An iPSC-Derived Neuron Model of CLN3 Disease Facilitates Small Molecule Phenotypic Screening

Nihar Kinarivala^{¶#}, Ahmed Morsy^{‡#}, Ronak Patel^{¶#}, Angelica V. Carmona[‡], Md. Sanaullah Sajib[¶], Snehal Raut[¶], Constantinos M. Mikelis[¶], Abraham Al-Ahmad^{¶*} and Paul C. Trippier^{‡,¶,§,*}

[‡]Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA. [¶]Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, USA.

[§]UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68198, USA.

*Contributed equally to this work.

*Corresponding Author: paul.trippier@unmc.edu

*Corresponding Author: abraham.al-ahmad@ttuhsc.edu

Supporting Information

Table of Contents

Figure S-1a. Graphs of tube length, number of nodes and number of junctions and representative images of tube formation assay in EC++ medium	S3
Figure S-1b. Representative images of tube formation assay in EC- medium at each time point	S3
Figure S-2. Structures of compounds	S4
Figure S-3. Propidium lodide staining of CLN3 iPSC-derived neurons	S5
Figure S-4. Bcl-2 induction	S6
Figure S-5a. ¹ H NMR spectra of 9e at day zero	S7
Figure S-5b. ¹ H NMR spectra of 9e after 10 days	S7
Figure S-6a. ¹ H NMR spectra of 9g at day zero	S8
Figure S-6b. ¹ H NMR spectra of 9g after 10 days	S8
Figure S-7a. ¹ H NMR spectra of 9h at day zero	S9
Figure S-7b. ¹ H NMR spectra of 9h after 10 days	S9
Figure S-8. Confirmation of genotype of CLN3 patient iPSCs	S10
Table S-1. Compound 9e inhibits the Kv7.1 channel in a dose-dependent manner	S11
Table S-2. Antibody source and use.	S12

Supplementary Figure S-1a. At regular intervals, tube length (A), number of nodes (B) and number of junctions (C) were quantified in EC++ medium. Representative images of tube formation assay in EC++ medium at each time point are shown (D).

Supplementary Figure S-1b. Representative images of tube formation assay in EC- medium at each time point.

Supplementary Figure S-2. Structures of aromatic carbamates used herein.

Supplementary Figure S-3. Propidium lodide staining of CLN3 iPSC-derived neurons with selected aromatic carbamate small molecules. No toxicity is observed at 3 μ M concentration for 48 hours in CLN3 iPSC-derived neurons.

Supplementary Figure S-4. Bcl-2 induction of all compounds tested expressed as percentage of Bcl-2 change upon small molecule treatment of CLN3-derived neurons at 3 μ M. n = 3, expressed as mean ± SD. One-way ANOVA; 95% Confidence Interval; *, p= <0.012.

Supplementary Figure S-5a. ¹H NMR spectra of 9e at day zero.

Supplementary Figure S-5b. ¹H NMR spectra of **9e** after 10 days under assay conditions at 37 °C.

Supplementary Figure S-6a. ¹H NMR spectra of 9g at day zero.

Supplementary Figure S-6b. ¹H NMR spectra of 9g after 10 days under assay conditions at 37 °C.

Supplementary Figure S-7a. ¹H NMR spectra of **9h** at day zero.

Supplementary Figure S-7b. ¹H NMR spectra of 9h after 10 days under assay conditions at 37 °C.

Figure S-8. Confirmation of genotypes by sequencing of CLN3 iPSC line employed in this study. Obtained from the New York Stem Cell Foundation as family group 5003. 1104) Maternal iPSCs heterozygous for common (1 kb) deletion. 1105) Paternal iPSCs wild-type; carrier of E13 c.988>T, p.Val330Phe mutation. 1131) Compound mutation: Heterozygous for both common (1 kb) deletion and E13 c.988>T, p.Val330Phe mutation.

Supplementary Table S-1: Compound **9e** inhibits the Kv7.1 channel in a dose-dependent manner.

Compound ID	Client Compound ID	Concentration (µM)	% inhibition		
			n1	n2	mean
US034-0009898-1	AM-9e	0.1	9.47	6.08	7.77
US034-0009898-1	AM-9e	1	19.20	17.50	18.35
US034-0009898-1	AM-9e	10	39.24	40.06	39.65
Time-Matched Vehicle Control	DMSO	0.003	2.35	6.82	4.58
Time-Matched Vehicle Control	DMSO	0.003	8.12	8.87	8.49
Time-Matched Vehicle Control	DMSO	0.003	15.00	24.51	19.76
Positive Reference Control	Chromanol 293B	0.3	7.61	13.97	10.79
Positive Reference Control	Chromanol 293B	1	19.09	19.69	19.39
Positive Reference Control	Chromanol 293B	3	34.73	36.72	35.72
Positive Reference Control	Chromanol 293B	10	43.16	43.27	43.22
Positive Reference Control	Chromanol 293B	30	74.30	76.58	75.44
Positive Reference Control	Chromanol 293B	100	93.28	95.70	94.49

Supplementary Table S-2: Antibody source and use.

Antibody (clone)	Vendor	IF	Flow Cytometry	WB
CD31/PECAM1 (polyclonal)	Labvision	1:20 (MeOH)	N.D.	N.D.
GLUT 1 (SPM498)	Labvision	1:100 (MeOH)	N.D.	N.D.
BCRP (5D3)	Millipore	1:50 (MeOH)	1:20 (MeOH)	N.D.
P-glycoprotein (F4)	ThermoFisher	1:50 (MeOH)	1:20 (MeOH)	N.D.
MRP 1 (QCRL 1)	Millipore	1:50 (MeOH)	1:20 (MeOH)	N.D.
Claudin-5 (4C3C2)	ThermoFisher	1:100	N.D.	N.D.
Occludin (OC3F10)	ThermoFisher	1:100	N.D.	N.D.
VE-Cadherin (F8)	Santa Cruz	1:50	N.D.	N.D.
	Biotechnology			
Nestin (25)	BD Biosciences	1:100	N.D.	N.D.
PAX6 (13B10)	BD Biosciences	1:100	N.D.	N.D.
Beta tubulin, Class III (TUJ1)	BD Biosciences	1:100	N.D.	N.D.
Caveolin-1	Cell Signaling	N.D.	N.D.	1:1000
	Technology			
Clathrin	Cell Signaling	N.D.	N.D.	1:1000
	Technology			
Actin	Cell Signaling	N.D.	N.D.	1:1000
	Technology			
Bcl-2	ThermoFisher	N.D.	N.D.	1:1000
Beclin 1	Cell Signaling	N.D.	N.D.	1:1000
	Technology			
P70 S6 Kinase	Cell Signaling	N.D.	N.D.	1:1000
	Technology			
Subunit C	Abcam	N.D.	N.D.	1:1000

N.D. = Not determined