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A Coordinate Descent Algorithms

We provide a software to perform the estimation of the penalized regression models described above. The
software solves the objective function (5) via coordinate descent.

First, we describe the coordinate descent algorithm for the LASSO penalty. We have the penalized
regression objective function, standardized n × p design matrix X, and standardized response vector y.
Let our vector of temporary effect size estimates, which is updated elementwise by the coordinate descent
algorithm, be denoted β̃. We loop over β̃ to update each element β̃j in sequence. We iterate this process
until convergence, which is defined as two successive iterations that produce no elementwise change above
some (small) threshold. The updating formula is as follows [1]:

β̃j ← S(

n∑
i=1

xij(yi − ỹ(j)i ), λ) (S.1)

where S is the soft-thresholding operator, and ỹ
(j)
i =

∑
k 6=j xikβ̃k. We can also express the updating formula

as:

β̃j ← S(

n∑
i=1

xijyi − xij
∑
k 6=j

xikβ̃k, λ) (S.2)

We can make substitutions equivalent to equation (4) to derive an updating formula that can be used in our
framework of summary statistics and reference data. We also define the following quantity: β̃j=0 is equal to

β̃ with the jth element equal to zero. Given these, we can represent equation (S.2) as:

β̃j(λ)← S([r−Rsβ̃j=0(λ)]j , λ) (S.3)

where [r −Rβ̃j=0(λ)]j denotes the jth element of the vector. The above coordinate descent algorithm for
summary statistic data is implemented by Shin et al [2] in their LassoSum package.

A similar process follows for the TLP and the elastic net. In the elastic net, we have the following
updating formula [1]:

β̃j =
S(
∑n
i=1 xij(yi − ỹ

(j)
i ), λα)

1 + (1− α)λ
(S.4)

We make the substitutions specified above to get the following update formula which allows us to estimate
the model in the summary statistic framework:

β̃j =
S([r−Rsβ̃j=0]j , λα)

1 + (1− α)λ
(S.5)
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We now present the updating formula for the TLP [3]. We introduce the following notation: consider that

estimated effect size β̃
(m)
j is from the mth iteration of the coordinate descent algorithm. Given this, we define

the updating formula as follows:

β̃
(m)
j ←

{∑n
i=1 xij(yi − ỹ

(j)
i ), if β̃

(m−1)
j > τ

S(
∑n
i=1 xij(yi − ỹ

(j)
i ), λ), if β̃

(m−1)
j < τ

(S.6)

Which gives us the following update formula after substituting:

β̃
(m)
j (λ)←

{
[r−Rsβ̃j=0(λ)]j , if β̃

(m−1)
j > τ

S([r−Rsβ̃j=0(λ)]j , λ), if β̃
(m−1)
j < τ

(S.7)

B Additional Results from Simulation Study

Here, we present the information plotted in Fig 1, 2, and 3 in table form.

P LDPred LDP-Inf LassoSum TlpSum ElNet PRS PRS P+T

.001 .411 (.030) .125 (.020) .437 (.029) .440 (.029) .436 (.028) .123 (.022) .380 (.024)
.01 .264 (.023) .123 (.011) .300 (.017) .300 (.017) .300 (.017) .122 (.014) .251 (.018)
.1 .132 (.012) .123 (.011) .134 (.013) .136 (.013) .135 (.013) .123 (.012) .123 (.012)

Table A: Prediction r2 values for simulation 1. Standard deviation across the 20 replications in parentheses.
The penalized regression methods have an advantage over LDPred as p decreases.

P LDPred LDP-Inf LassoSum TlpSum ElNet PRS PRS P+T

.0005 .437 (.021) .072 (.023) .423 (.028) .426 (.025) .423 (.027) .071 (.022) .358 (.018)
.001 .412 (.025) .078 (.016) .397 (.029) .399 (.027) .398 (.028) .075 (.017) .346 (.032)
.01 .219 (.015) .076 (.009) .202 (.016) .202 (.016) .205 (.016) .074 (.009) .161 (.103)
.1 .076 (.010) .072 (.009) .075 (.009) .074 (.009) .075 (.009) .072 (.010) .072 (.010)

Table B: Prediction r2 values for simulation 2. Standard deviation across the 20 replications in parentheses.
LDPred is the most accurate in all scenarios.

