β〉, N0, S0, or42

I0 to depend in a complicated way on other parameters’ values.43

Below, we call make_par_list() , defining all arguments explicitly. Except for44

dt_weeks , which is the observation interval ∆t in weeks, the values of time and rate45

parameters must be supplied in units ∆t and per unit ∆t. In this call to46

make_par_list() , we indicate ∆t = 1 week, t0 = 2000 years, tgen = 13 days, and47

νc = µc = 0.04 year−1.48

## List of parameter values
par_list <- make_par_list(

dt_weeks = 1, # observation interval
t0 = 2000 * (365 / 7) * 1, # time of first observation
prep = 1, # case reporting probability
trep = 0, # case reporting delay
hatN0 = 1e06, # population size at 0 years
N0 = NA, # population size at `t0`
S0 = NA, # number susceptibles at `t0`
I0 = NA, # number infecteds at `t0`
nu = 0.04 * (7 / 365) * 1, # birth rate (relative to `hatN0`)
mu = 0.04 * (7 / 365) * 1, # natural mortality rate (per capita)
tgen = 13 * (1 / 7) / 1, # mean generation interval
Rnaught = 20, # basic reproduction number
beta_mean = NA, # mean of seasonal forcing
alpha = 0.08, # amplitude of seasonal forcing
epsilon = 0 # s.d. of environmental noise

)
unlist(par_list) # printed as a named vector

## dt_weeks t0 prep trep hatN0
## 1.000000e+00 1.042857e+05 1.000000e+00 0.000000e+00 1.000000e+06
## N0 S0 I0 nu mu
## 1.000000e+06 5.405182e+04 1.318586e+03 7.671233e-04 7.671233e-04
## tgen Rnaught beta_mean alpha epsilon
## 1.857143e+00 2.000000e+01 1.078457e-05 8.000000e-02 0.000000e+00

make_par_list() requires that exactly one of R0 and 〈β〉 (arguments Rnaught and49

beta_mean ) is defined in the function call. It sets the undefined parameter internally by50

enforcing the identity51

R0 =
νcN̂0

µc
· 〈β〉
γ + µc

. (4)

Above, we “omitted” beta_mean from the function call (by supplying a value NA ) and52

obtained the desired value in the output.53
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Values for N0, S0, and I0 (arguments N0 , S0 , and I0 ) were also set internally. This54

was done via numerical integration of system (1) with constant vital rates νc and µc and a55

seasonally forced transmission rate that excludes environmental noise:56

β(t) = 〈β〉
[
1 + α cos

( 2πt

1 year

)]
. (5)

After integrating between times t = 0 years and t = t0 (in this case 2000 years)57

make_par_list() chooses for N0, S0 and I0 the values of N∗ = N(t0), S∗ = S(t0), and58

I∗ = I(t0). This ensures that the initial state of any simulation using par_list is a point59

very near the attractor of the system being simulated.60

In the above call to make_par_list() , we indicated the default values of all61

arguments. In future calls to this function, we will not specify arguments explicitly except62

for clarity or to request a value different from the default.63

S1.2 Simulating time series data64

To reproduce the simulation considered in Fig 1, we pass par_list to our function65

make_data() , which returns the simulated time series data in a data frame.66

## Data frame containing time series data
df <- make_data(

par_list = par_list, # parametrization
n = 20 * 365 / 7, # time series length: ~20 years
with_dem_stoch = FALSE # no demographic stochasticity

)
head(df)

## t t_years beta beta_phi N S I
## 1 104285.7 2000.000 1.164734e-05 1.164734e-05 1e+06 54052.00 1319.000
## 2 104286.7 2000.019 1.164108e-05 1.164108e-05 1e+06 53910.11 1442.447
## 3 104287.7 2000.038 1.162241e-05 1.162241e-05 1e+06 53692.54 1573.095
## 4 104288.7 2000.058 1.159158e-05 1.159158e-05 1e+06 53398.91 1708.214
## 5 104289.7 2000.077 1.154904e-05 1.154904e-05 1e+06 53031.36 1844.220
## 6 104290.7 2000.096 1.149543e-05 1.149543e-05 1e+06 52594.95 1976.772
## R Q Z C
## 1 944629.0 0.0000 NA NA
## 2 944647.4 867.5997 867.5997 868
## 3 944734.4 1811.0116 943.4119 943
## 4 944892.9 2830.6905 1019.6789 1020
## 5 945124.4 3924.5379 1093.8474 1094
## 6 945428.3 5087.5473 1163.0094 1163
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The output contains the following information:67

t tk
∆t

Time in units of the observation interval ∆t. Equal to
t0
∆t

+ (0, 1, . . . , n).

t_years tk Time in years. Equal to t0 + (0, 1, . . . , n)∆t.

beta β(tk)∆t Seasonally forced transmission rate without environmental noise
(Eq (5)), expressed per unit ∆t per susceptible per infected.

beta_phi βφ(tk)∆t Seasonally forced transmission rate with environmental noise
(Eq (2)), expressed per unit ∆t per susceptible per infected.

N N(tk) Population size.

S S(tk) Number of susceptible individuals.

I I(tk) Number of infected individuals.

R R(tk) Number of removed individuals.

Q Q(tk) Cumulative incidence.

Z Z(tk) Incidence.

C C(tk) Reported incidence.

In this example, there is no environmental noise, simply because par_list specified68

epsilon = 0 . Hence beta and beta_phi are identical in the returned data frame.69

S1.3 Estimating the time-varying transmission rate70

We apply the FC, S, and SI methods to estimate incidence Z, susceptibles S, infecteds I,71

and the seasonally forced transmission rate β from reported incidence and vital data. We72

have implemented these methods in our functions estimate_beta_FC() ,73

estimate_beta_S() , and estimate_beta_SI() . We will refer to these collectively as74

estimate_beta() , but note that there is no function by that name.75

The first argument of estimate_beta() expects a data frame df with columns t ,76

C , B , and (for the S and SI methods) mu . These specify equally spaced observation times77

tk (Eq (3)) in units of the observation interval ∆t (i.e., tk/∆t) and, at those times,78

reported incidence Ck, observed births Bk, and the observed per capita natural mortality79

rate µk expressed per unit ∆t.80

The second argument expects a list par_list with elements prep , trep , tgen ,81

S0 , and (for the SI method) I0 . These specify values for input parameters prep, trep, tgen,82

S0, and I0.83
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Here, we supply the data frame df obtained earlier using make_data() . Note that84

this data frame does not have columns B and mu . When these columns are missing in the85

function call, estimate_beta() creates mock (constant) time series as follows: (i) it looks86

in par_list for additional elements hatN0 , nu , and mu , specifying a population size N̂087

and constant vital rates ν ′c and µ′c, then (ii) it sets Bk = ν ′cN̂0∆t and µk = µ′c for all k.88

In practice, the argument par_list contains the user’s potentially incorrect estimates89

of the input parameters, such as the initial number of susceptibles individuals S0. For this90

example, there is no input error: we assign each input parameter its true (data-generating)91

value. That is, the par_list that we pass to estimate_beta() is precisely the92

par_list that we passed to make_data() earlier.93

## List of functions
estimate_beta <- list(

FC = estimate_beta_FC,
S = estimate_beta_S,
SI = estimate_beta_SI

)

## List of returned data frames
df_est <- lapply(estimate_beta, function(f) f(df, par_list))
lapply(df_est, head, n = 10)

## $FC
## t C Z Z_agg B B_agg S I beta
## 1 104285.7 NA NA NA 767.1233 NA 54051.82 NA NA
## 2 104286.7 868 868 NA 767.1233 NA NA NA NA
## 3 104287.7 943 943 1811 767.1233 1534.247 53775.06 1811 1.085364e-05
## 4 104288.7 1020 1020 NA 767.1233 NA NA NA NA
## 5 104289.7 1094 1094 2114 767.1233 1534.247 53195.31 2114 1.061314e-05
## 6 104290.7 1163 1163 NA 767.1233 NA NA NA NA
## 7 104291.7 1224 1224 2387 767.1233 1534.247 52342.56 2387 1.034483e-05
## 8 104292.7 1274 1274 NA 767.1233 NA NA NA NA
## 9 104293.7 1311 1311 2585 767.1233 1534.247 51291.80 2585 1.006868e-05
## 10 104294.7 1332 1332 NA 767.1233 NA NA NA NA
##
## $S
## t C Z B mu S I
## 1 104285.7 NA NA 767.1233 0.0007671233 54051.82 NA
## 2 104286.7 868 868 767.1233 0.0007671233 53909.48 NA
## 3 104287.7 943 943 767.1233 0.0007671233 53692.25 1609.707
## 4 104288.7 1020 1020 767.1233 0.0007671233 53398.18 1748.794
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## 5 104289.7 1094 1094 767.1233 0.0007671233 53030.34 1891.591
## 6 104290.7 1163 1163 767.1233 0.0007671233 52593.78 2028.824
## 7 104291.7 1224 1224 767.1233 0.0007671233 52096.56 2156.784
## 8 104292.7 1274 1274 767.1233 0.0007671233 51549.72 2269.909
## 9 104293.7 1311 1311 767.1233 0.0007671233 50966.30 2362.634
## 10 104294.7 1332 1332 767.1233 0.0007671233 50362.32 2431.251
## beta
## 1 NA
## 2 NA
## 3 1.180163e-05
## 4 1.171527e-05
## 5 1.159386e-05
## 6 1.147104e-05
## 7 1.133845e-05
## 8 1.120387e-05
## 9 1.106177e-05
## 10 1.092750e-05
##
## $SI
## t C Z B mu S I
## 1 104285.7 NA NA 767.1233 0.0007671233 54051.82 1318.586
## 2 104286.7 868 868 767.1233 0.0007671233 53909.53 1442.230
## 3 104287.7 943 943 767.1233 0.0007671233 53692.38 1572.434
## 4 104288.7 1020 1020 767.1233 0.0007671233 53398.43 1707.986
## 5 104289.7 1094 1094 767.1233 0.0007671233 53030.73 1844.252
## 6 104290.7 1163 1163 767.1233 0.0007671233 52594.34 1976.990
## 7 104291.7 1224 1224 767.1233 0.0007671233 52097.31 2101.398
## 8 104292.7 1274 1274 767.1233 0.0007671233 51550.68 2212.350
## 9 104293.7 1311 1311 767.1233 0.0007671233 50967.48 2305.321
## 10 104294.7 1332 1332 767.1233 0.0007671233 50363.73 2375.346
## beta
## 1 NA
## 2 1.164631e-05
## 3 1.162533e-05
## 4 1.158944e-05
## 5 1.153862e-05
## 6 1.147834e-05
## 7 1.140877e-05
## 8 1.133293e-05
## 9 1.124715e-05
## 10 1.115929e-05
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The output contains the following information:94

t tk
∆t

Time in units of the observation interval ∆t. Equal to t0
∆t

+ (0, 1, . . . , n).
Identical to input df$t .

