Cornacchia et al., Supplementary Figure 1

Α

D

PAX6 DAPI

Figure S1, Related to Figure 1

Germlayer differentiation propensity of hPSC in KSR, E8 and mTeSR medium. Validation of newly derived hiPSC.

A. Immunofluorescence of neuroectodermal (NE) precursor markers SOX1 and PAX6 at day 10 of neural induction in HUES6 and MEL1 hESC in KSR or E8. **B.** Immunofluorescence of OCT4 and NANOG pluripotency markers in newly reprogrammed iPSC lines 706 and 731. **C.** Immunofluorescence of neuroectodermal (NE) precursor markers SOX1 (red) and PAX6 (green) at day 10 of neural induction in 706 and 731 hiPSC lines in KSR or E8. **D.** Immunofluorescence of PAX6 neuroectodermal marker in 3 independent hPSC lines (H9, SeV, TLR3) grown KSR and differentiated in E6 medium or grown in E8 and differentiated in KSR medium at day 10 of neural induction. **E.** Immunofluorescence of SOX1 and PAX6 at day 10 of neural induction in H9, HUES6, MEL1 hESC grown in mTeSR and differentiated in either KSR or E6-based medium. **F.** Percentage of cells positive for endoderm (ENDO) marker SOX17 and mesoderm (MESO) marker T at day 10 of directed differentiation towards ENDO (top) or MESO (bottom), respectively of KSR versus E8 hESC (left). n ≥ 7 wells per each line (H9, HUES6, MEL1) were quantified. Relative expression of SOX17 and T in day 7 embryoid bodies (EB) generated from KSR or E8 hPSC (middle) n=3 replicates per each hESC line (H9, HUES6, MEL1). Relative expression of SOX17 and T in undifferentiated cells (right). n=3 replicates per each hESC line (H9, HUES6, MEL1). Mean values and SEM of three independent hESC lines H9, Hues6, MEL1 are shown. **A.-E.** Scale bars 100 µm, p-values (two tailed t-test): * < 0.05, ** < 0.01, *** < 0.001

Figure S2, Related to Figure 2

General and naïve-associated pluripotency features in KSR and E8 hPSC.

A. Representative images of teratoma assay from KSR or E8 hESC (HUES6). **B.** Growth curve of hESC (HUES6, MEL1) grown in KSR or E8. **C.** Flow cytometry analysis of cell cycle distribution of KSR or E8 hPSC. n=9 **D.** Quantification of colony formation after single cell passaging of KSR, mTeSR or E8 hPSC without or with Rock-inhibitor drug (+ROCK-i). Mean values and SEM of 3 technical replicates per hESC line H9, HUES6, MEL1 are shown. KSR and E8 values are same as shown in Figure 2D. **E.** Flow cytometry quantification of SSEA4 positive cells in KSR and E8 hPSC. Single dots represent technical replicates from H9, HUES6, MEL1 hESC. **F.** Flow cytometry histogram of SSEA3 intensity in hESC grown in KSR (red), adapted to E8 (blue) and re-adapted to KSR (green). **G.** Expression level (RNA-seq) of OCT4 (POU5F1), NANOG; **H.** Immunofluorescence staining of NANOG in KSR or E8 hPSC (HUES6) **I.** Western blot of NANOG, OCT4 and loading control LAMIN B1 in KSR and E8 hPSC (H9, HUES6) **J.** Log2 fold change expression E8/KSR within each cell line of SVA transposable elements. P-value was calculated on triplicate values from all 3 cell lines (H9, HUES6, MEL1) in E8 vs. KSR. **K.** Immunofluorescence of core pluripotency and naïve markers in KSR, E8, RSet and NaiveCult H9 hESC. Scale bar bright field images 50 μm. Scale bars fluorescence images 100 μm L. Expression level (RNA-seq) of KLF4, KLF17, TFCP2L1, TFE3, DPPA3 (STELLA) (padj determined by DESeq2). p-values (two tailed t-test): * < 0.05, ** < 0.01, *** < 0.001, **** < 0.001. tailed t-test): * < 0.05, ** < 0.01, *** < 0.001, **** < 0.001

SLC25A1

ACLY

Citrate

Citrate

Acetoacetate

acetyl-CoA

Acetate

ACAT2

ACSS2

IDH1

600

400

200

0

KSR

E8

Figure S3, Related to Figure 4

E8 vs. KSR hPSC comparison of mitochondrial morphology, intracellular lipid storage, mTOR activation state and expression levels of genes involved in the generation of lipogenic precursor acetyl-coA.

