Title: Cellular senescence-mediated exacerbation of Duchenne muscular dystrophy

Authors

Hidetoshi Sugihara¹, Naomi Teramoto¹, Katsuyuki Nakamura¹, Takanori Shiga², Taku Shirakawa^{3,4}, Masafumi Matsuo^{3,4},

Masashi Ogasawara^{5,6}, Ichizo Nishino^{5,6}, Takashi Matsuwaki¹, Masugi Nishihara¹, Keitaro Yamanouchi^{1,*}

Supplementary Table

Patients	Age	Diagnosis	Mutation	Specimen	Nationality		
1	4	non-DMD	No sign of muscle pathology on histology.	Biopsy	Japan		
2	4	non-DMD	No sign of muscle pathology on histology.	Biopsy	Japan		
3	4	non-DMD	No sign of muscle pathology on histology.	Biopsy	Japan		
4	8	non-DMD	No sign of muscle pathology on histology.	Biopsy	Japan		
5	10	non-DMD	No sign of muscle pathology on histology.	Biopsy	Japan		
6	10	non-DMD	No sign of muscle pathology on histology.	Biopsy	Japan		
7	14	non-DMD	No sign of muscle pathology on histology.	Biopsy	Japan		
8	15	non-DMD	No sign of muscle pathology on histology.	Biopsy	Japan		
9	18	non-DMD	No sign of muscle pathology on histology.	Biopsy	Japan		
10	32	non-DMD	No sign of muscle pathology on histology.	Biopsy	Japan		
11	2	DMD	exon66: c. 9568C>T (R3190X)	Biopsy	Japan		
12	2	DMD	exon33: c.4540G>T (E1514X)	Biopsy	Japan		
13	2	DMD	exon33: c.4540G>T (E1514X)	Biopsy	Japan		
14	2	DMD	exon53_55del	Biopsy	Japan		
15	3	DMD	exon7: c.568C>T (Q190X)	Biopsy	Japan		
16	3	DMD	exon21: c. 2701G>T (G901X)	Biopsy	Japan		
17	3	DMD	exon59: c.8713C>T (R2905X)	Biopsy	Japan		
18	3	DMD	exon62: c.9204_9207delCAAA (N3068KfsX20)	Biopsy	Japan		
19	3	DMD	exon23: c.3079G>T (G1027X)	Biopsy	Japan		
20	4	DMD	exon14: c. 1663C>T (Q555X)	Biopsy	Japan		
21	4	DMD	exon20_29del	Biopsy	Japan		
22	5	DMD	exon10: c.1087C>T (Q363X)	Biopsy	Japan		
23	5	DMD	exon41: c.5867G>A (W1956X)	Biopsy	Japan		
24	5	DMD	exon8_17dup	Biopsy	Japan		
25	6	DMD	exon41: c.5758C>T (Q1920X)	Biopsy	Japan		
26	6	DMD	exon59: c.8692C>T (Q2898X)	Biopsy	Japan		
27	8	DMD	exon13: c.1533_1536deITCAC (H512WfsX4)	Biopsy	Japan		
28	9	DMD	exon20: c.2435G>A (W812X)	Biopsy	Japan		
29	9	DMD	exon48_50del	Biopsy	Japan		
30	10	DMD	Intron6: c.530+1G>A	Biopsy	Egypt		
31	10	DMD	Decreased immunoreactivity to dystrophin. Typical clinical signs of DMD.	Biopsy	Japan		
32	10	DMD	Decreased immunoreactivity to dystrophin. Typical clinical signs of DMD.	Biopsy	Japan		
33	10	DMD	exon17_44dup	Biopsy	Japan		
34	11	DMD	Decreased immunoreactivity to dystrophin. Typical clinical signs of DMD.	Biopsy	Japan		
35	11	DMD	Decreased immunoreactivity to dystrophin. Typical clinical signs of DMD.	Biopsy	Myanmar		
36	12	DMD	Decreased immunoreactivity to dystrophin. Typical clinical signs of DMD.	Biopsy	Japan		
37	12	DMD	Decreased immunoreactivity to dystrophin. Typical clinical signs of DMD.	Biopsy	Japan		
38	13	DMD	Decreased immunoreactivity to dystrophin. Typical clinical signs of DMD.	Biopsy	Japan		
39	14	DMD	Decreased immunoreactivity to dystrophin. Typical clinical signs of DMD.	Biopsy	Japan		
40	14	DMD	Decreased immunoreactivity to dystrophin. Typical clinical signs of DMD.	Biopsy	Japan		
41	20	DMD	exon12, 13, 17 19del	Autopsy	Japan		
42	23	DMD	Decreased immunoreactivity to dystrophin. Typical clinical signs of DMD.	Autopsy	Japan		
43	26	DMD	exon43: c. 6283C>T (R2095X)	Autopsy	Japan		
44	33	DMD	Decreased immunoreactivity to dystrophin. Typical clinical signs of DMD.	Autopsy	Japan		

b

Structure of Dmd mRNA

cDNA sequence

	exon2	exon3	exon4	exon16	
WT	TTT TCT A	AAG TTT GGA · AAA	CTG CCA AAA	GAATTT GCA	CAA CGT TGG GAT AAT
DMD	TTT TCT A	AAG	ССА ААА	GAATTT GCA	CA AAT TTG GGA TAA

amino acid sequence

WT	Phe Ser Lys Phe	Gly Lys	Leu Pr	to Lys	GluPhe	Ala	Gln	Arg	Trp	Asp	Asn	(3677 aa)
DMD	Phe Ser Lys		Pr	to Lys	GluPhe	Ala	His	Asn	Leu	Gly	Term	(622 aa)