C Ck Reported incidence. Identical to input df$C , except that missing values
and zeros (treated like missing values) have been imputed by linear
interpolation.

B Bk Observed births. Identical to input df$B if supplied. Otherwise, every
element is with(par_list, hatN0 * nu * 1) .

mu µk∆t Observed per capita natural mortality rate, expressed per unit ∆t.
Identical to input df$mu if supplied. Otherwise, every element is
with(par_list, mu) .

Z Zk Estimate of incidence Z(tk).

S Sk Estimate of susceptibles S(tk).

I Ik Estimate of infecteds I(tk).

beta βk∆t Raw estimate of the time-varying transmission rate β(tk) expressed per
unit ∆t per susceptible per infected.

Note that the FC method’s output has missing values in alternating rows. This is not a95

mistake: the FC method aggregates incidence and births over the mean generation interval96

(roughly 2 weeks in this example), instead of the observation interval (1 week). As a result,97

estimation of S(tk) and β(tk) is only possible at every other observation time. Aggregation98

is not a requirement of the S and SI methods.99

Be warned that estimate_beta() returns raw estimates of β(t). Smoothing the βk100

time series by fitting a loess curve βloess(t; q) is recommended in the event that it displays101

unwanted noise. Determining what degree of smoothing is optimal (i.e., choosing a good102

value for the loess smoothing parameter q) is non-trivial, and therefore not undertaken by103

estimate_beta() . We discuss this issue in more detail in §S4.104

Plotting the Sk and βk time series returned by estimate_beta() , we reproduce Fig 1.105

Note that we are simply plotting (with a scaling) df_est$FC$S , df_est$S$S , and106

df_est$SI$S , and separately df_est$FC$beta , df_est$S$beta , and df_est$SI$beta .107
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Fig 1. Example of S(t) and β(t) estimation using the FC, S, and SI methods.

S1.4 Measuring estimation error108

In the manuscript, we report the relative root mean square error (RRMSE) in each βk time109

series. We compute RRMSE using compute_rrmse() , which takes as arguments the two110

vectors we wish to compare, with the estimate passed second.111

sapply(df_est, function(x) compute_rrmse(df$beta, x$beta))

## FC S SI
## 0.335487234 0.024010753 0.002139994

9



S2 Effect of process and observation error112

Fig 1 in the manuscript shows the output of the S and SI methods for idealized reported113

incidence data. Those data were simulated deterministically, i.e.,114

� without environmental stochasticity [ES] ( par_list with epsilon = 0 passed to115

make_data() ),116

� without demographic stochasticity [DS] ( with_dem_stoch = FALSE passed to117

make_data() ), and118

� without observation error [OE] ( par_list with prep = 1 passed to119

make_data() ).120

In Fig 2, we consider the effect of adding ES, DS, and OE in turn to the original121

deterministic simulation, on the βk time series generated by the S and SI methods. We122

produce these four simulations as follows:123

## List of lists of parameter values
par_list <- list(

xxxxxx = make_par_list(epsilon = 0, prep = 1), # deterministic
esxxxx = make_par_list(epsilon = 0.5, prep = 1), # ES
esdsxx = make_par_list(epsilon = 0.5, prep = 1), # ES+DE
esdsoe = make_par_list(epsilon = 0.5, prep = 0.25) # ES+DE+OE

)

## List of data frames containing time series data
df <- mapply(make_data,

par_list = par_list,
n = 3 * 365 / 7,
with_dem_stoch = c(FALSE, FALSE, TRUE, TRUE),
seed = 1305,
SIMPLIFY = FALSE

)
names(df)

## [1] "xxxxxx" "esxxxx" "esdsxx" "esdsoe"

names(df$esdsoe)

## [1] "t" "t_years" "beta" "beta_phi" "N" "S"
## [7] "I" "R" "Q" "Z" "C"

10



Here, par_list is a list of lists, containing the parameter values desired for each124

simulation, and df is a list of data frames, containing the corresponding simulated data.125

The next code chunk applies the S and SI methods, without input error, to each126

simulated reported incidence time series.127

## List of lists of data frames containing estimation output
df_est <- list(

## List of data frames returned by S method
S = mapply(estimate_beta_S,

df = df,
par_list = par_list,
SIMPLIFY = FALSE

),
## List of data frames returned by SI method
SI = mapply(estimate_beta_SI,

df = df,
par_list = par_list,
SIMPLIFY = FALSE

)
)
names(df_est)

## [1] "S" "SI"

names(df_est$SI)

## [1] "xxxxxx" "esxxxx" "esdsxx" "esdsoe"

names(df_est$SI$esdsoe)

## [1] "t" "C" "Z" "B" "mu" "S" "I" "beta"

Hence each element of df_est contains the output of one of the S and SI methods for all 4128

reported incidence time series. Plotting the resulting 8 Zk, Ik, and βk time series (estimates129

of incidence, prevalence, and the seasonally forced transmission rate) yields Fig 2.130

11



0

500

1000

1500

Z
(t
)

A

S method

0

1000

2000

3000

I
(t
)

B

0 1 2 3

0.75

1.00

1.25

β
(t
)/
〈β
〉

C

Time (years)

SI method

0 1 2 3

Time (years)

Deterministic ES ES+DS ES+DS+OE

Fig 2. Effects of process and observation error on the S and SI methods.

We obtain the RRMSE in each βk time series with the following line of code.131

lapply(df_est, function(x) {
mapply(function(y, z) compute_rrmse(y$beta, z$beta), y = df, z = x)

})

## $S
## xxxxxx esxxxx esdsxx esdsoe
## 0.02393485 0.03352897 0.12261568 0.15458400
##
## $SI
## xxxxxx esxxxx esdsxx esdsoe
## 0.002145247 0.015053954 0.053576843 0.070091436
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S3 Averaging the raw estimate of β(t)132

Fig 3 in the manuscript considers the seasonally forced β(t) (Eq (5)) and three estimates,133

each spanning 1000 years. It overlays the 1000 1-year cycles embedded in each estimate134

and plots their 1-year average. To reproduce Fig 3, we simulate 1000 years of weekly135

reported incidence, including in the simulation environmental noise in transmission136

(ε = 0.5), demographic stochasticity, and random under-reporting of cases (prep = 0.25).137

## List of parameter values
par_list <- make_par_list(epsilon = 0.5, prep = 0.25)

## Data frame containing time series data
df <- make_data(

par_list = par_list,
n = 1000 * 365 / 7 + 1,
with_dem_stoch = TRUE,
seed = 1217

)

We estimate the seasonally forced β(t) using the S and SI methods, without input error.138

## List of functions
estimate_beta <- list(

S = estimate_beta_S,
SI = estimate_beta_SI

)

## List of returned data frames. Column `beta` in `df_est[[i]]`
## stores the raw estimate generated by `estimate_beta[[i]]`.
df_est <- lapply(estimate_beta, function(f) f(df, par_list))

The raw time series estimates βk contain spurious noise due to process and observation139

error. Hence, for comparison, we fit a loess curve βloess(t; q) to the time series returned by140

the SI method, where q is the loess smoothing parameter indicating (roughly) the number141

of nearest neighbours weighted in local regression. It turns out that q = 53 is a good choice142

for this parameter in this example (see §S4). To do the fitting, we call loess() with143

argument span indicating q as a proportion of time series length. Additional arguments144

are fully explained in the documentation, accessible by running ?loess and145

?loess.control .146

13



## Object of class `loess` defining the fitted loess curve
SI_loess <- stats::loess(

formula = beta ~ t,
data = df_est$SI,
span = 53 / nrow(df_est$SI),
degree = 2,
na.action = "na.exclude",
control = loess.control(surface = "direct")

)

We will calculate the average 1-year cycle in the linear interpolant βint(t) of βk (S and147

SI methods), and in the loess curve βloess(t; q) fit to the same time series (SI method only).148

## List of interpolants. `fits[[i]]` is the interpolant
## of column `beta` in `df_est[[i]]`.
fits <- lapply(df_est, function(x) {

approxfun(x$t, x$beta, method = "linear", rule = 1)
})

## Appending the `loess` object from earlier
fits$SI_loess <- SI_loess

Before proceeding, we should verify that the βk time series contain 1000 1-year cycles.149

## First and last time points
t0 <- df_est$SI$t[1]
tn <- df_est$SI$t[nrow(df_est$SI)]

## 1-year period in units of the observation interval
period <- with(par_list, (365 / 7) / dt_weeks)

## Number of cycles
m <- floor((tn - t0) / period)
m

## [1] 1000

We must also specify the true 1-year cycle that each average 1-year cycle should estimate.150

We specify the true cycle with a reference time indicating the initial phase. For simplicity,151

we consider the cycle between times t0 and t0 + period to be the true cycle. Phases of152

this cycle are specified by times s between 0 and period . To estimate the value of the153

true cycle at phase s , we evaluate each fit in fits (2 linear interpolants and 1 loess154
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curve) at times t0 + s + (0:(m-1))* period and average the resulting m values.155

get_phase_average() computes this estimate for any s , for a given fit f .156

get_phase_average <- function(s, f) {
times <- t0 + (s %% period) + (0:(m-1)) * period
x <- if (inherits(f, "loess")) predict(f, times) else f(times)
mean(x, na.rm = TRUE)

}

Note that, whereas linear interpolants are just functions that we can evaluate at desired157

times, loess objects must be passed to predict() to obtain fitted values. Note also that158

the modulo operation s %% period makes get_phase_average() a periodic function of159

s .160

We construct the average 1-year cycle in each fit in fits by applying161

get_phase_average() on a desired grid of s values.162

s_grid <- seq(0, period, length.out = 150)
average_one_year <- data.frame(

s_grid,
lapply(fits, function(f) sapply(s_grid, get_phase_average, f = f))

)
head(average_one_year)

## s_grid S SI SI_loess
## 1 0.0000000 1.193014e-05 1.153366e-05 1.148309e-05
## 2 0.3499521 1.194339e-05 1.154372e-05 1.148619e-05
## 3 0.6999041 1.193943e-05 1.155337e-05 1.148787e-05
## 4 1.0498562 1.191978e-05 1.155581e-05 1.148843e-05
## 5 1.3998082 1.190497e-05 1.155318e-05 1.148760e-05
## 6 1.7497603 1.189256e-05 1.154800e-05 1.148552e-05

We reproduce Fig 3 by plotting, for each 1000-year estimate of β(t), the 1000 embedded163

1-year cycles and their 1-year average, all on the same 1-year axis.164
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Fig 3. Bias and variance in 1-year cycles embedded in three estimates of a seasonally
forced β(t), in the absence of input error.