P LDPred LDP-Inf LassoSum TlpSum ElNet PRS PRS P+T

.0005 .347 (.068) .033 (.008) .348 (.048) .353 (.043) .349 (.049) .024 (.006) .302 (.034)
.001 .265 (.082) .028 (.008) .274 (.051) .277 (.045) .274 (.051) .025 (.007) .234 (.038)
.01 .037(.011) .024 (.004) .032 (.011) .033 (.011) .032 (.011) .023 (.006) .028 (.010)

Table C: Prediction r2 values for simulation 3. Standard deviation across the 20 replications in parentheses.

Following are tables corresponding to the section on simulating allelic heterogeneity. This includes infor-
mation on the average accuracy of the penalized regression methods applied to out-of-sample data simulated
under allelic heterogeneity, paired t-tests that demonstrate a small but persistent improvement in predictive
accuracy by the TlpSum, and a comparison of the predictive performance of LassoSum and ElastSum.
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Fig A: Predictive r2 for LassoSum and ElastSum for each of the 100 replications at each of the four simulation
settings. Lines are at a 45 degree angle through the origin, and not a line of best fit. Points below the line
indicate better performance of LassoSum.

ElastSum TlpSum
LassoSum 2.37E-10 (.001, .002) 3.05E-10 (.004, .008)
ElastSum 1.17E-5 (.002, .006)

Table D: P-values and 95% CIs for paired t-test applied to predictive r2 on out of sample data for the allelic
heterogeneity simulation. Ranges are for the method in the column label less the method in the row label.
Simulation setting with h2 = .6, p = .005.

ElastSum TlpSum
LassoSum 1.18E-6 (.001, .002) 2.69E-8 (.003, .006)
ElastSum 4.32E-5 (.002, .005)

Table E: P-values and 95% CIs for paired t-test applied to predictive r2 on out of sample data for the allelic
heterogeneity simulation. Ranges are for the method in the column label less the method in the row label.
Simulation setting with h2 = .5, p = .005.

ElastSum TlpSum
LassoSum 2.30E-5 (.001, .002) 1.61E-10 (.004, .007)
ElastSum 5.57E-8 (.003, .006)

Table F: P-values and 95% CIs for paired t-test applied to predictive r2 on out of sample data for the allelic
heterogeneity simulation. Ranges are for the method in the column label less the method in the row label.
Simulation setting with h2 = .5, p = .002.

ElastSum TlpSum
LassoSum .075 (-6.37E-4, 3.16E-5) 6.59E-5 (.001, .003)
ElastSum 5.98E-6 (.001, .004)

Table G: P-values and 95% CIs for paired t-test applied to predictive r2 on out of sample data for the allelic
heterogeneity simulation. Ranges are for the method in the column label less the method in the row label.
Simulation setting with h2 = .2, p = .002.
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Simulation LassoSum TlpSum ElastSum
h2 = .6, p = .005 .468 (.022) .474 (.022) .470 (.023)
h2 = .5, p = .005 .380 (.021) .385 (.020) .381 (.021)
h2 = .5, p = .002 .419 (.029) .424 (.027) .420 (.028)
h2 = .2, p = .002 .153 (.056) .155 (.056) .152 (.056)

Table H: Predictive r2 on out-of-sample data for TlpSum and LassoSum models in four simulations for allelic
heterogeneity. Number in parentheses is standard deviation across 100 replications.