Supplementary Figure 1. Dmd gene mutation pattern and elevated biochemical markers of muscular damage in DMD

rats.(a) Sequence of the *Dmd* gene in DMD rats. **(b)** Structure and cDNA sequence of *Dmd* mRNA in WT and DMD rats. Deletion of splice site in intron2 as indicated in **(a)** leads to exon3 skipping in DMD rats. One base insertion in exon16 causes the generation of a stop codon as indicated in the amino acid sequence below. Term = stop codon. aa = amino acids. **(c)** Immunoblotting analysis of dystrophin expression using an antibody to detect dystrophin C-terminus in 3 month-old WT and DMD rats. Full-length blots are presented in Supplementary Figure 6b. **(d)** Serum creatine kinase (CK) activity in WT and DMD rats (WT: n=3, 3, 5; DMD: n=3, 3, 4). **(e)** Urinary titin concentrations in WT and DMD rats (WT: n=10, 9, 5, 9; DMD: n=10, 9, 5, 9). **(f,g) (f)** Total number of myofibers was counted in the TA muscle sections, and **(g)** the number of eMHC⁺ myofibers was divided by the total number of myofibers. Data are expressed as means+SEM, and were compared by Tukey Kramer's test. For **(d)** and **(e)**, the result of statistical comparison only between the genotypes at each indicated ages was displayed. When a significant age-related difference was observed by the Tukey-Kramer's test, the † mark was added beside the legend of the graph. *p<0.05. **p<0.01.

а

Supplementary Figure 2. Progressive exacerbation of histopathology of the diaphragm in DMD rats without functional

decline. (a) Histological analysis of diaphragms by HE staining (upper panel) and Masson Trichrome staining (lower panel) from 5 to 10 month-old WT and DMD rats. Scale bar = $250 \mu m$. (b) Tidal volume breathing (TVb) was measured as an indicator of respiratory function in WT and DMD rats aged 6 and 9 months (WT: n=7, 4; DMD: n=7, 4). Data are expressed as means+SEM. The p value was determined by unpaired student's *t*-test.

а

WT rat primary cells

b

SA-βGal

С

d

WT rat primary cells

Supplementary Figure 3. Senescence induction in DMD rats. (a) SA- β Gal staining was performed in Bone marrow derived macrophages. Almost all the macrophages were SA- β Gal⁺. Scale bar = 200 mm. (b) CD45⁺ cells were MACS-depleted, and SA- β Gal staining was performed in 3 months old WT and DMD rat skeletal muscle primary cells. Scale bar = 200 mm. (c) Quantification of SA- β Gal⁺ cells per field (WT: n=4, DMD: n=4). (d) In situ hybridization of CDKN2A mRNA using RNAscope on skeletal muscle primary cells from 3-month-old WT rats. Peptidyl-prolyl cis-trans isomerase B (PPIB) mRNA was used for the positive control of in situ hybridization. Scale bar = 100 mm.Data are expressed as means+SEM, and were compared with *t*-test. ***p<0.001.

C p_{16} p_{16} p_{16} XY p_{16} XY p_{16} XY p_{16} X^{Dmdy} p_{16} X^{Dmdy} p

Supplementary Figure 4. p16 gene mutation pattern and elevated biochemical markers of muscular damage in dKO

rats. (a) Sequence of the *p16* gene in DMD rats. (b) cDNA sequence of *p16* mRNA in WT and DMD rats. The seven base deletions in exon1 α results in a stop codon, as indicated in the amino acid sequence below. Term = stop codon. aa = amino acids. (c) Immunoblotting analysis of p16 expression in 9 month-old p16^{+/+}, p16^{+/-}, and p16^{-/-} background WT and DMD rats. Full-length blots are presented in Supplementary Figure 6c. (d) Serum creatine kinase (CK) activity in 9 month-old p16^{+/+}, p16^{+/-}, and p16^{-/-} background WT and DMD rats (n=9, 22, 17, 11, 25, 13). Data are compared by Tukey Kramer's test. Tukey Kramer's test was performed only between WT background groups, or between DMD background groups. Data are expressed as means+SEM.

Supplementary Figure 5. ABT263 partially restores myofiber size. The size of each fiber was determined using CellProfiler software (Vehicle: n=5075, ABT263: n=5405). Arrowheads indicate the median value of myofiber size. Data are expressed as histogram, and median values were compared with Wilcoxon rank sum test. ***p<0.001.

Supplementary Figure 6. Full-length images of blots. (a) Full-length blots of perilipin (left panel) and corresponding Ponceau staining (right panel). **(b)** Full-length blots of dystrophin (left panel) and corresponding Ponceau staining (right panel). **(c)** Full-length blots of p16 (left panel) and corresponding Ponceau staining (right panel).