
2370 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 8, AUGUST 2020

Preterm Infants’ Pose Estimation With
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Abstract—Objective: Preterm infants’ limb monitoring
in neonatal intensive care units (NICUs) is of primary
importance for assessing infants’ health status and mo-
tor/cognitive development. Herein, we propose a new ap-
proach to preterm infants’ limb pose estimation that fea-
tures spatio-temporal information to detect and track limb
joints from depth videos with high reliability. Methods:
Limb-pose estimation is performed using a deep-learning
framework consisting of a detection and a regression con-
volutional neural network (CNN) for rough and precise joint
localization, respectively. The CNNs are implemented to
encode connectivity in the temporal direction through 3D
convolution. Assessment of the proposed framework is per-
formed through a comprehensive study with sixteen depth
videos acquired in the actual clinical practice from sixteen
preterm infants (the babyPose dataset). Results: When ap-
plied to pose estimation, the median root mean square dis-
tance, computed among all limbs, between the estimated
and the ground-truth pose was 9.06 pixels, overcoming
approaches based on spatial features only (11.27 pixels).
Conclusion: Results showed that the spatio-temporal fea-
tures had a significant influence on the pose-estimation
performance, especially in challenging cases (e.g., homo-
geneous image intensity). Significance: This article signif-
icantly enhances the state of art in automatic assessment
of preterm infants’ health status by introducing the use of
spatio-temporal features for limb detection and tracking,
and by being the first study to use depth videos acquired
in the actual clinical practice for limb-pose estimation. The
babyPose dataset has been released as the first annotated
dataset for infants’ pose estimation.

Index Terms—Preterm infants, spatio-temporal features,
deep learning, pose estimation, convolutional neural
networks (CNN).

I. INTRODUCTION

PRETERM birth is defined by the World Health Organi-
zation as a birth before thirty-seven completed weeks of
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gestation. In almost all high-income Countries, complications
of preterm birth are the largest direct cause of neonatal deaths,
accounting for the 35% of the world deaths a year [1]. The
effects of preterm birth among survivor infants may have impact
throughout life. In fact, preterm birth may compromise infants’
normal neuro-developmental functioning, e.g., by increasing the
risk of cerebral palsy.

Clinicians in neonatal intensive care units (NICUs) pay par-
ticular attention to the monitoring of infants’ limbs, as to have
possible hints for early diagnosing cerebral palsy [2]. However,
this monitoring still relies on qualitative and sporadic observa-
tion of infants’ limbs directly at the crib (e.g., using qualitative
scales [3], [4]). Beside being time-consuming, it may be prone to
inaccuracies due to clinicians’ fatigue and susceptible to intra-
and inter-clinician variability [5]. This further results in a lack
of documented quantitative parameters on the topic, while in
closer fields, such as metabolic and respiratory monitoring, a
solid clinical literature already exists [6], [7].

A possible solution to attenuate the problem of qualitative
monitoring could be to develop an automatic video-based system
for infants’ limb-pose estimation and tracking. This would sup-
port clinicians in the limb monitoring process without hindering
the actual clinical practices: the camera could be positioned on
top of infants’ crib (Fig. 1) leaving health operators free to move
and interact with the infants. Estimating limb pose, however, is
not a trivial task, considering that there may be small and barely
visible joints, as well as presence of occlusions, lighting changes
and infants’ movements. To tackle these issues, researches in
the closer fields relevant to video analysis (e.g., [8]–[10]) have
recently pointed out the benefits of including temporal informa-
tion in their analysis. Thus, guided by the research hypothesis
that spatio-temporal features extracted from depth videos may
boost performance with respect to spatial features alone, the
contributions of this paper are summarized as follows:

1) Estimation of infants’ limb pose from depth videos
(Section II): Development of an innovative deep learning
framework for preterm infants’ pose estimation, which
exploits spatio-temporal features for automatic limb-joint
detection and connection;

2) Validation in the actual clinical practice (Section III):
A comprehensive study is conducted using 16 videos
(16000 frames) acquired in the actual clinical practice
from 16 preterm infants (the babyPose dataset) to exper-
imentally investigate the research hypothesis.