S4 Smoothing the raw estimate of β(t)165

Figs 2C, 3B, and 3C demonstrate that, in the absence of input error, much of the error in166

raw estimates of β(t) is attributable to noise in the time series. The S and SI methods167

produce the correct temporal pattern, but it is distorted by noise. Comparison of Figs 3C168

and 3D shows that fitting a smooth loess curve βloess(t; q) to the raw time series estimate βk169

can lead to substantial improvement in both accuracy and interpretability.170

In practice, we would like to choose the value qopt of the loess smoothing parameter q171

that minimizes the error in βloess(t; q) relative to β(t). However, we cannot calculate (and172

therefore cannot minimize) the error in βloess(t; q) when β(t) is not known. In this173

situation, we can still estimate qopt using statistical methods (most notably time series174

cross-validation [2]) or by direct inspection of βloess(t; q) for each value of q on a grid.175

In our simulated data setting, we do know β(t) and can therefore determine qopt176

exactly. In this setting, it is instructive to quantify the reduction in error that is achieved177
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when the optimal loess estimate βloess(t; qopt) is chosen over the raw time series estimate βk.178

Fig 4 in the manuscript addresses this issue.179

To reproduce Fig 4, we consider 41 values of the case reporting probability prep and fix180

all other data-generating parameters. (Smaller values of prep generate noisier reported181

incidence time series, resulting in noisier βk.) Using each value of prep, we perform 100182

simulations of reported incidence.183

prep <- 10^seq(-2, 0, length.out = 41)
par_list <- make_par_list(epsilon = 0.5)
nsim <- 100
q <- 10:110

For each of these 41× 100 simulations, we carry out the following steps. We estimate the184

seasonally forced β(t) (Eq (5)) from the simulated reported incidence time series, without185

input error. (The underlying β(t) was the same across all simulations.) For each q between186

10 and 110, we fit a loess curve βloess(t; q) to the raw time series estimate βk. Finally, we187

record188

RRMSEraw = RRMSE in {(tk, βk)}nk=0 ,

RRMSEloess,min = min
q∈{10,...,110}

[
RRMSE in {(tk, βloess(tk; q))}nk=0

]
,

qopt = arg min
q∈{10,...,110}

[
RRMSE in {(tk, βloess(tk; q))}nk=0

]
.

Hence, for each value of prep, we obtain 100 values for each of RRMSEraw, RRMSEloess,min,189

and qopt. We can preallocate space for this output.190

out <- array(NA,
dim = c(length(prep), nsim, 3, 2),
dimnames = list(NULL, NULL,

c("rrmse_raw", "rrmse_loess_min", "qopt"),
c("S", "SI")

)
)

The fourth dimension of the output array enables our comparison of the distributions of191

RRMSEraw, RRMSEloess,min, and qopt for different methods of β(t) estimation—in this case,192

the S and SI methods. Our expectation based on Figs 2C, 3B, and 3C is that the S method193

requires more smoothing.194

The next code chunk does all of the hard work. Simulations are saved in the directory195

RData/loess/ . Main results are saved in the file RData/loess.RData .196
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for (i in seq_along(prep)) {

## Update `par_list` with current value of `prep`
par_list$prep <- prep[i]

## Create a directory for this loop's `.RData`
dirname <- paste0(

"RData/loess/",
## log10 current value of `prep`
"prep_log10v-", sprintf("%+05.0f", log(prep[i], 10) * 1000), "/"

)
if (!dir.exists(dirname)) {

dir.create(dirname, recursive = TRUE)
}

for (j in seq_len(nsim)) {

message(
"`prep` value ", i, " of ", length(prep), ", ",
"sim ", j, " of ", nsim

)

## File name for simulation
filename <- paste0(dirname, "sim", sprintf("%04.0f", j), ".RData")

## Simulate reported incidence data, if you haven't already
if (file.exists(filename)) {

load(filename)
} else {

df <- make_data(
par_list = par_list,
n = 20 * 365 / 7,
with_dem_stoch = TRUE,
seed = j

)
save(df, file = filename)

}

## Estimate the seasonally forced transmission rate from
## reported incidence
estimate_beta <- list(
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S = estimate_beta_S,
SI = estimate_beta_SI

)
df_est <- lapply(estimate_beta, function(f) f(df, par_list))

## Compute the error in each raw estimate
out[i, j, "rrmse_raw", ] <- sapply(df_est, function(x) {

compute_rrmse(df$beta, x$beta)
})

## Preallocate memory for the error in each loess estimate
## (one for each value of `q`, for each raw estimate)
rrmse_after_loess <- array(NA,

dim = c(length(q), 2),
dimnames = list(NULL, c("S", "SI"))

)

## Standardize missing values in the raw estimates. `loess()`
## handles `NA` but complains about `NaN` and `Inf`.
df_est <- lapply(df_est, function(x) {

x$beta[!is.finite(x$beta)] <- NA
x

})

for (k in seq_along(q)) {

## Fit a smooth loess curve to each raw estimate
loess_fit <- lapply(df_est, function(x) {

stats::loess(
formula = beta ~ t,
data = x,
span = q[k] / nrow(x),
degree = 2,
na.action = "na.exclude",
control = loess.control(

surface = "direct",
statistics = "none"

)
)

})
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## Compute the error in each loess estimate
rrmse_after_loess[k, ] <- sapply(loess_fit, function(x) {

compute_rrmse(df$beta, predict(x))
})

}

## Find the minimum error over all loess estimates.
## Also retrieve the value of `q` that minimized error.
out[i, j, "rrmse_loess_min", ] <- apply(rrmse_after_loess, 2, min)
out[i, j, "qopt", ] <- apply(rrmse_after_loess, 2, function(x) {

q[which.min(x)]
})

}

}

attr(out, "arg_list") <- list(
prep = prep,
par_list = par_list,
q = q

)
save(out, file = "RData/loess.RData")

For each value of prep, we desire the median and 5th and 95th percentiles of RRMSEraw,197

RRMSEloess,min, and qopt.198

pct <- apply(out, c(1, 3, 4), quantile, probs = c(0.05, 0.5, 0.95))

Plotting these as functions of prep, we reproduce Fig 3.199
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Fig 4. Reduction in β(t) estimation error with optimal loess smoothing.

In the manuscript, we report the minimum percentage reduction in RRMSE across all200

simulations. Borrowing our earlier notation, this is the minimum value of201

100×
(

1− RRMSEloess,min

RRMSEraw

)
. (6)

apply(out, 4, function(x) {
min(100 * (1 - x[, , "rrmse_loess_min"] / x[, , "rrmse_raw"]), na.rm = TRUE)

})

## S SI
## 46.38507 17.47202

We also report the median value of qopt across all simulations for which prep ≥ 0.1.202
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qstar <- apply(out[prep >= 0.1, , "qopt", ], 3, quantile,
probs = 0.5,
names = FALSE

)
qstar

## S SI
## 65 53

In our remaining analysis, we set q = q∗ when smoothing any βk time series, taking203

q∗ =

{
65 with the S method,
53 with the SI method.

(7)

For a given time series, this setting may not be optimal (q∗ 6= qopt), but can be justified, as204

we explain in the sections to follow.205

S5 Sensitivity to data-generating parameters206

Error in estimates of the seasonally forced β(t) (Eq (5)) from simulated reported incidence207

data is a function of data-generating parameters, given by208

θ = (〈β〉, α, ε, N̂0, S0, I0, νc, µc, tgen, prep, trep, t0, ∆t, n) . (8)

In order to measure the sensitivity of β(t) estimation error to θ, we must define grids of209

parameter values. For this task, it is helpful to associate with each parameter a reference210

value:211

〈β〉 β∗

α 0.08
ε 0.5

N̂0 106

S0 S∗

I0 I∗

νc 0.04 year−1

µc 0.04 year−1

tgen 13 days

t0 2000 years
∆t 1 week
n 1042

prep p∗rep
trep t∗rep

(9)

Here, S∗ and I∗ are the values of S and I at a point very near the attractor of system212

(1) with constant vital rates νc and µc and a seasonally forced transmission rate (Eq (5)).213

It follows that S∗ and I∗ vary with parameters of the system (specifically, 〈β〉, α, νc, µc,214

and tgen). See §S1.1 for details on how S∗ and I∗ are obtained using make_par_list()215

given values for other parameters.216

β∗ is the value of 〈β〉 that satisfies Eq (4) with R0 = 20, N̂0 = 106,217

νc = µc = 0.04 year−1, and tgen = γ−1 = 13 days:218

β∗ = 20 · 0.04 year−1

106 · 0.04 year−1
· ( 1

13
day−1 + 0.04 year−1)

≈ 5.6234× 10−4 year−1 .