Following are tables corresponding to the section on the investigation of selected models, including in-
formation from those ‘non-sparse’ simulation settings as a point of comparison. In these tables, we clearly
see that the increased sparsity and decreased false positive rate demonstrated by the TLP in the sparse
simulation settings does not extend to those non-sparse simulation settings. Again, this is likely because we
do not have a ‘true’ TLP when the s parameter is nonzero, as demonstrated by equation (5).

P True LassoSum TlpSum ElNet

.001 27.7 102.7 (82.3) 76.4 (18.9) 135.8 (116.2)
.01 302.4 631.3 (46.7) 631.2 (48.5) 597.2 (55.2)
.1 2995.7 14,107 (3378) 14,646 (3424.9) 13,640 (2,888)

Table I: Comparing the mean number of nonzero effect size estimates of the penalized regression methods
against the ground truth in simulation 1. The standard deviation across the 20 simulations is in parentheses.
For the penalized regression estimates, the number of nonzero effect size estimates corresponds to the model
with the best tuning accuracy.

P True LassoSum TlpSum ElNet

.0005 30.6 124.75 (15.5) 90 (46.9) 187.7 (85.6)
.001 61.8 150.3 (13.1) 207.2 (236.1) 259.5 (80.6)
.01 617.4 1170.0 (233.2) 1222.6 (122.6) 809 (85.4)
.1 6128.8 36,223 (10,434) 38,125 (9953) 43,069 (5662)

Table J: Comparing the mean number of nonzero effect size estimates of the penalized regression methods
against the ground truth in simulation 2. The standard deviation across the 20 simulations is in parentheses.
For the penalized regression estimates, the number of nonzero effect size estimates corresponds to the model
with the best tuning accuracy.

P True LassoSum TlpSum ElNet

.0005 119.6 381.6 (98.1) 322.1 (141.9) 321.6 (94.2)
.001 233.1 433.9 (81.7) 391.6 (119.6) 383.2 (92.7)
.01 2312 4185 (5777) 4872 (6643) 7317 (16,090)

Table K: Comparing the mean number of nonzero effect size estimates of the penalized regression methods
against the ground truth in simulation 3. The standard deviation across the 20 simulations is in parentheses.
For the penalized regression estimates, the number of nonzero effect size estimates corresponds to the model
with the best tuning accuracy.
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P True LassoSum TlpSum ElNet

.001 27.7 19.8 (3.3) 18.4 (3.1) 20.0 (3.3)
.01 302.4 109.7 (7.4) 109.3 (7.7) 109.6 (7.8)
.1 2995.7 1686.3 (299.2) 1734.6 (300) 1649 (262.3)

Table L: Table comparing the number of true nonzero effect sizes recovered by each of the penalizezd regression
methods applied to simulation 1. The standard deviation across the 20 simulations is in parentheses. The
number of true positives corresponds to the model with the best tuning accuracy.

P True LassoSum TlpSum ElNet

.0005 30.6 21.2 (3.8) 19.7 (4.3) 21.4 (4.0)
.001 61.8 35.7 (5.7) 34.1 (6.1) 37.3 (6.3)
.01 617.4 156.0 (17.3) 159.1 (11.3) 139.6 (7.8)
.1 6128.8 3,194.7 (938.7) 4,084.7 (890.0) 4,536.7 (507.0)

Table M: Table comparing the number of true nonzero effect sizes recovered by each of the penalized regression
methods applied to simulation 2. The standard deviation across the 20 simulations is in parentheses. The
number of true positives corresponds to the model with the best tuning accuracy.

P True LassoSum TlpSum ElNet

.0005 119.6 53.4 (4.4) 49.7 (6.9) 52.4 (4.1)
.001 233.1 71.8 (9.2) 68.8 (11.1) 70.1 (9.0)
.01 2312 205 (125.1) 202.8 (139.3) 229.8 (230.5)

Table N: Table comparing the number of true nonzero effect sizes recovered by each of the penalized regression
methods applied to simulation 3. The standard deviation across the 20 simulations is in parentheses. The
number of true positives corresponds to the model with the best tuning accuracy.