To the best of our knowledge, this is the first attempt to
investigate spatio-temporal features for automatic infants’ pose
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Fig. 1. Depth-image acquisition setup. The depth camera is positioned
at ∼40 cm over the infant’s crib and does not hinder health-operator
movements.

estimation from videos acquired in the actual clinical practice.
It is worth noting that we intentionally focused our analysis on
depth videos (instead of RGB ones) to address concerns relevant
to infant privacy protection [11]. We made our babyPose dataset
and code fully available online.1

A. Related Work

In the past decades, a number of computer-based approaches
was developed to support clinicians in monitoring infants’ limb.
In [12] and [13], wearable sensors placed on wrists and knees are
used, respectively. Data from tri-axial accelerometer, gyroscope,
and magnetometer (integrated in the sensor) are processed to
monitor infants’ limb movement via a threshold-sensitive filter-
ing approach, achieving encouraging results. However, practical
issues may arise when using wearable sensors. Hence, even
though miniaturized, these sensors are directly in contact with
the infants, possibly causing discomfort, pain and skin damage
while hindering infant’s spontaneous movements [14].

To attenuate these issues, great efforts have been spent on
unobstructive monitoring solutions (e.g., video data from RGB
or RGB-D cameras). Preliminary results are achieved in [15]
and [16] for infant’s whole-body segmentation with threshold-
based algorithms. However, as highlighted in [17], monitoring

1[Online]. Available: http://193.205.129.120:63392/owncloud/index.php/s/
8HHuPS80pshDc1T

each limb individually is crucial to assist clinicians in the health-
assessment process. With such a view, in [18] RGB images are
processed to detect infant’s limb skeleton with a learning-based
approach. The histogram of oriented gradients is used as feature
to train a structured support vector machine aimed at retriev-
ing limb joints, which are then connected knowing the spatial
relations between infants’ body parts.

Following the learning paradigm, and inspired by recent con-
sideration that showed the potentiality of deep learning over
standard machine learning [19], in a preliminary work [20]
inspired by [21], we investigated the use of convolutional neural
networks (CNNs) to preterm infants’ pose estimation: a first
CNN was used to roughly detect limb joints and joint con-
nections, while a second one to estimate accurately joint and
joint-connection position.

All these approaches only consider spatial features, without
exploiting temporal information that, however, is naturally en-
coded in video recordings [10]. A first attempt of including
temporal information is proposed in [22], where RGB videos are
processed by a semi-automatic algorithm for single-limb track-
ing. Motion-segmentation strategies based on particle filtering
are implemented, which, however, relies on prior knowledge
of limb trajectories. Such trajectories may have high variability
among infants, especially in case of pathology, hampering the
translation of the approach into the actual clinical practice. A
possible alternative to exploit temporal information could be
using 3D CNNs to directly extract spatio-temporal information
from videos, which has already been shown to be robust in
action recognition [23] as well as for surgical-tool detection [8].
Following this consideration, in this work we propose a frame-
work based on 3D CNNs for estimating preterm infants’ limb
pose from depth video recordings acquired in the actual clinical
practice.

II. METHODS

Fig. 2 shows an overview of the workflow of the proposed
spatio-temporal framework for preterm infants’ pose estimation
from depth videos (Section II-B). We exploit two consecutive
CNNs, the former for detecting joints and joint connections,
resulting in what we call affinity maps (Section II-B1), and
the latter for precisely regressing the joint position, resulting in
the so-called confidence maps, by exploiting both the joint and
joint-connection affinity maps, with the latter acting as guidance
for joint linking (Section II-B2). The joints belonging to the
same limb are then connected using bipartite graph matching
(Section II-B3). The pose-estimation framework relies on mod-
eling limb joints as depicted in Fig. 3 and explained in
Section II-A. Table I lists the symbols used in Section II.

A. Infants’ Joint Model and Data Preparation

The proposed infant’s model considers each of the 4 limbs as a
set of 3 connected joints (i.e., wrist, elbow and shoulder for arms,
and ankle, knee and hip for legs), as shown in Fig. 3. This choice
is driven by clinical considerations: as introduced in Section I,
monitoring legs and arms is of particular interest for evaluating
preterm infants’ cognitive and motor development [24], [25].
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Fig. 2. Workflow of the proposed framework to preterm infants’ pose estimation with spatio-temporal features extracted from depth videos. The
input consists of a temporal clip of Wd consecutive depth frames, which are processed by two convolutional neural networks to roughly detect
joint and joint-connection (affinity maps) and refine joint and joint-connection detection (confidence maps), respectively. J : number of limb joints,
C: number of joint connections.