(10)
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Finally,219

p∗rep =

{
1 for analysis without OE
0.25 for analysis with OE

t∗rep =

{
0 weeks for analysis without OE
2 weeks for analysis with OE

(11)
where an “analysis with OE” is one in which we desire simulations of reported incidence220

with observation error.221

S5.1 Sensitivity to R0 and α222

Fig 5 in the manuscript describes how β(t) estimation error depends on features of β(t)223

itself. For the seasonally forced β(t) (Eq (5)), these features are the mean 〈β〉 and224

amplitude α. Fig 5 casts error as a function of R0 and α, rather than 〈β〉 and α, but this225

formulation is equivalent, because R0 is proportional to 〈β〉 (Eq (4)). It is also more226

interpretable: unlike 〈β〉, R0 has a natural epidemiological meaning and is dimensionless227

(its numerical value does not depend on the chosen units of time).228

To reproduce Fig 5, we set all data-generating parameters other than 〈β〉 and α equal229

to their reference value in (9). We consider the grid of (R0, α) pairs with levels230

R0 = 2, 3, . . . , 32 and α = 0, 0.01, . . . , 0.2—defining 〈β〉 for each R0 using Eq (4)—and231

simulate 1000 reported incidence time series using each of these 31× 21 parametrizations.232

Rnaught <- seq(2, 32, by = 1)
alpha <- seq(0, 0.2, by = 0.01)
nsim <- 1000

We estimate β(t) from each simulated reported incidence time series, without input error,233

fit a loess curve βloess(t; q) to the raw estimate βk, and record the RRMSE in βloess(tk; q).234

For comparison, this is done using both the S and SI methods. We fix q = q∗ (Eq (7))235

independently of the βk time series being smoothed. (See §S5.3 for discussion of the236

consequences of using fixed q in this analysis.)237

This algorithm is implemented in our function test_s2dgbeta() (“sensitivity to238

data-generating β(t)”), which takes as arguments239

� par_list_ref , a list containing the reference values of all data-generating240

parameters;241

� Rnaught and alpha , numeric vectors specifying the desired grid of (R0, α) pairs;242

� with_dem_stoch , a logical scalar indicating whether simulations should account for243

demographic stochasticity;244

� nsim , the number of simulations to perform using each (R0, α) pair;245
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� loess_par , a numeric vector of length 2 specifying the value of the loess smoothing246

parameter q used when fitting loess curves to raw transmission rate estimates βk.247

loess_par[1] is used with the S method. loess_par[2] is used with the SI248

method.249

s2dgbeta() returns a 4-dimensional array, whose [i, j, k, m] th entry is the RRMSE250

in an estimate of β(t) (S method if m = 1 , SI method if m = 2 ) from simulation k of251

nsim using the (i, j)th (R0, α) grid point.252

First, we consider simulations with environmental stochasticity (ε = 0.5), without253

demographic stochasticity, and without observation error (prep = 1, trep = 0).254

rrmse_esxxxx <- test_s2dgbeta(
par_list_ref = make_par_list(epsilon = 0.5, prep = 1, trep = 0),
Rnaught = Rnaught,
alpha = alpha,
with_dem_stoch = FALSE,
nsim = nsim,
loess_par = qstar

)
save(rrmse_esxxxx, file = "RData/s2dgbeta_esxxxx.RData")

Second, we consider simulations with environmental stochasticity (ε = 0.5), with255

demographic stochasticity, and without observation error (prep = 1, trep = 0).256

rrmse_esdsxx <- test_s2dgbeta(
par_list_ref = make_par_list(epsilon = 0.5, prep = 1, trep = 0),
Rnaught = Rnaught,
alpha = alpha,
with_dem_stoch = TRUE,
nsim = nsim,
loess_par = qstar

)
save(rrmse_esdsxx, file = "RData/s2dgbeta_esdsxx.RData")

Third, we consider simulations with environmental stochasticity (ε = 0.5), with257

demographic stochasticity, and with observation error (prep = 0.25, trep = 2 weeks).258

rrmse_esdsoe <- test_s2dgbeta(
par_list_ref = make_par_list(epsilon = 0.5, prep = 0.25, trep = 2),
Rnaught = Rnaught,
alpha = alpha,
with_dem_stoch = TRUE,
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nsim = nsim,
loess_par = qstar

)
save(rrmse_esdsoe, file = "RData/s2dgbeta_esdsoe.RData")

We apply get_rrmse_50pct() to the output of test_s2dgbeta() in order to259

compute the median RRMSE in each set of nsim estimates of β(t).260

get_rrmse_50pct <- function(rrmse, method) {
apply(rrmse[, , , method], c(1, 2), quantile, probs = 0.5)

}

get_rrmse_50pct() takes as arguments rrmse (any of the three arrays defined earlier)261

and method ( "S" or "SI" ). It returns an array whose [i, j] th entry is the median262

RRMSE for the (i, j)th (R0, α) grid point.263

Fig 5 displays heatmaps of median RRMSE obtained from the output of264

get_rrmse_50pct() . There is one heatmap for each choice of the arguments rrmse and265

method (3× 2 heatmaps in total). Navy fill indicates median RRMSE less than the266

minimum shown on the colour scale.267
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Fig 5. Sensitivity of β(t) estimation error to the mean 〈β〉 and amplitude α of seasonal
forcing. The 〈β〉 axis has been scaled to measure the basic reproduction number R0

(Eq (4)).

26



S5.2 Sensitivity to S0, I0, νc, µc, tgen, and prep268

Fig 6 describes how β(t) estimation error varies as a function of data-generating269

parameters other than 〈β〉 and α: the initial states S0 and I0, vital rates νc and µc, mean270

generation interval tgen, and case reporting probability prep.271

To reproduce Fig 6, we explore lines in the data-generating parameter space by272

assigning all parameters their reference value in (9), except a focal parameter (one of S0,273

I0, νc, µc, tgen, and prep), which we assign each of 41 values logarithmically spaced between274

1
4
and 4 times its reference value. Using each of these 5× 41 or 6× 41 parametrizations (we275

fix prep = 1 when we desire simulations without observation error), we simulate 1000276

reported incidence time series.277

scale_factors <- 2^seq(-2, 2, length.out = 41)
nsim <- 1000

We estimate β(t) from each simulated reported incidence time series, without input error,278

fit a loess curve βloess(t; q) to the raw estimate βk, and record the RRMSE in βloess(tk; q).279

For comparison, this is done using both the S and SI methods. We fix q = q∗ (Eq (7))280

independently of the βk time series being smoothed. (See §S5.3 for discussion of the281

consequences of using fixed q in this analysis.)282

This algorithm is implemented in our function test_s2dgpars() . (“sensitivity to283

data-generating parameters”). Its arguments are identical to those of test_s2dgpars() ,284

except, instead of Rnaught and alpha , test_s2dgpars() has arguments285

� pars_to_vary , a character vector listing the data-generating parameters to be286

treated as a focal parameter;287

� scale_factors , a numeric vector listing the factors by which the reference value of288

each focal parameter is scaled to obtain the grid of values considered for that289

parameter.290

test_s2dgpars() returns a 4-dimensional array, whose [i, j, k, m] th entry is the291

RRMSE in an estimate of β(t) (S method if m = 1 , SI method if m = 2 ) from simulation292

k of nsim in which pars_to_vary[j] is assigned its reference value times293

scale_factors[i] .294

First, we consider simulations with environmental stochasticity (ε = 0.5), without295

demographic stochasticity, and without observation error (prep = 1, trep = 0 weeks).296

rrmse_esxxxx <- test_s2dgpars(
pars_to_vary = c("S0", "I0", "nu", "mu", "tgen"),
par_list_ref = make_par_list(epsilon = 0.5, prep = 1, trep = 0),
scale_factors = scale_factors,
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with_dem_stoch = FALSE,
nsim = nsim,
loess_par = qstar

)
save(rrmse_esxxxx, file = "RData/s2dgpars_esxxxx.RData")

Second, we consider simulations with environmental stochasticity (ε = 0.5), with297

demographic stochasticity, and without observation error (prep = 1, trep = 0 weeks).298

rrmse_esdsxx <- test_s2dgpars(
pars_to_vary = c("S0", "I0", "nu", "mu", "tgen"),
par_list_ref = make_par_list(epsilon = 0.5, prep = 1, trep = 0),
scale_factors = scale_factors,
with_dem_stoch = TRUE,
nsim = nsim,
loess_par = qstar

)
save(rrmse_esdsxx, file = "RData/s2dgpars_esdsxx.RData")

Third, we consider simulations with environmental stochasticity (ε = 0.5), with299

demographic stochasticity, and with observation error (prep = 0.25, trep = 2 weeks).300

rrmse_esdsoe <- test_s2dgpars(
pars_to_vary = c("S0", "I0", "nu", "mu", "tgen", "prep"),
par_list_ref = make_par_list(prep = 0.25, trep = 2),
scale_factors = scale_factors,
with_dem_stoch = TRUE,
nsim = nsim,
loess_par = qstar

)
save(rrmse_esdsoe, file = "RData/s2dgpars_esdsoe.RData")

In this third analysis, when S0, I0, νc, µc, or tgen is varied, prep is fixed and assigned its301

reference value, 0.25. When prep itself is varied, we consider for prep each value in the vector302

scale_factors * 0.25 .303

As with test_s2dgbeta() , we apply get_rrmse_50pct() to the output of304

test_s2dgpars() in order to compute the median RRMSE in each set of nsim estimates305

of β(t).306

Fig 6 displays the output of get_rrmse_50pct() , plotting median RRMSE as a307

function of each data-generating parameter. To be precise, the horizontal axis measures the308

ratio of the data-generating and reference values of the focal parameter, which ranges from309
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1
4
to 4 regardless of the focal parameter. This allows results for different parameters to be310

compared in one panel.311
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Fig 6. Sensitivity of β(t) estimation error to data-generating parameters other than 〈β〉
and α.
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S5.3 A note on smoothing312

