Supplemental Materials

Molecular Biology of the Cell

Okazaki *et al*.

Supplemental materials

Formation of the B9-domain protein complex MKS1–B9D2–B9D1 is essential as a diffusion barrier for ciliary membrane proteins

Misato Okazaki¹, Takuya Kobayashi¹, Shuhei Chiba², Ryota Takei¹, Luxiaoxue Liang¹, Kazuhisa Nakayama¹, and Yohei Katoh¹

¹ Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; and ² Department of Genetic Disease Research, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan

Video S1. TIRF microscopy of RPE1 cells expressing tRFP-IFT88

Video S2. TIRF microscopy of #MKS1-3-13 cells expressing tRFP-IFT88

Video S3. TIRF microscopy of #B9D2-3-6 cells expressing tRFP-IFT88

Donor vector

Fig. S1. Genomic PCR and sequence analyses of the MKS1-KO and B9D2-KO cell lines

(A, D) Genomic DNAs extracted from the *MKS1*-KO cell lines #MKS1-2-2 and #MKS1-3-13 (A), and those from the *B9D2*-KO cell lines #B9D2-1-5 and #B9D2-3-6 (D), were subjected to PCR using the indicated primer sets (see Table S3) to detect alleles with a small indel or no insertion (a, a'), or with forward (b, b') or reverse (c, c') integration of the donor knock-in vector. M, molecular weight marker (PSU1 DNA ladder). Note that we were unable to detect one of the two *B9D2* alleles in the #B9D2-3-6 cell line, possibly owing to the same knock-in site in both alleles or a relatively extensive deletion in one allele. (B, C, E, and F) Alignments of allele sequences of #MKS1-2-2 (B), #MKS1-3-13 (C), #B9D2-1-5 (E), #B9D2-3-6 (F) cell lines determined by sequencing of the PCR products shown in (A) and (D). Red and black lines indicate the target sequence and PAM sequence, respectively, and blue arrows indicate the direction of integration of the donor knock-in vector.

B9D2-EGFP			EGFP-fused B9D2+MKS1+B9D1		
mChe- MKS1	mChe- IFT70	mChe- IFT70+52+88	mChe- IFT70	mChe- IFT70+52+88	

Fig. S2. Interaction of B9D2 with IFT70 is not detectable

Lysates of HEK293T cells coexpressing the indicated combinations of B9D2-EGFP or EGFP-fused B9D2+MKS1+B9D1 and either mChe-IFT70 or mChe-fused IFT70+IFT52+IFT88 were processed for the VIP assay. mChe-MKS1 was used as a positive control.

Fig. S3. Rescue of *MKS1*-KO and *B9D2*-KO cell lines by the exogenous expression of MKS1 or B9D2 The *MKS1*-KO cell line #MKS1-2-2 (A), or the *B9D2*-KO cell line #B9D2-1-5 (C) or #B9D2-3-6 (E), or cells stably expressing EGFP-MKS1 (B) or B9D2-EGFP (D, F), as indicated, were immunostained for ARL13B, and Ac-tubulin and γ -tubulin. Ciliary staining for ARL13B was restored by the exogenous expression of EGFP-MKS1 (B') or B9D2-EGFP (D', F'). Scale bar, 5 µm.

Table S	51.	Plasmids	used in	this	study
					•/

Vector	Insert	Reference
pCAG2-EGFP-C	MKS1	This study
pCAG2-mCherry-C	MKS1	This study
pEGFP-N	B9D1	This study
pmCherry-N	B9D1	This study
pEGFP-N	B9D2	This study
pmCherry-N	B9D2	This study
pTagBFP2-N	B9D2	This study
pCAG2-EGFP-C	MKS1(110–559)	This study
pCAG2-EGFP-C	MKS1(290–559)	This study
pCAG2-EGFP-C	MKS1(311–559)	This study
pCAG2-EGFP-C	MKS1(1-492)	This study
pCAG2-EGFP-C	MKS1(1-310)	This study
pRRLsinPPT-EGFP-C-IRES-Blast	MKS1	This study
pRRLsinPPT-EGFP-N-IRES-Blast	B9D1	This study
pRRLsinPPT-EGFP-N-IRES-Blast	B9D2	This study
pRRLsinPPT-EGFP-C-IRES-Blast	MKS1(110-559)	This study
pRRLsinPPT-EGFP-C-IRES-Blast	MKS1(1-492)	This study
pRRLsinPPT-tRFP-T-C-IRES-Zeo	IFT88	This study
pCAG-mCherry-C	IFT70B	(Katoh et al., 2016)
pCAG-mCherry-C	IFT88	(Katoh et al., 2016)
pCAG-mCherry-C	IFT52	(Katoh et al., 2016)
pDonor-tBFP-NLS-Neo (Universal)	-	(Katoh et al., 2017)
peSpCas9 (1.1)-2×gRNA	_	(Katoh et al., 2017)
pGEX-6P1	Anti-GFP-nanobody	(Katoh et al., 2015)