Fig. 3. Preterm infant’s joint model superimposed on a sample depth
frame. Inspired by clinical considerations, only limb joints are consid-
ered. LS and RS: left and right shoulder, LE and RE: left and right elbow,
LW and RW: left and right wrist, LH and RH: left and right hip, LK and
RK: left and right knee, LA and RA: left and right ankle.

With the aim of extracting spatio-temporal features, instead
of considering depth frames individually as in [20], we adopt
temporal clips. Following the approach presented in [8], we use
a sliding window algorithm for building the clips: starting from
the first video frame, an initial clip with a predefined number
(Wd) of frames is selected and combined to generate a 4D datum
of dimensions frame width (W ) × frame height (H) × Wd ×
1, where 1 refers to the depth channel. Then the window moves
of Ws frames along the temporal direction and a new clip is
selected.

To train the detection CNN, we perform multiple binary-
detection operations (considering each joint and joint-
connection separately) to solve possible ambiguities of multiple
joints and joint connections that may cover the same frame por-
tion (e.g., in case of self-occlusion). Hence, for each depth-video
frame, we generate 20 binary ground-truth affinity maps: 12 for

TABLE I
TABLE OF SYMBOLS USED IN SECTION II

joints and 8 for joint connections (instead of generating a single
mask with 20 different annotations, which has been shown to
perform less reliably [21]). Sample ground-truth maps are shown
in Fig. 4. This results in a 4D datum of size W ×H ×Wd × 20.
For each affinity map for joints, we consider a region of interest
consisting of all pixels that lie in the circle of a given radius (rd)
centered at the joint center. A similar approach is used to generate
the ground-truth affinity map for the joint connections. In this
case, the ground-truth is the rectangular region with thickness
rd and centrally aligned with the joint-connection line.

The regression CNN is fed by stacking the depth temporal
clip and the corresponding affinity maps obtained from the
detection network. Thus, the regression input is a 4D datum
of dimension W × H × Wd × 21 (i.e., 1 depth channel +
12 joints + 8 connections). The regression network is trained
with Wd × 20 ground-truth confidence maps of size W × H
(Fig. 5). For every joint in each depth frame, we consider a
region of interest consisting of all pixels that lie in the circle
with radius r centered at the joint center. In this case, instead
of binary masking the circle area as for the detection CNN,
we consider a Gaussian distribution with standard deviation
(σ) equal to 3*r and centered at the joint center. A similar
approach is used to generate the ground-truth confidence maps
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Fig. 4. Ground-truth samples for the detection network. Samples are
shown for (b) left knee (LK), (c) left hip (LH), and (d) their connection.

Fig. 5. Ground-truth samples for the regression network. Samples are
shown for (b) left knee (LK), (c) left hip (LH), and (d) their connection.

for the joint connections. In this case, the ground-truth map is
the rectangular region with thickness r and centrally aligned
with the joint-connection line. Pixel values in the mask are 1-D
Gaussian distributed (σ = 3*r) along the connection direction.

B. Spatio-Temporal Features for Pose Estimation

The proposed deep learning framework (Fig. 2) for spatio-
temporal features computation for infants’ pose estimation con-
sists of:

1) Detection Network: Our architecture (Table II) is in-
spired by the classic encoder-decoder architecture of U-Net [26],
which is however implemented as a two-branch architecture
for processing joints and joint connections separately. In fact,
using a two-branch architecture has been shown to provide
higher detection performance for 2D architecture [8], [21]. To
incorporate the spatio-temporal information encoded in infants’
depth videos, we use 3D CNN kernels. The 3D convolution
allows the kernel to move along the 3 input dimensions to process

TABLE II
DETECTION-NETWORK ARCHITECTURE. STARTING FROM THE INPUT CLIP OF
Wd CONSECUTIVE DEPTH FRAMES, THE NETWORK GENERATES Wd × 20

MAPS (FOR EACH FRAME OF THE CLIP: 12 AND 8 AFFINITY MAPS FOR
JOINT AND JOINT CONNECTIONS, RESPECTIVELY)

multiple frames at the same time, preserving and processing
temporal information through the network.