To generate Figs 5 and 6, we fixed q = q∗ (Eq (7)) when fitting loess curves βloess(t; q) to313

raw transmission rate estimates βk. For a given βk time series, this setting may not have314

been optimal (q∗ 6= qopt), meaning that the RRMSE calculated for βloess(tk; q) was greater315

with q = q∗ than it would have been had we found qopt and used q = qopt.316

This is potentially problematic, because sensitivity to data-generating parameters is317

mediated by propagation of noise from the simulated reported incidence data to βk. We318

may have observed less sensitivity to a parameter (for example, tgen in Fig 6) had we319

smoothed more when there was extreme noise in βk (i.e., had we set q = qopt when320

qopt > q∗). We did not do this, because finding qopt for each of the 5× 106 time series321

considered by Figs 5 and 6 would have increased the total computation time by a factor of322

100. Hence Figs 5 and 6 may overestimate the sensitivity of β(t) estimation error to323

data-generating parameters.324

Nevertheless, we expect the quantitative effect of choosing q∗ over qopt to be relatively325

small. Consider the graph corresponding to tgen in the right panel of Fig 6C, which displays326

median RRMSE close to (0.12, 0.03, 0.045) when tgen is (2−1.5, 1, 21.5) · 13 days, respectively327

(13 days being the reference value). For these values of tgen, it is instructive to compare (i)328

simulated reported incidence time series Ck, (ii) raw transmission rate estimates βk from329

Ck, and (iii) the corresponding loess estimates βloess(t; q
∗) and βloess(t; qopt).330

S5.3.1 Ck and βk for tgen = (2−1.5,1,21.5) · 13 days331

First, we simulate a reported incidence time series Ck using each of tgen = (2−1.5, 1, 21.5) · 13332

days. All three simulations account for environmental stochasticity (ε = 0.5), demographic333

stochasticity, and observation error (prep = 0.25).334

## List of reference parameter values
par_list_ref <- make_par_list(epsilon = 0.5, prep = 0.25)

## List of lists of data-generating parameter values
par_list <- mapply(make_par_list,

tgen = 2^c(-1.5, 0, 1.5) * par_list_ref$tgen,
beta_mean = par_list_ref$beta_mean,
Rnaught = NA,
epsilon = 0.5,
prep = 0.25,
SIMPLIFY = FALSE

)

## List of data frames containing time series data
df <- mapply(make_data,
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par_list = par_list,
n = 20 * 365 / 7,
with_dem_stoch = TRUE,
seed = c(1836, 6183, 3618),
SIMPLIFY = FALSE

)

Plotting each Ck time series yields the following result. Note that we are simply plotting335

df[[i]]$C for i = 1, 2, 3.336
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We see that a period-doubling bifurcation occurs between tgen = 13 days and337

tgen = 2−1.5 · 13 days, with Ck attaining a much smaller minimum in the time series with a338

2-year cycle (generated by tgen = 2−1.5 · 13 days).339

Due to much closer approaches to zero by incidence and prevalence with340

tgen = 2−1.5 · 13 days, noise in Ck is amplified to a much greater extent in the raw341

transmission rate estimate βk. We show this by applying the SI method without input342

error to estimate the underlying, seasonally forced transmission rate β(t) (Eq (5))—which343

was the same across simulations—from each Ck time series.344

## List of data frames containing estimation output
df_est <- mapply(estimate_beta_SI,

df = df,
par_list = par_list,
SIMPLIFY = FALSE

)

Plotting βk shows that, indeed, propagation of noise from Ck to βk is much more severe345

when tgen = 2−1.5 · 13 days. Note that we are simply plotting df_est[[i]]$beta , scaled346

by with(par_list, 1/beta_mean) , for i = 1, 2, 3.347

31



0 5 10 15 20

0.75

1.00

1.25

Time (years)

β
(t
)/
〈β
〉

tgen = 2−1.5 · 13 days tgen = 13 days tgen = 21.5 · 13 days

We calculate the RRMSE in each of these estimates as follows.348

rrmse_raw <- mapply(
function(x, y) compute_rrmse(x$beta, y$beta),
x = df,
y = df_est

)
rrmse_raw

## [1] 0.26917391 0.06715921 0.05893578

S5.3.2 βloess(t; q
∗) and βloess(t; qopt) for tgen = (2−1.5,1,21.5) · 13 days349

All three of these estimates of β(t) are greatly improved with loess smoothing. First, we350

consider smoothing all three βk time series with q = q∗.351

## List of `loess` objects encoding the fitted loess curves
loess_fit <- lapply(df_est,

function(x) {
loess(

formula = beta ~ t,
data = x,
span = qstar["SI"] / nrow(x),
degree = 2,
na.action = "na.exclude",
control = loess.control(surface = "direct")

)
}

)
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Plotting these loess estimates βloess(t; q
∗) yields the following result. Note that we are352

plotting (with a scaling) predict(loess_fit[[i]]) for i = 1, 2, 3.353
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We calculate the RRMSE in each of these estimates as follows.354

rrmse_loess_qstar <- mapply(
function(x, y) compute_rrmse(x$beta, predict(y)),
x = df,
y = loess_fit

)
rrmse_loess_qstar

## [1] 0.10502016 0.03356297 0.03478337

Next, we consider smoothing each βk time series with q = qopt. Of course, we must first355

find qopt.356

q <- 10:150

## Array of values of RRMSE. Entry `[i, j]` contains the RRMSE
## in the loess estimate obtained from `df_est[[j]]$beta` using
## `q[i]` for the loess smoothing parameter.
rrmse_loess <- mapply(

function(x, y) {
sapply(q, function(z) {

loess_fit <- loess(
formula = beta ~ t,
data = y,
span = z / nrow(y),
degree = 2,
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na.action = "na.exclude",
control = loess.control(

surface = "direct",
statistics = "none"

)
)
compute_rrmse(x$beta, predict(loess_fit))

})
},
x = df, y = df_est, SIMPLIFY = TRUE

)
dim(rrmse_loess)

## [1] 141 3

## Optimal value for loess smoothing parameter is that
## which minimizes RRMSE
qopt <- apply(rrmse_loess, 2, function(x) q[which.min(x)])
qopt

## [1] 150 50 52

## List of `loess` objects encoding the fitted loess curves
loess_fit <- mapply(

function(x, y) {
loess(

formula = beta ~ t,
data = x,
span = y / nrow(x),
degree = 2,
na.action = "na.exclude",
control = loess.control(surface = "direct")

)
},
x = df_est, y = qopt, SIMPLIFY = FALSE

)

As expected, the βk time series corresponding to tgen = 2−1.5 · 13 days requires the most357

smoothing (greatest qopt). Plotting these optimal loess estimates βloess(t; qopt) yields the358

following result. Once again, we are plotting (with a scaling) predict(loess_fit[[i]])359

for i = 1, 2, 3.360
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The RRMSE in each of these estimates is calculated as before.361

rrmse_loess_qopt <- mapply(
function(x, y) compute_rrmse(x$beta, predict(y)),
x = df,
y = loess_fit

)
rrmse_loess_qopt

## [1] 0.09848373 0.03346263 0.03475891

S5.3.3 Discussion362

Comparing βk, βloess(t; q
∗), and βloess(t; qopt) for each value of tgen, we find that when noise363

in βk is severe (in this example, when tgen = 2−1.5 · 13 days), even an optimal degree of364

smoothing cannot recover the true β(t) from the noise, due to underlying bias. No amount365

of variance reduction can correct the error due to bias. For this reason, smoothing βk using366

q∗ for the loess smoothing parameter q was never much worse than smoothing using the367

optimal value qopt, even when q∗ � qopt (as was the case with tgen = 2−1.5 · 13 days):368

## Summary of results
data.frame(

rrmse_raw,
qstar = as.numeric(qstar["SI"]),
rrmse_loess_qstar,
qopt,
rrmse_loess_qopt

)
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## rrmse_raw qstar rrmse_loess_qstar qopt rrmse_loess_qopt
## 1 0.26917391 53 0.10502016 150 0.09848373
## 2 0.06715921 53 0.03356297 50 0.03346263
## 3 0.05893578 53 0.03478337 52 0.03475891

This suggests that the decision to fix q = q∗ when generating Figs 5 and 6 does not greatly369

mischaracterize the effect of parameters like tgen on β(t) estimation error. Had we found370

qopt for each raw estimate βk, we would have calculated quantitatively similar RRMSE.371

S6 Sensitivity to error in input parameters372

Error in estimates of the seasonally forced transmission rate (Eq (5)) from simulated373

reported incidence data is also a function of the user-specified values of input parameters,374

given by375

θ′ = (S ′0, I
′
0, ν

′
c, µ

′
c, t
′
gen, p

′
rep, t

′
rep) . (12)

Input error arises when the user’s input mischaracterizes the data-generating process. In376

our simulated data setting, this occurs when the specified value of an input parameter377

differs from the value used to simulate data (e.g., when S ′0 6= S0, and so on).378

Fig 7A in the manuscript describes how β(t) estimation error varies as a function of379

input error. To reproduce Fig 7A, we simulate 1000 reported incidence time series using the380

reference values in (9) for all data-generating parameters. From each reported incidence381

time series, we estimate the underlying β(t) using the S and SI methods with different382

errors in the input. Specifically, we explore lines in the input parameter space by assigning383

all input parameters their true (data-generating) value, except a focal parameter (one of384

S0, I0, νc, µc, tgen, prep, and trep), which we assign each of 41 values logarithmically spaced385

between 1
4
and 4 times its true value. Hence, in total, we consider 7× 41 parametrizations386

of the S and SI methods. We fit loess curves βloess(t; q) to each raw transmission rate387

estimate βk generated in this process, fixing q = q∗ (Eq (7)), and record the RRMSE in388

βloess(tk; q
∗) (See §S6.1 for discussion of the consequences of using fixed q in this analysis.)389