A. Transmission electron microscopy (TEM) images of mitochondrial morphology in KSR and E8 hESC (HUES6, MEL1). Scale bar 0.5 μm. **B.** TEM images of KSR and E8 hESC (H9). Red arrows indicate fat droplets (top). Scale bar 2 μm. Oil Red staining of intracellular lipids (bottom) in KSR and E8 hESC (H9, HUES6). Scale bar 20 μm **C, D.** Western blot of mTOR signaling (total mTOR, activated p(phosphor)-mTOR) and downstream effectors p(hospho)-4EBP1 and p(hospho)-S6K p70 (Thr389/Ser371) in KSR, E8 and E8 + Albumax hESC. **E.** Western blot of AKT signaling (total AKT, activated p(hospho)-AKT in E8 and KSR hESC. **F.** Scheme of enzymatic pathways of acetyl-coA generation. **G.** Scheme of acetyl-coA generation through canonical pathways (pyruvate) or via reductive carboxylation (glutamine) **H, I.** Expression level (RNA-seq) of enzymes involved in canonical (H) or reductive carboxylation-mediated (I) acetyl-CoA production SLC25A1, ACLY, ACAT2, ACSS2 (H) and ACO1, IDH1 (I) (padj determined by DESeq2).

н

SINE

Methylation rate

G

Figure S4, Related to Figure 5

Epigenomic characterization of E8 vs. KSR hPSC.

A. Western blot of H3K27Ac, H4K8Ac, H3K9Ac levels in KSR and E8 hESC (HUES6, MEL1). **B., C.** Expression level (RNA-seq) of histone acetyl transferase (HAT, (B)) and histone deacetylase (HDAC; (C)) genes in KSR and E8 hESC. Mean values and SEM of hESC H9, HUES6, MEL1 are shown. **D.** Western blot of H3K4me3, H3K27me3, H3K9me3 levels in KSR and E8 hESC. **E.** Violin plots of 5mC rate distribution at different genomic compartments in KSR and E8 hESC. (padj determined by DESeq2). **F.** Methylation rate distribution at non-CpGi promoters on X-chromosome in each analyzed cell line, E8 and KSR (XX indicates female and XY indicates male line). **G.** Fold change expression of XIST in E8 vs. KSR in two female lines H9 and HUES6. **H.** Top enriched functional groups (GO) of H3K27Ac, H3K27me3 and 5mC differentially enriched gene promoters between KSR and E8.

A			B			
	KSR medium	E8 medium		E8	+ FGF2 [0-200 ng/m	I]
Base medium	DMEM-F12	DMEM-F12	-	0 1	10 20 50 70 100	200
Core Supplement	KSR supplement: - <u>ALBUMAX</u> - aa* - trace elements - Vitamins: Thiamine* reduced glutbathione	E8 supplement: Selenium - Vitamins:	pERK LAMIN B1 C			
	ascorbic acid	ascorbic acid		E8	E8+AX	E8+AX→E8
	- Proteins: transferrin insulin	- Proteins: transferrin insulin	IG DAPI			
additional supplements	FGF2 (<u>10 ng/ml</u>)	FGF2 (<u>100 ng/ml</u>) TGFβ	NANG			
	β-ME L-Glutamine* NE-aa*		DAPI			
substrate	iMEF	Vitronectin	CT4			
* contained in	DMEM F12	1	Ō			50, C ¹ 45

в

Figure S5, Related to Figure 6

KSR vs. E8 medium composition, FGF2 concentration response and effect of Albumax treatment on ERK signaling and epigenetic marks; tolerance to DUSP6 and SREBF1 inhibition.

A. KSR and E8 medium composition **B.** Western blot of phospho-ERK levels in E8 containing different concentrations of FGF2 (0, 1, 10, 20, 50, 100, 200 ng/ml). **C.** Immunofluorescence staining of NANOG and OCT4 in E8, E8+Albumax (E8+AX) and after Albumax withdrawal (E8+AX -> E8). Scale bar 200 µm. **D.** Western blot of phospho-ERK levels in KSR, E8 and E8 + Albumax (E8 + AX) hESC (H9, HUES6). Loading controls ERK, γ Tubulin. **E.** Western blot of H3K27Ac and H4K8Ac levels in KSR, E8 and E8+Albumax (EAX) hESC (H9). Loading controls: Total H3, H4 and LAMIN B1. **F.** Western blot of H4K8Ac levels in E8, E8+Albumax (EAX) and EAX + 0.2, 0.4, 0.6 or 1µM PD0325901. Loading control LAMIN B1. **G.** Bright field images of E8 and KSR hESC (H9) after a 2-day treatment with 0µM, 0.1µM, 0.5µM BCI hydrochloride (DUSP6 inhibitor) **H.** Bright field images of E8 and E8+Albumax (E8+AX) hESC (H9) after a treatment with 0µM, 2µM or 5µM Fatostatin (SREBF1 inibitor) for 1 or 2 days. **C-F.** Length of treatment/withdrawal from treatment: 3 days.