Our detection network starts with an input layer and a
common-branch convolutional layer (with stride = 1 and kernel
size= 3× 3× 3 pixels), and is followed by 8 blocks. Each block
is first divided in two branches (for joints and connections). In
each branch, two convolutions are performed: the former with
kernel size= 2× 2× 2 and stride 2× 2× 1, while the latter with
kernel size = 3 × 3 × 3 and stride 1 × 1 × 1. It is worth noting
that we set the kernel stride equal to 1 in the temporal dimension
as to avoid deteriorating meaningful temporal information. The
outputs of the two branches in a block are then concatenated
in a single output, prior entering the next block. In each block
of the encoder path, the number of channels is doubled. Batch
normalization and activation with the rectified linear unit (ReLu)
are performed after each convolution.
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TABLE III
REGRESSION-NETWORK ARCHITECTURE. THE NETWORK IS FED WITH Wd

CONSECUTIVE DEPTH FRAMES (EACH WITH 1 CHANNEL) STACKED WITH
THE CORRESPONDING (20) AFFINITY MAPS FROM THE DETECTION

NETWORK, AND PRODUCES Wd × 20 CONFIDENCE MAPS (12 FOR JOINTS
AND 8 FOR CONNECTIONS, FOR EACH OF THE Wd INPUT FRAMES)

The architecture of the decoder path is symmetric to the
encoder one and ends with an output layer with Wd × 20
channels (12 for joints and 8 for connections) activated with
the sigmoid function.

Our detection CNN is trained using the adaptive moment
estimation (Adam) as optimizer and the per-pixel binary cross-
entropy (LCE), adapted for multiple 3D map training, as loss
function:

LCE =
1

Wd(J + C)Ω

Wd∑

t=1

J+C∑

k=1

∑

x∈Ω

[pt,k(x) log(p̃t,k(x)) + (1− pt,k(x)) log(1− p̃t,k(x))] (1)

where pt,k(x) and p̃t,k(x) are the ground-truth affinity maps and
the corresponding output at pixel location x in the depth-frame
domain (Ω) of channel k for temporal frame t, J = 12 and C =
8 are the number of joints and joint connections, respectively.

2) Regression Network: The necessity of using a regres-
sion network for the addressed task comes from considerations
of previous work [27], which showed that directly regressing
joint position from an input frame is highly non linear. Our re-
gression network, instead, produces Wdx20 stacked confidence
maps (12 for joints and 8 for connections). Each map has the
same size of the input depth clip (i.e., WxH).

Also in this case, 3D convolution is performed to exploit
spatio-temporal features. The newtork consists of five layers of
3 × 3 × 3 convolutions (Table III). Kernel stride is always set to
1, to preserve the spatio-temporal resolution. In the first 3 layers,
the number of activations is doubled, ranging from 64 to 256.
The number of activations is then kept constant for the last two
layers. Batch normalization and ReLu-activation are performed
after each 3D convolution.

Our regression network is trained with the stochastic gradient
descent as optimizer using the mean squared error (LMSE),
adapted for multiple 3D map training, as loss function:

LMSE =
1

(J + C)Ω

Wd∑

t=1

J+C∑

k=1

∑

x∈Ω
[ht,k(x)− h̃t,k(x)] (2)

where ht,k(x) and h̃t,k(x) are the ground truth and the predicted
value at pixel location x of the kth channel for temporal frame
t, respectively.

TABLE IV
THE BABYPOSE DATASET: DEMOGRAPHIC DATA

3) Joint Linking: The last step of our limb pose-estimation
task is to link subsequent joints for each of the infants’ limb,
which is done on depth images, individually. First, we iden-
tify joint candidates from the output joint-confidence maps
using non-maximum suppression, which is an algorithm com-
monly used in computer vision when redundant candidates are
present [28]. Once joint candidates are identified, they are linked
exploiting the joint-connection confidence maps. In particular,
we use a bipartite matching approach, which consists of: (i)
computing the integral value along the line connected two candi-
dates on the joint-connection confidence map and (ii) choosing
the two winning candidates as those guaranteeing the highest
integral value.