The above algorithm is implemented in our function test_s2inpars() (“sensitivity to390

input parameters”), which takes as arguments391

� par_list_ref , a list containing values for all data-generating parameters, used in392

all simulations;393

� pars_to_vary , a character vector listing the input parameters to be treated as a394

focal parameter;395

� scale_factors , a numeric vector listing the factors by which the data-generating396

value of each focal parameter is scaled to obtain the grid of input values considered397

for that parameter;398
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� with_dem_stoch , a logical scalar indicating whether simulations should account for399

demographic stochasticity;400

� nsim , the number of simulations to perform;401

� loess_par , a numeric vector of length 2 specifying the value of the loess smoothing402

parameter q used when fitting loess curves to raw transmission rate estimates βk.403

loess_par[1] is used with the S method. loess_par[2] is used with the SI404

method.405

test_s2inpars() returns a 4-dimensional array, whose [i, j, k, m] th entry is the406

RRMSE in the estimate of β(t) from simulation k of nsim , generated by assigning407

pars_to_vary[j] its true (data-generating) value times scale_factors[i] in the input408

to the S ( m = 1 ) or SI ( m = 2 ) method.409

We reproduce Fig 7A starting with the following call to test_s2inpars() .410

rrmse_esdsoe <- test_s2inpars(
pars_to_vary = c("S0", "I0", "nu", "mu", "tgen", "prep", "trep"),
par_list_ref = make_par_list(epsilon = 0.5, prep = 0.25, trep = 2),
scale_factors = 2^seq(-2, 2, length.out = 41),
with_dem_stoch = TRUE,
nsim = 1000,
loess_par = qstar

)
save(rrmse_esdsoe, file = "RData/s2inpars_esdsoe.RData")

Fig 7A plots the median RRMSE obtained with each parametrization of the SI method.411

We retrieve medians from rrmse_esdsoe in the next code chunk. Note that some412

parametrizations cause the SI method to fail. For example, modest underestimation of νc413

by ν ′c or of prep by p′rep causes Sk—the SI method estimate of S(tk)—to become negative.414

When this happens, test_s2inpars() assigns RRMSE the value NA . Below, we415

calculate the median RRMSE only for those parametrizations that yield a full set of 1000416

values of RRMSE (no NA s).417

## Preallocate memory for median RRMSE:
## one value for each parametrization of the SI method
rrmse_50pct <- NA * rrmse_esdsoe[, , 1, "SI"]
dim(rrmse_50pct)

## [1] 41 7

## Define vector indexing parametrizations for which RRMSE

37



## was never `NA`
ind_no_na <- which(

apply(!is.na(rrmse_esdsoe[, , , "SI"]), c(1, 2), all)
)

## Calculate median RRMSE for the indexed parametrizations
rrmse_50pct[ind_no_na] <- sapply(ind_no_na, function(i) {

ai <- arrayInd(i, dim(rrmse_50pct))
quantile(rrmse_esdsoe[ai[1], ai[2] , , "SI"],

probs = 0.5,
na.rm = TRUE

)
})

Fig 7B repeats the analysis from Fig 7A concerning mis-specification of S0, except with418

initially erroneous estimates of S0 corrected using peak-to-peak iteration (PTPI; see §S7419

below for an actual illustration of this technique) before being passed to the S and SI420

methods. We generate results with PTPI by repeating the last call to test_s2inpars()421

with the additional argument ptpi_iter = 25 , indicating that PTPI should be employed422

and stopped after 25 iterations. Since PTPI only affects results for S0, we set423

pars_to_vary = "S0" .424

rrmse_esdsoe_ptpi <- test_s2inpars(
pars_to_vary = "S0",
par_list_ref = make_par_list(epsilon = 0.5, prep = 0.25, trep = 2),
scale_factors = 2^seq(-2, 2, length.out = 41),
with_dem_stoch = TRUE,
nsim = 1000,
loess_par = qstar,
ptpi_iter = 25

)
save(rrmse_esdsoe_ptpi, file = "RData/s2inpars_esdsoe_ptpi.RData")

There are no issues with RRMSE being assigned NA in this analysis, so calculating median425

RRMSE is more straightforward.426

rrmse_ptpi_50pct <- apply(
rrmse_esdsoe_ptpi[, "S0", , "SI"], 1, quantile,
probs = 0.5,
names = FALSE

)
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We reproduce Fig 7 by plotting median RRMSE—saved in rrmse_50pct and427

rrmse_ptpi_50pct—as a function of the ratio of the specified value of the focal428

parameter to the true (data-generating) value.429
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Fig 7. Sensitivity of β(t) estimation error to the user-specified values of input parameters.

S6.1 A note on smoothing430

The exact choice of the loess smoothing parameter q in this analysis is not critical, because431

error in the raw transmission rate estimate βk is primarily due to bias caused by432

mis-specified input parameters. Moderate oversmoothing or undersmoothing of βk has a433

negligible effect on RRMSE when βk is extremely biased. (Fig 8 in the manuscript shows434

this clearly for the case of mis-specified S0.) Hence the decision to fix q = q∗ (Eq (7)) as435

done here does not have a visible quantitative effect.436

S7 Estimating S0 via PTPI: Example437

Fig 8 in the manuscript illustrates the use of peak-to-peak iteration (PTPI) to estimate the438

initial number of susceptible individuals S0 = S(t0) from times series Zk, Bk, and µk of439

(estimated) incidence, births, and the per capita natural mortality rate. The PTPI440

algorithm relies on the following:441

(a) Periodicity of Zk, meaning that Zk displays recurrent epidemics.442

(b) Accuracy of Zk, Bk, and µk. Systematic errors in these time series bias the443

reconstruction of susceptibles by PTPI, and ultimately the estimate of S0 to which444

the iterations converge. This makes sense, given that susceptible dynamics are the445

direct result of imbalance between susceptible recruitment through birth and446

susceptible depletion through infection and death.447
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To reproduce Fig 8, we simulate a reported incidence time series Ck with known448

underlying S0 (to be estimated).449

## List of data-generating parameter values
par_list <- make_par_list(epsilon = 0.5, prep = 0.25)

## Data frame containing time series data
df <- make_data(

par_list = par_list,
n = 20 * 365 / 7,
with_dem_stoch = TRUE,
seed = 1350

)

## True value of `S0` to be estimated
df$S[1]

## [1] 54052

We estimate true incidence Z from reported incidence Ck as in the SI method:450

Z(tk) ≈ Zk = 1
prep

Ck+r , r =
[trep]∆t

∆t
, . (13)

We do this using the true (data-generating) values of prep and trep, so that Zk estimates Z451

without systematic error. (We consider this ideal case in order to demonstrate the validity452

of the PTPI algorithm. The sensitivity of the method to input error is not explored here453

explicitly, but is likely captured by the expressions for Err(Sk, ξ ← ωξ) derived in §2.7.2 of454

the manuscript.)455

## Time series of estimated incidence
Z <- estimate_beta_SI(df, par_list)$Z

We will pass this Zk time series to the PTPI algorithm. The complete algorithm consists of456

a truncation step, described in Box 4 in the manuscript, followed by an iteration step,457

described in Box 5 in the manuscript. Below, we explain their implementation in R,458

generating Fig 8 in the process.459

S7.1 Truncation step460

The goal of the truncation step is to find the time ta of the first peak in Zk and the time tb461

of the last peak occurring at the same phase of the cycle. Here, Zk is a central moving462

average applied to the Zk time series to remove unwanted noise. (Noise creates “peaks” in463

Zk that we wish to ignore.)464
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Our function get_peak_times() automates the task of (i) applying a central moving465

average to any equally spaced, (roughly) periodic time series, then (ii) finding peak times.466

It takes as arguments467

� x , a numeric vector specifying an equally spaced, (roughly) periodic time series;468

� period , a numeric scalar specifying the period of x in units of the observation469

interval;470

� bw_mavg , an integer scalar (a bandwidth) indicating that the central moving average471

applied to x should include 2 * bw_mavg + 1 points;472

� bw_peakid , an integer scalar (a bandwidth) indicating that x_mavg[i] should be473

considered a peak if and only if x_mavg[i] > x_mavg[j] for all j such that474

0 < |i− j| < bw_peakid .475

In the last item above, x_mavg is a vector of length length(x) containing the central476

moving average applied to x . x_mavg[i] is equal to477

mean(x[(i-bw_mavg):(i+bw_mavg)]) for all i from bw_mavg+1 to length(x)-bw_mavg ,478

and equal to NA everywhere else (i.e., at the the edges).479

get_peak_times() returns a list containing x_mavg and two index vectors all and480

phase . all indexes all peaks in x_mavg , while phase indexes only those peaks in phase481

with the first peak (and is therefore a subset of all ).482

Before we construct a call to get_peak_times() , we must ascertain that our time483

series Zk of estimated incidence is roughly periodic and determine the period. Plotting Zk,484

it is clear that it is periodic with a 1-year cycle.485

0 5 10 15 20
0

500

1000

1500

2000

2500

Time (years)

Z
(t
)

In general, it may be helpful to inspect the power spectrum of Zk to determine the period,486

but we do not do this here.487

We locate the peaks in Zk with the following call to get_peak_times() .488
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## List of index vectors for peaks in incidence time series
peaks <- get_peak_times(

x = Z,
period = with(par_list, (365 / 7) / dt_weeks),
bw_mavg = 6,
bw_peakid = 8

)

## All peaks
peaks$all[1:10]

## [1] 61 118 171 218 274 322 383 429 478 539

## All peaks in phase with first
peaks$phase[1:10]

## [1] 61 118 171 218 274 322 383 429 478 539

Above, we assigned period the value of 1 year in units of the observation interval. We489

chose bandwidths bw_mavg = 6 and bw_peakid = 8 using an simple tuning procedure.490

First, we chose the smallest value of bw_mavg that eliminated noise near peaks in Zk. This491

was determined by visual inspection of the moving average Zk ( peaks$x_mavg ). Next, we492

chose an arbitrary value of bw_peakid greater than 5 and less than half of period . This493

ensured that the definition of a peak was meaningful (a point greater than many of its494

nearest neighbours) and that peaks were not being compared against other peaks. The495

exact choice of bw_peakid tends not to be critical provided Zk is smooth near the peaks.496