Table S2. Antibo	dies used	in this	study
------------------	-----------	---------	-------

Antibody	Manufacturer or provider	Clone/catalog number or reference number	Dilution (purpose)
Polyclonal rabbit anti-IFT88 Proteintech		13967-1-AP	1:500 (IF)
Polyclonal rabbit anti-IFT140	Proteintech	17460-1-AP	1:500 (IF)
Polyclonal rabbit anti-ARL13B	Proteintech	17711-1-AP	1:1,000 (IF)
Polyclonal rabbit anti-INPP5E	Proteintech	17797-1-AP	1:500 (IF)
Polyclonal rabbit anti-GPR161	Proteintech	13398-1-AP	1:500 (IF)
Polyclonal rabbit anti-TCTN1	Proteintech	15004-1-AP	1:100 (IF)
Monoclonal mouse anti-MKS1	Proteintech	66518-1-Ig	1:200 (IF)
Monoclonal mouse anti-SMO	Santa Cruz	sc-166685	1:100 (IF)
Monoclonal mouse anti-acetylated-α-tubulin	Aonoclonal mouse Sigma-Aldrich nti-acetylated-α-tubulin		1:1,000 (IF)
Monoclonal mouse anti-y-tubulin	Sigma-Aldrich	GTU88	1:500 (IF)
Monoclonal mouse anti-polyglutamylation modification	AdipoGen	GT335	1:500 (IF)
Monoclonal mouse anti-FOP	Abnova	2B1	1:10,000 (IF)
FluoTag-X4 anti-GFP, fluorophore-conjugated	NanoTag Biotechnologies	N0304-At488-L	1:250 (IF)
Polyclonal rabbit anti-mCherry	Proteintech	26765-1-AP	1:10,000 (IB)
Monoclonal mouse anti-GFP	Proteintech	66002-1-Ig	1:10,000 (IB)
AlexaFluor-conjugated secondary	Molecular Probes	A11034, A27039, A21244, A11004, A21127, A21240, A21241, A21131, A21242	1:1,000 (IF)
Peroxidase-conjugated secondary	Jackson ImmunoResearch	115-035-166, 111-035-144	1:3,000 (IB)

IF, immunofluorescence; IB, immunoblotting

Table S3.	Oligo	DNAs	used in	this	study

Name	Sequence
pTagBFP-N-RV2 (primer 3)	5'- CGTAGAGGAAGCTAGTAGCCAGG -3'
MKS1-genome-FW (primer 1)	5'- CCTTGCCCACCCTATGACAC -3'
MKS1-genome-RV (primer 2)	5'-TCAGGAAGTCAGTGCCAAGG -3'
MKS1-genome-FW (primer 4)	5'- ACATGGTAAGCGGTGATCGG -3'
MKS1-genome-RV (primer 5)	5'- AAGGGGAGAGGGTGTACTGG -3'
B9D2-genome-FW (primer 6)	5'- GCAGGAAGAGGTAGTGCCAG -3'
B9D2-genome-RV (primer 7)	5'- CTTGAATGCCACCTCCCCTC -3'
B9D2-genome-FW (primer 8)	5'-TCCAGGCTTTCATGGGTTGG -3'
B9D2-genome-RV (primer 9)	5'- CACACCACCTTACTCCAGCC -3'
MKS1-gRNA#2-S	5'- CACCGCTTCTGGCAGAGGTACCGTG -3'
MKS1-gRNA#2-AS	5- AAACCACGGTACCTCTGCCAGAAGC -3'
MKS1-gRNA#3-S	5'- CACCGCTGGAGCACTGACACCGGGG -3'
MKS1-gRNA#3-AS	5'- AAACCCCCGGTGTCAGTGCTCCAGC -3'
B9D2-gRNA#1-S	5'- CACCGAGCCATGTCCCCTATCTGCG -3'
B9D2-gRNA#1-AS	5'- AAACCGCAGATAGGGGACATGGCTC -3'
B9D2-gRNA#3-S	5'- CACCGCTACTTTCCGAGAAACCGC -3'
B9D2-gRNA#3-AS	5'- AAACGCGGTTTCTCGGAAAGTAGC -3'

Supplemental References

Katoh, Y., Michisaka, S., Nozaki, S., Funabashi, T., Hirano, T., Takei, R., and Nakayama, K. (2017). Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated homology-independent knock-in system. Mol. Biol. Cell *28*, 898–906.

Katoh, Y., Nozaki, S., Hartanto, D., Miyano, R., and Nakayama, K. (2015). Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins. J. Cell Sci. *128*, 2351-2362.

Katoh, Y., Terada, M., Nishijima, Y., Takei, R., Nozaki, S., Hamada, H., and Nakayama, K. (2016). Overall architecture of the intraflagellar transport (IFT)-B complex containing Cluap1/IFT38 as an essential component of the IFT-B peripheral subcomplex. J. Biol. Chem. *291*, 10962-10975.