III. EVALUATION

A. Dataset

Our babyPose dataset consisted of 16 depth videos of 16
preterm infants that were acquired in the NICU of the G. Salesi
Hospital in Ancona, Italy. Demographic data for the babyPose
dataset are shown in Table IV. The babyPose dataset presents
high variability in terms of gestational age (mean = 31.87 ±
3.77), weight (mean = 2021 ± 790), and length (mean = 44.13
± 4.12). Such variability poses further challenges to the problem
of pose estimation.

The infants were identified by clinicians in the NICU among
those who were spontaneously breathing. Written informed
consent was obtained from the infant’s legal guardian.

Video-acquisition setup, which is shown in Fig. 1, was de-
signed to not hinder healthcare operators in their work activities.
The 16 video recordings (length = 180 s) were acquired for
every infant using the Astra Mini S - Orbbec , with a frame rate
of 30 frames per second and image size of 640 × 480 pixels. No
frame selection was performed (i.e., all frames were used for the
analysis).

Joint annotation was performed under the supervision of our
clinical partners using a custom-built annotation tool, publicly
available online.2

For each video, the annotation was manually obtained ev-
ery 5 frames, until 1000 frames per infant were annotated.

2[Online]. Available: https://github.com/roccopietrini/pyPointAnnotator
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Fig. 6. Challenges in the babyPose dataset, which was acquired in the
actual clinical practice, include different poses of the depth sensor with
respect to the infant, presence of limb occlusions (both self-occlusion
and due to healthcare operators), different number of visible joints in the
camera field of view and presence of homogeneous areas with similar
or at least continuous depth.

In accordance with our clinical partners, performing manual
annotation every 5 frames may be considered a good com-
promise considering the average preterm infants’ movement
rate [29]. Then, these 1000 frames were split into training and
testing data: 750 frames were used for training purpose and the
remaining ones (250 frames) to test the network; resulting in a
training set of 12000 samples (16 infants × 750 frames) and a
testing set of 4000 samples (16 infants × 250 frames). From the
12000 training samples, we kept 200 frames for each infant as
validation set, for a total of 3200 frames.

Fig. 6 shows some of the challenges in the dataset, such
as varying infant-camera distance (due to the motility of the
acquisition setup), different number of visible joints (due to
partial or total limb occlusion) and presence of homogeneous
areas with similar or at least continuous intensity values, due to
the use of the depth video.

B. Training Settings

All frames were resized to 128 × 96 pixels in order to smooth
noise and reduce both training time and memory requirements.
Mean intensity was removed from each frame. To build the
ground-truth masks, we selected rd equal to 6 pixels, as to
completely overlay the joints. The Ws was set to 2 for training
and 0 for testing, while Wd was set to 3. This way, a temporal
clip was 0.5 s long.

For training the detection and regression network, we set an
initial learning rate of 0.01 with a learning decay of 10% every
10 epochs, and a momentum of 0.98. We used a batch size of 8

and set a number of epochs equal to 100. We selected the best
model as the one that maximized the detection accuracy and
minimized the mean absolute error on the validation set, for the
detection and regression network, respectively.

All our analyses were performed using Keras3 on a Nvidia
GeForce GTX 1050 Ti/PCIe/SSE2.

C. Ablation Study and Comparison With the
State-of-the-Art

We compared the performance of the proposed spatio-
temporal features with that of spatial features alone. We chose
the closest work with respect to ours (i.e., [20]), which is inspired
by [21] and uses the same architectures presented in Table II and
Table III, but with 2D spatial convolution.

We also compared the proposed approach with the Stacked
Hourglass [30] and Convolutional Pose Machine [31], which
are among the most successful and well-known approaches for
human pose estimation. For these comparisons, we modified
the corresponding architectures,4,5 originally designed for RGB
images, to allow depth-image processing. For all these architec-
tures, we implemented the same training settings described in
Section III-B.

For the ablation study, inspired by [32], we compared the
performance of the proposed framework with the detection-only
and regression-only architectures. Both were implemented in
a spatio-temporal fashion (i.e., with 3D convolution). For the
detection-only model, the affinity maps were used to directly es-
timate limb pose with the bipartite-matching strategy described
in Section II-B3. The regression-only model was fed with the
depth clips and trained with the confidence-map ground truth.
The output was then used to estimate joint pose with bipartite
matching.