Note that the two index vectors all and phase returned by get_peak_times() are497

identical. In this example, all peaks in Zk are in phase, because the time between peaks is498

precisely the period (1 year). This is not true in general. For example, a 2-year cycle can499

have major and minor peaks that are out of phase. In this case, all would index both500

major and minor peaks, but phase would index either minor peaks or major peaks (but501

not both).502

Plotting true incidence Z ( df$Z ), estimated incidence Zk ( Z ), and the central moving503

average Zk ( peaks$x_mavg ), as well as indicators of the times of peaks in Zk in phase504

with the first peak ( peaks$phase ), we reproduce Fig 8A (see below). Fig 8A verifies that505

all of the peaks of interest were identified by get_peak_times() .506

We conclude the truncation step of the PTPI algorithm by retrieving the index of the507

first peak in Zk and the index of the last peak occurring at the same phase of the cycle.508
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## Index of first peak
a <- with(peaks, phase[1])
## Index of last peak in phase with first peak
b <- with(peaks, phase[length(phase)])

The precise times ta and tb of these peaks are given by df$t[c(a, b)] .509

S7.2 Iteration step510

The goal of the iteration step is to use times series Zk, Bk, and µk of (estimated) incidence,511

births, and the per capita natural mortality rate to iteratively update an initial estimate of512

S0 = S(t0). This updating procedure depends on the result of the truncation step. The513

iteration step is implemented in our function ptpi() , which takes as arguments514

� df , a data frame with columns Z , B , and mu specifying time series Zk, Bk and µk515

of (estimated) incidence, births, and the per capita natural morality rate;516

� par_list , a list with elements hatN0 , nu , and mu , specifying a population size517

N̂0 and constant vital rates νc and µc, which are used to create mock vital data in the518

event that df does not possess columns B or mu ( ptpi() will set Bk = νcN̂0∆t519

and µk = µc for all k);520

� a , an integer scalar indicating the index of the first peak in df$Z ;521

� b , an integer scalar indicating the index of the last peak in df$Z in phase with the522

first peak;523

� initial_S0_est , a numeric scalar indicating an initial estimate of S0;524

� iter , an integer scalar indicating the number of iterations to perform before525

stopping.526

We carry out the iteration step with the following call to ptpi() . For this example,527

we suppose that our initial guess of S0 is 4 times greater than its true value, and ask for528

our estimate to be updated 25 times. We provide the peak indices a and b obtained in529

the truncation step (see above). Finally, in the first argument, we specify our incidence530

time series and nothing else, and in the second argument, we specify the data-generating531

values of N̂0, νc, and µc. This means that ptpi() will construct mock vital data without532

any systematic error and use it in conjunction with the supplied incidence time series.533

## List containing PTPI output
ptpi_out <- ptpi(

df = data.frame(Z),
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par_list = par_list,
a = a,
b = b,
initial_S0_est = df$S[1] * 4,
iter = 25

)

ptpi() returns a list with elements534

� S_mat , a numeric matrix with nrow(df) rows and iter+1 columns, containing the535

susceptible time series generated in each iteration;536

� S0 , a numeric vector of length iter+1 listing the initial estimate of S0 = S(t0) and537

the estimate obtained in each iteration (equivalent to S_mat[1, ] );538

� S0_final , a numeric scalar indicating the final estimate of S0 (equivalent to539

S0[length(S0)] );540

� SA , a numeric vector of length iter+1 listing the initial estimate of Sa = S(ta)541

(equal to the initial estimate of S0) and the estimate obtained in each iteration542

(equivalent to S_mat[a, ] );543

� SA_final , a numeric scalar indicating the final estimate of Sa (equivalent to544

SA[length(SA)] ).545

Examining ptpi_out , we find that the iterations converged to an accurate estimate of S0.546

## Ordered estimates of `S0`
ptpi_out$S0

## [1] 216208.00 138745.04 94654.54 73216.89 62793.50 57725.45 55261.27
## [8] 54063.13 53480.58 53197.33 53059.61 52992.64 52960.09 52944.26
## [15] 52936.56 52932.82 52931.00 52930.11 52929.68 52929.47 52929.37
## [22] 52929.32 52929.30 52929.29 52929.28 52929.28

## Relative error in final estimate of S0
(ptpi_out$S0_final - df$S[1]) / df$S[1]

## [1] -0.02077116

Fig 8B (see below) displays the iter+1 susceptible time series Sk obtained in each547

iteration of PTPI. To reproduce Fig 8B, we plot the columns of ptpi_out$S_mat , scaled548

by with(par_list, 1/N0) .549
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## Matrix with ordered susceptible time series as columns
ptpi_out$S_mat[1:10, 1:5]

## [,1] [,2] [,3] [,4] [,5]
## [1,] 216208 138745.0 94654.54 73216.89 62793.50
## [2,] NA 138657.8 94601.07 73179.87 62764.47
## [3,] NA 138394.6 94371.71 72966.93 62559.52
## [4,] NA 138099.7 94110.54 72722.18 62322.74
## [5,] NA 137625.1 93669.64 72297.67 61906.22
## [6,] NA 137078.8 93157.10 71801.53 61418.04
## [7,] NA 136581.0 92692.94 71353.74 60978.22
## [8,] NA 136327.4 92473.04 71150.21 60782.64
## [9,] NA 135470.3 91649.54 70343.06 59983.44
## [10,] NA 134793.7 91006.60 69716.46 59364.78

Note that the first column contains NA , but only up to index a (not shown), where the550

first iteration starts.551

Fig 8C (see below) displays the SI method estimate of the transmission rate552

corresponding to each estimate of S0 listed in ptpi_out$S0 . To reproduce Fig 8C, we pass553

each estimate of S0 to estimate_beta_SI() , specifying the true (data-generating) value554

of every other input parameter. We fit a loess curve βloess(t; q
∗) to each raw transmission555

rate estimate βk, and record βloess(tk; q
∗) as a column in a matrix beta_mat . Finally we556

plot the columns of beta_mat , scaled by with(par_list, 1/beta_mean) .557

## Matrix with ordered transmission rate time series as columns
beta_mat <- sapply(ptpi_out$S0,

function(x) {
par_list_with_err <- within(par_list, S0 <- x)
df_est <- estimate_beta_SI(df, par_list_with_err)
loess_fit <- loess(

formula = beta ~ t,
data = df_est,
span = qstar["SI"] / nrow(df_est),
degree = 2,
na.action = "na.exclude",
control = loess.control(surface = "direct")

)
predict(loess_fit)

}
)
beta_mat[1:10, 1:5]

45



## [,1] [,2] [,3] [,4] [,5]
## [1,] NA NA NA NA NA
## [2,] 2.978043e-06 4.632868e-06 6.774538e-06 8.736727e-06 1.016727e-05
## [3,] 2.925529e-06 4.557144e-06 6.675664e-06 8.623999e-06 1.004922e-05
## [4,] 2.875193e-06 4.484526e-06 6.580771e-06 8.515711e-06 9.935726e-06
## [5,] 2.827043e-06 4.415025e-06 6.489875e-06 8.411877e-06 9.826795e-06
## [6,] 2.781082e-06 4.348645e-06 6.402980e-06 8.312501e-06 9.722428e-06
## [7,] 2.737311e-06 4.285386e-06 6.320081e-06 8.217575e-06 9.622613e-06
## [8,] 2.695731e-06 4.225250e-06 6.241182e-06 8.127098e-06 9.527348e-06
## [9,] 2.656352e-06 4.168251e-06 6.166301e-06 8.041095e-06 9.436658e-06
## [10,] 2.619180e-06 4.114399e-06 6.095452e-06 7.959580e-06 9.350560e-06
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Fig 8. Example of S(t) and β(t) reconstruction with an overestimate of S0 corrected by
peak-to-peak iteration.

S8 Estimating S0 via PTPI: Convergence558

Fig 9 in the manuscript displays the result of applying PTPI (25 iterations) to estimate S0559

from 1000 realizations of a reported incidence time series, starting from each of two initial560
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guesses: 1
4
and 4 times the true value. The aim of this analysis is to assess the bias and561

variance in the limiting estimate of S0.562

To reproduce Fig 9, we record the estimate obtained at each iteration (for each initial563

guess and simulation) in an array. The following code chunk preallocates space for this564

output and creates a list of parameter values to be used in simulations of reported565

incidence.566

## Array with entry `[i, j, k]` equal to the `i`th estimate of `S0`
## generated from the `j`th initial guess and the `k`th simulated
## reported incidence time series
out <- array(NA, dim = c(26, 2, 1000))

## List of data-generating parameter values
par_list <- make_par_list(epsilon = 0.5, prep = 0.25)

The next code chunk fills in the out array with our desired output and saves it in567

RData/ptpi_convergence.RData .568

for (k in 1:1000) {
## Data frame containing time series data
df <- make_data(

par_list = par_list,
n = 20 * 365 / 7,
with_dem_stoch = TRUE,
seed = k

)

## PTPI: truncation step
Z <- estimate_beta_SI(df, par_list)$Z
peaks <- get_peak_times(

x = Z,
period = with(par_list, (365 / 7) / dt_weeks),
bw_mavg = 6,
bw_peakid = 8

)

## PTPI: iteration step
out[, , k] <- sapply(c(0.25, 4),

function(x) {
ptpi_out <- ptpi(

df = data.frame(Z),
par_list = par_list,
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a = with(peaks, phase[1]),
b = with(peaks, phase[length(phase)]),
initial_S0_est = with(par_list, S0 * x),
iter = 25

)
ptpi_out$S0 # all 26 estimates of `S0` in a vector

}
)

}
attr(out, "par_list") <- par_list
save(out, file = "RData/ptpi_convergence.RData")

We want the median and 5th and 95th percentiles of the estimate of S0 obtained at each569

iteration (for each initial guess).570

pct <- apply(out, c(1, 2), quantile,
probs = c(0.05, 0.5, 0.95)

)

Plotting these as a functions of iteration, we reproduce Fig 9.571
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Fig 9. Convergence of estimates of S0 obtained using peak-to-peak iteration.