signaling and differentiation-related terms

In vitro

ln vivo

In vitro

In vivo

Figure S6, Related to Figure 7

Functional enrichment of shared upregulated genes between E8 vs. naïve and KSR vs. primed datasets.

A. Top enriched functional categories (GO/KEGG) of common upregulated genes in E8/KSR and each naïve/primed datasets (Boroviak et al., 2015; Marks et al., 2012; Takashima et al., 2014; Yan et al., 2013). Blue asterisks indicate lipid-related categories. **B.** Top enriched functional categories (GO/KEGG) of common downregulated genes in E8/KSR and each naïve/primed datasets (Boroviak et al., 2015; Marks et al., 2012; Takashima et al., 2015; Marks et al., 2012; Takashima et al., 2014; Yan et al., 2012; Takashima et al., 2014; Yan et al., 2013). Red asterisks indicate signaling-related categories.

Lipid biosynthesis Lipid metabolism Lipid catabolism Response to lipid MAPK/TGFbeta signaling

GO / KEGG hESC pre-EPI/ post-EPI

Figure S7, Related to Figure 7

Gene function correlation plot of E8/KSR vs mouse naïve/primed datasets and E8/KSR vs. Reset/conventional hESC.

2D-plot of lipid and signaling pathway regulation in E8/KSR and different naive/primed datasets (Boroviak et al., 2015; Marks et al., 2012; Takashima et al., 2014)

LIPID-RELATED GENE FUNCTIONS IN NAIVE AND PRIMED DATASETS

UP in E8 Tot genes					
Category	Term	nr. of gene	es PValue	in category	
KEGG_PATHWAY	Steroid biosynthesis	10	1.51E-05	20	
KEGG_PATHWAY	Biosynthesis of antibiotics	33	8.54E-04	212	
KEGG_PATHWAY	Fatty acid metabolism	11	0.006	48	
KEGG_PATHWAY	Terpenoid backbone biosynthesis	7	0.008	22	
KEGG_PATHWAY	Fatty acid biosynthesis	5	0.020	13	
KEGG_PATHWAY	Glycerolipid metabolism	11	0.022	58	
KEGG_PATHWAY	PPAR signaling pathway	12	0.024	67	
KEGG_PATHWAY	Glycerophospholipid metabolism	15	0.028	95	
KEGG_PATHWAY	Biosynthesis of unsaturated fatty acids	6	0.040	23	
GOTERM BP FAT	cholesterol biosynthetic process	21	2.04E-10	48	
GOTERM_BP_FAT	organic hydroxy compound metabolic process	60	7.99E-06	410	
GOTERM_BP_FAT	steroid metabolic process	44	1.97E-05	276	
GOTERM_BP_FAT	lipid biosynthetic process	77	1.61E-04	624	
GOTERM_BP_FAT	long-chain fatty-acyl-CoA biosynthetic process	12	3.59E-04	42	
GOTERM_BP_FAT	lipid metabolic process	139	8.81E-04	1330	
GOTERM_BP_FAT	acylglycerol metabolic process	20	0.003	118	
GOTERM_BP_FAT	neutral lipid metabolic process	20	0.003	119	
GOTERM_BP_FAT	low-density lipoprotein particle clearance	6	0.004	14	
GOTERM_BP_FAT	glycerolipid metabolic process	45	0.008	379	
GOTERM_BP_FAT	long-chain fatty acid metabolic process	15	0.012	90	
GOTERM_BP_FAT	regulation of plasma lipoprotein particle levels	11	0.013	56	

	UP in KSR			Tot genes
Category	Term	nr. of gene	es PValue	in category
GOTERM_BP_FAT	lipid metabolic process	154	5.64E-06	1330
GOTERM_BP_FAT	lipid biosynthetic process	78	1.57E-04	624
GOTERM_BP_FAT	lipid modification	40	1.75E-04	262
GOTERM_BP_FAT	cellular response to lipid	65	3.25E-04	509
GOTERM_BP_FAT	membrane lipid metabolic process	32	5.43E-04	204
GOTERM_BP_FAT	fatty acid oxidation	19	5.92E-04	95