D. Performance Metrics

To measure the performance of the detection network, as
suggested in [8], we computed the Dice similarity coefficient
(DSC) and recall (Rec), which are defined as:

DSC =
2× TP

2× TP + FP + FN
(3)

Rec =
TP

TP + FN
(4)

where TP and FP are the true joint and background pixels
detected as joints, respectively, while FN refers to joint pixels
that are detected as background. The same applied to joint
connections.

To evaluate the overall pose estimation, we computed the root
mean square distance (RMSD) [pixels] for each infants’ limb.
For both the detection and regression network, we measured the
testing time.

3[Online]. Available: https://keras.io/
4[Online]. Available: https://github.com/yuanyuanli85/Stacked_Hourglass_

Network_Keras/blob/master/src/net/hg_blocks.py
5[Online]. Available: https://github.com/namedBen/Convolutional-Pose-

Machines-Pytorch/blob/master/train_val/cpm_model.py
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TABLE V
JOINT-DETECTION PERFORMANCE IN TERMS OF MEDIAN DICE SIMILARITY COEFFICIENT (DSC) AND RECALL (Rec). INTER-QUARTILE RANGE IS REPORTED

IN BRACKETS. THE METRICS ARE REPORTED SEPARATELY FOR EACH JOINT. FOR JOINT ACRONYMS, REFER TO THE JOINT-POSE MODEL IN FIG. 3

Fig. 7. Boxplots of the recall (Rec) for (a) joint and (b) joint-connection
detection achieved with the proposed 3D framework. Results of the 2D
framework are shown for comparison, too. For colors and acronyms,
refer to the joint model in Fig. 3.

Two-sided t-test with significance level (α) = 0.05 was used
to evaluate if significative differences were present between the
2D and 3D framework in estimating limb pose.

IV. RESULTS

The descriptive statistics of Rec and DSC for the detection
CNN are reported in Table V. Fig. 7(a) shows the Rec boxplots
for joints. Results are also shown for the corresponding 2D
implementation. The highest median DSC (0.94, inter-quartile
range (IQR) = 0.05) among all joints was obtained with the
3D CNN. The same was observed for the Rec, with a median

value among all joints of 0.90, and IQR of 0.09. Note that, in
the case yielding the least accurate result, which corresponds
to the RH joint, the Rec still achieved 0.88, whereas for the 2D
detection network the lowestRecwas 0.73. The same behaviour
(Table VI and Fig. 7(b)) was observed when considering the
joint-connection detection performance, with median DSC =
0.93 (IQR = 0.06) and median Rec= 0.90 (IQR = 0.11) among
all connections.

The performance comparison in terms of RMSD of the
different models presented in Section III-C is summarized in
Table VII. The highest performance (i.e., the lowest RMSD)
was achieved by the 3D framework, with a median value of
9.06 pixels (IQR = 5.12) among the four limbs. The best
performance was achieved for the right leg (median = 8.90 pix-
els, IQR = 5.64 pixels). The overall computational time for
our 3D framework was 0.06 s per image on average. The 2D
framework always showed lower performance, with the best and
worst RMSD equal to 10.54 (left arm) and 11.73 (right arm)
pixels, respectively (median among the four limbs = 11.27 with
IQR = 4.59). The overall statistics are shown in Fig. 8. The re-
sults all differed significantly (p-value< α) from those obtained
with the 3D framework. Stacked Hourglass and Convolutional
Pose Machine got a median RMSD of 11.95 and 11.84 pixels.
The detection-only and regression-only networks showed the
lowest performance, with a median RMSD equal to 15.09 pix-
els and 12.06 pixels, respectively.

In Fig. 9, qualitative results for infants’ pose estimation are
shown both for the 2D framework (on the left side) and the
3D one (on the right side). The white arrows highlight errors
in pose estimation made by the 2D framework. Results of the
3D framework for challenging cases are shown in Fig. 10. The
first row shows samples in which one joint was not detected due
to auto-occlusion. Joints were also not detected when external
occlusion occurred (second row), due to the interaction of the
healthcare-operator with the infant or to the presence of plaster.
The proposed framework was not able to produce joint estima-
tion also when image noise and intensity inhomogeneities (e.g.,
due to rapid infants movement) were present (third row). At the
same time, however, other joints in the image were correctly
estimated thanks to the joint-map parallel processing.