In the manuscript, we report the median and 5th and 95th percentiles of the relative572

error in the estimate of S0 obtained in the last iteration (for each initial guess). These are573

calculated as follows.574
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with(par_list, (pct[, 26, ] - S0) / S0)

## [,1] [,2]
## 5% -0.119343123 -0.119343062
## 50% -0.008528768 -0.008528708
## 95% 0.125379218 0.125379276

S9 Appendix: Choice of discretization in the SI method575

The SI method modifies a method presented in [3] by deJonge. Here, we cast the SI576

method and deJonge’s method as two possible algorithms from a set of nine, differing577

according to (i) how578

dS
dt

= ν(t)N̂0 − β(t)SI − µ(t)S , (14a)

dI
dt

= β(t)SI − γI − µ(t)I (14b)

are discretized (forward Euler, backward Euler, or trapezoidal method) in order to estimate579

susceptibles S(t) and infecteds I(t), and (ii) how580

dQ
dt

= β(t)SI (15)

is discretized (forward Euler, backward Euler, or both) in order to estimate the581

transmission rate β(t). (“Both” means that the two estimates of β(t) obtained by forward582

and backward Euler are averaged to generate a final estimate.) DeJonge’s method uses583

forward Euler throughout, whereas the SI method uses the trapezoidal method for Eqs (14)584

and both forward and backward Euler for Eq (15).585

Here, we show that the SI method is more accurate than deJonge’s method and the586

seven other algorithms. We further show that the SI method and deJonge’s method are587

nearly unbiased (asymptotically) in the absence of input error.588

S9.1 Nine discretization schemes589

Our function estimate_beta_SI() takes a third argument method , which must be590

assigned a vector of length 2. method[1] has options "forward" , "backward" , and591

"trapezoid" (default), telling estimate_beta_SI() how to numerically integrate592

Eqs (14). method[2] has options "forward" , "backward" , and "both" , (default)593

telling estimate_beta_SI() how to numerically integrate Eq (15).594
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Eqs (16) below lay out the algorithm carried out by estimate_beta_SI() , conditional595

on method[1] and method[2] .596

Zk ← 1
prep

Ck+r (16a)

Sk ←


(1− µk−1∆t)Sk−1 +Bk − Zk if method[1] = "forward"
Sk−1+Bk−Zk

1+µk∆t
if method[1] = "backward"

(1− 1
2
µk−1∆t)Sk−1+Bk−Zk

1+ 1
2
µk∆t

if method[1] = "trapezoid"
(16b)

Ik ←


[1− (γ + µk−1)∆t]Ik−1 + Zk if method[1] = "forward"
Ik−1+Zk

1+(γ+µk)∆t
if method[1] = "backward"

[1− 1
2

(γ+µk−1)∆t]Ik−1+Zk

1+ 1
2

(γ+µk)∆t
if method[1] = "trapezoid"

(16c)

βk ←


Zk+1

SkIk∆t
if method[2] = "forward"

Zk

SkIk∆t
if method[2] = "backward"

Zk+Zk+1

2SkIk∆t
if method[2] = "both"

(16d)

Hence the SI method corresponds to method = c("trapezoid", "both") , while597

deJonge’s method corresponds to method = c("forward", "forward") .598

S9.2 Comparison of RRMSE, bias, and variance599

We will compare the nine algorithms described in Eqs (16) using two metrics. First, we600

consider performance as measured by the RRMSE in the raw transmission rate estimates601

βk. Second, we consider bias in the average 1-year cycle, calculated from the linear602

interpolant of βk as in §S3.603

S9.2.1 RRMSE604

We simulate 100 reported incidence time series Ck using each of 41 values for the case605

reporting probability prep, logarithmically spaced between 0.01 and 1. (Smaller values of606

prep generate noisier Ck, leading to noisier βk.)607

prep <- 10^seq(-2, 0, length.out = 41)
par_list <- make_par_list(epsilon = 0.5)
nsim <- 100

We estimate the underlying, seasonally forced transmission rate β(t) (Eq (5)) from each608

simulated reported incidence time series using each algorithm described in Eqs (16), and609

record the RRMSE in each raw estimate βk. We can preallocate space for this output.610
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method1_names <- c("forward", "backward", "trapezoid")
method2_names <- c("forward", "backward", "both")
out <- array(NA,

dim = c(length(prep), nsim, 3, 3),
dimnames = list(NULL, NULL, method1_names, method2_names)

)

The next code chunk implements the steps in this routine, saving main results in the611

file RData/euler.RData . We can reuse simulations from §S4, which were saved in the612

directory RData/loess/ .613

for (i in seq_along(prep)) {

## Update `par_list` with current value of `prep`
par_list$prep <- prep[i]

## Create a directory for this loop's `.RData`
dirname <- paste0(

"RData/loess/",
## log10 current value of `prep`
"prep_log10v-", sprintf("%+05.0f", log(prep[i], 10) * 1000), "/"

)
if (!dir.exists(dirname)) {

dir.create(dirname, recursive = TRUE)
}

for (j in seq_len(nsim)) {

message(
"`prep` value ", i, " of ", length(prep), ", ",
"sim ", j, " of ", nsim

)

## File name for simulation
filename <- paste0(dirname, "sim", sprintf("%04.0f", j), ".RData")

## Simulate reported incidence data, if you haven't already
if (file.exists(filename)) {

load(filename)
} else {

df <- make_data(
par_list = par_list,
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n = 20 * 365 / 7,
with_dem_stoch = TRUE,
seed = j

)
save(df, file = filename)

}

for (m1 in method1_names) {
for (m2 in method2_names) {

## Estimate the seasonally forced transmission rate
## from reported incidence
df_est <- estimate_beta_SI(df, par_list, method = c(m1, m2))

## Record the error
out[i, j, m1, m2] <- compute_rrmse(df$beta, df_est$beta)

}
}

}

}

attr(out, "arg_list") <- list(
prep = prep,
par_list = par_list

)
save(out, file = "RData/euler.RData")

We desire the median and 5th and 95th percentiles of RRMSE for each value of prep, for614

each of the nine algorithms used to estimate β(t).615

pct <- apply(out, c(1, 3, 4), quantile, probs = c(0.05, 0.5, 0.95))

Plotting these as functions of prep, and stratifying the results by method[1] (panel title)616

and method[2] (legend label) yields the following figure.617
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Fig 10. Performance of the nine discretization schemes, as measured by RRMSE in the
raw transmission rate estimate βk. Panel titles specify the discretization of Eqs (14).
Legend labels specify the discretization of Eq (15).

For every choice of method[1] (panel title), the best choice of method[2] (legend618

label) was typically "both" . On the other hand, for a given choice of method[2] , the619
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best choice of method[1] (by a small margin) was typically the one that avoided620

mismatch with method[2] . That is, when forward and backward Euler were used to621

discretize Eq (15), RRMSE was typically smallest when forward and backward Euler,622

respectively, were used to discretize Eqs (14). Similarly, when both forward and backward623

Euler were used to discretize Eq (15), RRMSE was typically smallest when the trapezoidal624

method was used to discretize Eqs (14). This combination, with625

method = c("trapezoid", "both") , gave the best performance overall.626

S9.2.2 Bias and variance627

In §S3, we looked at bias and variance in the 1-year cycles embedded in raw transmission628

rate estimates βk spanning 1000 years. There, we compared the S and SI methods. Here,629

we compare the nine algorithms described in Eqs (16).630

We simulate 1000 years of weekly observations of reported incidence, including in the631

simulation environmental noise in transmission (ε = 0.5), demographic stochasticity, and632

random under-reporting of cases (prep = 0.25).633

par_list <- make_par_list(epsilon = 0.5, prep = 0.25)
df <- make_data(

par_list = par_list,
n = 1000 * 365 / 7 + 1,
with_dem_stoch = TRUE,
seed = 1352

)

We estimate the seasonally forced β(t) using all nine discretization schemes, without input634

error.635

df_est <- mapply(
function(x) {

mapply(
function(y) {

estimate_beta_SI(df, par_list, method = c(x, y))
},
y = method2_names, SIMPLIFY = FALSE

)
},
x = method1_names, SIMPLIFY = FALSE

)

We linearly interpolate each raw time series estimate βk.636
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fits <- lapply(df_est, function(x) {
lapply(x, function(y) {

approxfun(y$t, y$beta, method = "linear", rule = 1)
})

})

As in §S3, we define the initial observation time t0 , period period , and number of cycles637

m , then use get_phase_average() to calculate the average 1-year cycle in the linear638

interpolants.639

## First and last time points, retrievable
## from any data frame in the list
t0 <- df_est[[1]][[1]]$t[1]
tn <- df_est[[1]][[1]]$t[nrow(df_est[[1]][[1]])]

## 1-year period in units of the observation interval
period <- with(par_list, (365 / 7) / dt_weeks)

## Number of cycles
m <- floor((tn - t0) / period)

get_phase_average <- function(s, f) {
x <- f(t0 + (s %% period) + (0:(m-1)) * period)
mean(x, na.rm = TRUE)

}

s_grid <- seq(0, period, length.out = 150)
average_one_year <- lapply(fits, function(x) {

data.frame(
s_grid,
lapply(x, function(f) sapply(s_grid, get_phase_average, f = f))

)
})

We plot the 1000 individual cycles and their average on the same 1-year axis, yielding a640

9-panel plot.641
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Fig 11. Bias and variance incurred by the nine discretization schemes. Row names specify
the discretization of Eqs (14). Column names specify the discretization of Eq (15).

Following the pattern of Fig 10, Fig 11 shows that mismatch between method[1] and642

method[2] is detrimental: in the off-diagonal panels, the average 1-year cycle fails to643

capture the correct seasonal amplitude. In addition, use of backward Euler to discretize644

Eqs (14) appears ill-advised: in the panels from the second row, the average 1-year cycle645

lags the true cycle. Finally, it is apparent that the SI method (bottom right panel) and646

deJonge’s method (top left panel) are both nearly unbiased.647
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All methods appear prone to propagating noise from reported incidence (due to process648

and observation error) to βk. However, the SI method and deJonge’s method stand out as649

being the least and most susceptible, respectively, to propagation of spurious noise. This650

likely accounts for the difference in their performance shown in Fig 10.651
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