UP in 2i Tot genes					
Category	Term r	nr. of genes	PValue	in category	
KEGG PATHWAY	Glycosphingolipid biosynthesis - globo	8	5.87E-05	15	
KEGG PATHWAY	Biosynthesis of antibiotics	33	2.04E-04	214	
KEGG PATHWAY	Fatty acid metabolism	11	0.005	51	
KEGG PATHWAY	Glycosphingolipid biosynthesis - lacto and neolact	o 7	0.013	26	
KEGG PATHWAY	Glycosphingolipid biosynthesis - ganglio	5	0.024	15	
KEGG PATHWAY	Glycerophospholipid metabolism	14	0.028	94	
KEGG_PATHWAY	Fatty acid degradation	9	0.032	49	
	alvcolinid metabolic process	24	7 94F-07	95	
COTEDM BD EAT	linosaccharide metabolic process	24	9.67E-07	96	
COTEDM BD EAT	linid metabolic process	135	2 62F-05	1217	
COTEDM BD EAT	alveeronhospholinid metabolic process	32	3 84F-05	184	
COTEDM BD EAT	glycerolinid metabolic process	43	6 49E-05	288	
COTERM BP FAT	membrane linid metabolic process	30	9.14E-05	175	
COTERM BP FAT	lipid modification	32	1.07E-04	194	
GOTERM BP FAT	lipid biosynthetic process	65	6.88E-04	545	
GOTERM BP FAT	phospholipid dephosphorylation	10	9.32E-04	34	
GOTERM BP FAT	cellular lipid catabolic process	28	0.001	183	
GOTERM BP FAT	plasma lipoprotein particle organization	8	0.017	35	
GOTERM BP FAT	response to low-density lipoprotein particle	5	0.025	15	
GOTERM BP FAT	regulation of plasma lipoprotein particle levels	10	0.032	57	
GOTERM BP FAT	cholesterol efflux	8	0.048	43	
GOTERM_BP_FAT	regulation of phospholipid biosynthetic process	4	0.049	11	

	UP in serum L	.if		Tot genes
Category	Term	nr. of genes	PValue	in category
KEGG_PATHWAY	Fatty acid biosynthesis	5	0.039	14
KEGG_PATHWAY	Regulation of lipolysis in adipocytes	11	0.043	57
KEGG_PATHWAY	Glycerolipid metabolism	11	0.047	58

Cornacchia et al., Supplementary Table 7 page 2/3

UP in reset				
Category	Term	nr. of gene	s PValue	in category
KEGG_PATHWAY	Biosynthesis of antibiotics	36	6.98E-03	212
GOTERM_BP_FAT	lipid metabolic process	173	7.59E-05	1330
GOTERM_BP_FAT	cellular lipid catabolic process	35	1.78E-04	182
GOTERM_BP_FAT	regulation of lipid metabolic process	47	5.98E-04	287
GOTERM_BP_FAT	regulation of plasma lipoprotein particle levels	15	8.12E-04	56
GOTERM_BP_FAT	acylglycerol metabolic process	24	0.001	118
GOTERM_BP_FAT	neutral lipid metabolic process	24	0.001	119
GOTERM_BP_FAT	glycerolipid metabolic process	57	0.001	379
GOTERM_BP_FAT	lipid catabolic process	46	0.002	294
GOTERM_BP_FAT	lipid biosynthetic process	84	0.003	624
GOTERM_BP_FAT	positive regulation of lipid metabolic process	23	0.005	126
GOTERM_BP_FAT	regulation of cholesterol homeostasis	6	0.006	13
GOTERM_BP_FAT	positive regulation of cholesterol efflux	6	0.009	14
GOTERM_BP_FAT	lipid homeostasis	22	0.009	124