V. DISCUSSION

Monitoring preterm infants’ limb is crucial for assess-
ing infant’s health status and early detecting cognitive/motor
disorders. However, when surveying the clinical literature,
we realized that there is a lack of documented quantitative
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TABLE VI
JOINT-CONNECTION DETECTION PERFORMANCE IN TERMS OF MEDIAN DICE SIMILARITY COEFFICIENT (DSC) AND RECALL (Rec). INTER-QUARTILE RANGE

IS REPORTED IN BRACKETS. THE METRICS ARE REPORTED SEPARATELY FOR EACH JOINT CONNECTION. FOR JOINT ACRONYMS, REFER TO THE
JOINT-POSE MODEL IN FIG. 3.

TABLE VII
LIMB-POSE ESTIMATION PERFORMANCE IN TERMS OF MEDIAN ROOT MEAN SQUARE DISTANCE (RMSD), WITH INTERQUARTILE RANGE IN BRACKETS,

COMPUTED WITH RESPECT TO THE GROUND-TRUTH POSE. THE RMSD IS REPORTED FOR EACH LIMB, SEPARATELY. RESULTS ARE REPORTED FOR THE
2D AND 3D FRAMEWORK, AS WELL AS FOR THE 3D DETECTION-ONLY, 3D REGRESSION-ONLY AND STATE-OF-THE-ART ARCHITECTURES

Fig. 8. Boxplots of the root mean squared distance (RMSD) com-
puted for the four limbs separately. Boxplots are shown for the 2D and
3D framework. Asterisks highlight significant differences.

parameters on the topic. This is mainly due to the drawbacks of
current monitoring techniques, which rely on qualitative visual
judgment of clinicians at the crib side in NICUs. A possible,
straightforward, solution may be to exploit contact sensors (such
as accelerometers). Nonetheless, in NICUs, using additional
hardware may contribute significantly to infants’ stress, discom-
fort and pain and, from the healthcare operators’ point of view,
may hinder the actual clinical practice. To overcome all these
issues, researchers seek for new reliable and unobtrusive mon-
itoring alternatives, which are mostly based on video analysis.
With this paper, we proposed a novel framework for non-invasive
monitoring of preterm infants’ limbs through providing an

Fig. 9. Sample qualitative results for pose estimation obtained with
the 2D (left) and 3D (right) framework. White arrows highlight estimation
errors, mainly due to homogeneous image intensity.

innovative approach for limb-pose estimation from spatio-
temporal features extracted from depth videos. We decided to
exploit depth videos (over approaches based on RGB videos)
to accomplish considerations relevant to privacy protection.
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Fig. 10. Sample qualitative results for challenging cases. First row: one joint was not detected due to auto-occlusion (from left to right: right
shoulder, right shoulder, right hip, right hip). Second row: one or more joints were not detected due to external occlusion (from left to right: joint of
the left limbs, right ankle, left arm - due to healthcare operator hand presence, and right knee and ankle - due to plaster). Last row: image noise
and intensity inhomogeneities prevented joint detection.

The deep learning framework was validated on a dataset of 16
preterm infants, whose video recordings, acquired in the actual
clinical practice, presented several challenges such as: presence
of homogeneous areas with similar or at least continuous inten-
sity, self- or external occlusions and different pose of the camera
with respect to the infants.

The proposed 3D detection network achieved encouraging
results as shown in Fig. 7 and reported in Table V, with a
median DSC of 0.94 and 0.93 for joint and joint-connection,
respectively, overcoming our previous approach based on spatial
features only [20]. The network performed comparably when
detecting all joints and joint-connection as shown by the IQRs
in Table V, reflecting the CNN ability of processing in parallel
the different joint and joint-connection affinity maps.

The 3D framework achieved improved performance
(Table VII) in estimating infants’ pose for all limbs (median
RMSD = 9.06 pixels) when compared with our previous
2D approach (median RMSD = 11.27 pixels). These results
suggest that exploiting temporal information improved network
generalization ability even in presence of intensity homogeneity
and noisy background, typical of depth images. These consid-
erations are visible in Fig. 9, where the 2D framework failed in
detecting joints that lay in portions of the image with homoge-
neous intensity.

Predictions of the pose estimation were computed also for the
detection- (median RMSD = 15.09 pixels) and the regression-
only networks (median RMSD = 12.06 pixels). Despite the
complexity of regressing joint and joint-connection confidence

maps from depth image clips only, the regression-only network
achieved better results when compared to the detection-only
network. The lower performance of the detection-only network
may be due to the complexity in localizing joint candidates
from ground-truth binary masks, where all pixels have the same
weight (Fig. 4). It is worth noting that spatio-temporal features
were tested for a detection-only task in [8] (even though for
surgical instrument joints in laparoscopic video). Here, however,
we moved forward to test joint estimation by combining the
detection network with bipartite matching, and comparing the
achieved results with the full 3D detection+regression frame-
work. Despite the integration of the temporal information, both
the detection-only and regression-only network achieved lower
outcomes with respect to the full 2D framework. Hence, the
regression-only model was barely capable of predicting the loca-
tion of joints without any guidance. Regression is empirically too
localized (i.e., it supports small spatial context) and the process
of regressing from original input image to joint location directly
is challenging. By combining detection and regression, the de-
tection module acted as structural guidance for the regression
module by providing spatial contextual information between
joints, and facilitating the joints localization.

Stacked Hourglass and Convolutional Pose Machine achieved
lower performance when compared to our 3D framework. This
might be attributed to the fact that both Stacked Hourglass and
Convolutional Pose Machine are designed to process spatial
features only. Nonetheless, the 2D framework, which also works
with spatial feature only, overcame both Stacked Hourglass and
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Fig. 11. Graphical user interface of the Pose Tool, which codifies with
a color code the standard deviation of the joint angles in time.

Convolutional Pose Machine. This result seems to confirm that
the rough detection of limb joints by the detection network
facilitates the regression network in regressing joint position
accurately, as highlighted in [21]. In fact, Stacked Hourglass
and Convolutional Pose Machine achieved better RMSD val-
ues when compared to the regression-only network. Hence,
the benefits brought by the introduction of 3D kernels in the
regression-only network are counterbalanced by the multi-scale
nature of the state-of-the-art networks, which capture both global
and local information.

A straightforward limitation of this work may be seen in the
estimation of occluded joints (both in case of auto and external
occlusion), as shown in Fig. 10 (first and second rows). At
the same time, our two-branch architecture with multiple maps
allowed to detect the other (not-occluded) joints in the image.
This issue could be attenuated with recent strategies proposed
in the literature for long-term tracking [33] and confidence es-
timation [34]. Modeling infant’s limbs through anthropometric
measures (such as limb length - already acquired in the actual
clinical practice) could also help in attenuating the occlusion
issue. This would probably also make our 3D framework able
to tackle noisy image portions, which may be present due to
sudden movement of infants or healthcare operators (Fig. 10,
last row). We also recognize that a limitation of the proposed
work could be seen is the relatively limited number of testing
frames (4000), which is due to the lack of available annotated
dataset online. To attenuate this issue, we released the data we
collected for further use in the community.

As future work, to support clinicians in the actual clinical
practice, we plan to develop a tool based on limb-pose esti-
mation (the Pose Tool) to be integrated within the electronic
medical-record software currently in use in the NICU of the G.
Salesi Hospital. Starting from the limb-pose estimation, the joint
angles can be computed (e.g. according to [18]), offering useful
hints for infants’ monitoring [35]. Fig. 11 shows the graphical

user interface of the Pose Tool, which codifies with a color
code the standard deviation of the joint angles in time. Natural
extensions of the proposed work deal with the inclusion of the
limb-pose estimation within other computed-assisted algorithms
for diagnostic support, e.g., to classify abnormal limb move-
ments. The proposed acquisition setup could also be integrated
with recent video-based monitoring systems for respiratory rate
analysis [36].

VI. CONCLUSION

In this paper, we proposed a framework for preterm in-
fants’ limb-pose estimation from depth images based on spatio-
temporal features. Our results, achieved by testing a new con-
tribution dataset (which is also the first in the field), suggest
that spatio-temporal features can be successfully exploited to
increase pose-estimation performance with respect to 2D models
based on single-frame (spatial only) information.

In conclusion, our solution moves us towards a better frame-
work for preterm infants’ movement understanding and can lead
to applications in computer-assisted diagnosis. Moreover, by
making our dataset fully available, we believe we will stimulate
researches in the field, encouraging and promoting the clinical
translation of preterm infants’ monitoring systems for timely
diagnosis and prompt treatment.
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