UP in late BC

				Tot genes	
Category	Term	nr. of genes	PValue	in category	
KEGG_PATHWAY	Terpenoid backbone biosynthesis	12	8.34E-07	22	
KEGG_PATHWAY	Biosynthesis of antibiotics	41	4.46E-06	212	
KEGG_PATHWAY	Steroid biosynthesis	8	1.29E-03	20	
KEGG_PATHWAY	Fatty acid metabolism	12	3.03E-03	48	
KEGG_PATHWAY	PPAR signaling pathway	13	1.56E-02	67	
KEGG_PATHWAY	Sphingolipid metabolism	10	2.28E-02	47	
GOTERM BP FAT	lipid biosynthetic process	92	8.52E-09	624	
GOTERM BP FAT	lipid metabolic process	156	4.44E-07	1330	
GOTERM BP FAT	sphingolipid metabolic process	28	8.33E-05	155	
GOTERM_BP_FAT	phospholipid metabolic process	54	9.77E-05	393	
GOTERM_BP_FAT	cellular lipid catabolic process	31	9.88E-05	182	
GOTERM_BP_FAT	very-low-density lipoprotein particle assembly	6	1.43E-04	8	
GOTERM_BP_FAT	lipid catabolic process	43	1.43E-04	294	
GOTERM_BP_FAT	membrane lipid metabolic process	33	1.54E-04	204	
GOTERM_BP_FAT	phospholipid biosynthetic process	34	2.87E-04	220	
GOTERM_BP_FAT	fatty acid metabolic process	46	0.002	366	
GOTERM_BP_FAT	response to lipoprotein particle	6	0.0111	18	
GOTERM_BP_FAT	long-chain fatty acid import	4	0.014	7	
GOTERM_BP_FAT	liposaccharide metabolic process	18	0.015	121	
GOTERM_BP_FAT	lipid transport	37	0.015	312	
GOTERM_BP_FAT	acyl-CoA metabolic process	15	0.019	96	

	UP in conventional			Tot genes
Category	Term	nr. of genes	PValue	in category
KEGG_PATHWAY	Regulation of lipolysis in adipocytes	16	3.27E-04	56
KEGG_PATHWAY	Sphingolipid signaling pathway	21	0.017	120

UP in hESC

Category Term KEGG_PATHWAY Regulation of lipolysis in adipocytes

		Tot genes
nr. of genes	PValue	in category
10	0.046	56

Cornacchia et al., Supplementary Table 7 page 3/3

UP in 4.5 EPI

				Tot genes
Category	Term n	nr. of genes	PValue	in category
KEGG_PATHWAY	Biosynthesis of antibiotics	21	6.18E-04	214
KEGG_PATHWAY	Fatty acid metabolism	9	0.0011	51
KEGG_PATHWAY	Fatty acid degradation	7	0.016	49
KEGG_PATHWAY	PPAR signaling pathway	9	0.018	80
KEGG_PATHWAY	Sphingolipid metabolism	6	0.049	48
GOTERM_BP_FAT	cellular lipid catabolic process	24	3.08E-07	183
GOTERM_BP_FAT	lipid modification	23	3.18E-06	194
GOTERM_BP_FAT	lipid metabolic process	77	4.77E-06	1217
GOTERM_BP_FAT	lipid oxidation	16	5.04E-06	102
GOTERM_BP_FAT	glycerolipid metabolic process	25	1.90E-04	288
GOTERM_BP_FAT	fatty acid metabolic process	29	3.05E-04	371
GOTERM_BP_FAT	cholesterol efflux	8	9.31E-04	43
GOTERM_BP_FAT	very-low-density lipoprotein particle clearance	4	1.58E-03	7
GOTERM_BP_FAT	lipid biosynthetic process	34	3.97E-03	545
GOTERM_BP_FAT	regulation of plasma lipoprotein particle levels	8	4.89E-03	57
GOTERM_BP_FAT	regulation of phospholipid biosynthetic process	4	6.67E-03	11
GOTERM_BP_FAT	regulation of lipid metabolic process	22	7.26E-03	316
GOTERM_BP_FAT	acylglycerol metabolic process	11	7.64E-03	110
GOTERM_BP_FAT	neutral lipid metabolic process	11	8.64E-03	112
GOTERM_BP_FAT	plasma lipoprotein particle organization	6	8.86E-03	35
GOTERM_BP_FAT	lipoprotein metabolic process	12	8.94E-03	130
GOTERM_BP_FAT	protein-lipid complex subunit organization	6	1.25E-02	38
GOTERM_BP_FAT	negative regulation of fatty acid biosynthetic proc	ess 4	1.35E-02	14
GOTERM_BP_FAT	response to lipid	51	1.62E-02	991
GOTERM_BP_FAT	lipid homeostasis	11	1.87E-02	126

UP in 5.5 EPI

Category KEGG_PATHWAY	Term Biosynthesis of antibiotics	nr. of genes 17	PValue 0.014	Tot genes in category 214
GOTERM_BP_FAT	positive regulation of lipid biosynthetic process	11	3.54E-03	79

Table S7, Related to Figure 7 Lipid-related gene functions upregulated in either naïve or primed datasets.