P True LassoSum TlpSum ElNet

.001 29,701 82.9 (82.2) 58.5 (17.5) 115.9 (116.9)
.01 29,475 521.6 (46.1) 521.9 (47.5) 488.1 (53.8)
.1 26,782 12,421 (3082) 12,911 (3128) 11,991 (2630)

Table O: Table comparing the number of false positive nonzero effect sizes for each of the penalizezd regression
methods applied to simulation 1. The standard deviation across the 20 simulations is in parentheses. The
number of false positives corresponds to the model with the best tuning accuracy.

P True LassoSum TlpSum ElNet

.0005 61,124 103.6 (15.4) 70.3 (44.1) 166.3 (82.9)
.001 61,093 114.6 (13.8) 173.1 (234.6) 222.2 (79.2)
.01 60,538 1014.0 (217.9) 1063.5 (114.8) 669.4 (80.7)
.1 55,026 32,309 (9497) 34,040 (9064) 38,532.6 (5,157 .3)

Table P: Table comparing the number of false positive nonzero effect sizes for each of the penalized regression
methods applied to simulation 2. The standard deviation across the 20 simulations is in parentheses. The
number of false positives corresponds to the model with the best tuning accuracy.
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P True LassoSum TlpSum ElNet

.0005 229,156 328.3 (94.5) 272.4 (135.8) 261.2 (91.2)
.001 229,043 362.1 (74.6) 332.8 (110.1) 313.2 (86.3)
.01 226,965 4610 (5658) 4669 (6510) 7087 (15,867)

Table Q: Table comparing the number of false positive nonzero effect sizes for each of the penalized regression
methods applied to simulation 3. The standard deviation across the 20 simulations is in parentheses. The
number of false positives corresponds to the model with the best tuning accuracy.

Following are tables corresponding to the results for the simulation study for model selection. Additionally
included is Fig B, which demonstrates the performance of model selection and quasi-correlation for model fit
applied to TlpSum. The results are similar to the application to LassoSum.

P Tuning R2 Pseudo AIC True AIC Pseudo BIC True BIC pseudoVal quasiCor

.001 .435 (.025) .421 (.023) .427 (.023) .410 (.026) .427 (.027) .427 (.023) .434 (.024)
.01 .297 (.023) .290 (.026) .298 (.023) .229 (.031) .274 (.028) .255 (.015) .297 (.023)
.1 .134 (.011) .125 (.013) ..125 (.013) .125 (.013) .125 (.013) .125 (.013) .135 (.012)

Table R: This table displays the results for LassoSum. Each cell contains the accuracy of the selected model
on the testing data for the seven different methods of model selection applied to simulation 1. Accuracy is
measured by predictive r2 on the testing data. Each value is the mean across the 20 different simulation
settings, with the standard deviation in parentheses.

P Tuning R2 Pseudo AIC True AIC Pseudo BIC True BIC pseudoVal quasiCor

.001 .439 (.025) .420 (.023) .435 (.028) .417 (.027) .428 (.030) .426 (.024) .436 (.026)
.01 .297 (.024) .290 (.026) .294 (.026) .229 (.031) .240 (.033) .255 (.015) .296 (.023)
.1 .136 (.010) .125 (.013) .125 (.013) .125 (.013) .125 (.013) .125 (.013) .136 (.012)

Table S: This table displays the results for TlpSum. Each cell contains the accuracy of the selected model
on the testing data for the seven different methods of model selection applied to simulation 1. Accuracy is
measured by predictive r2 on the testing data. Each value is the mean across the 20 different simulation
settings, with the standard deviation in parentheses.

P Tuning R2 Pseudo AIC True AIC Pseudo BIC True BIC pseudoVal quasiCor

.001 .461 (.035) .452 (.039) .458 (.035) .431 (.037) .450 (.033) .459 (.037) .461 (.035)
.01 .315 (.026) .308 (.027) .316 (.025) .239 (.031) .288 (.029) .275 (.018) .315 (.024)
.1 .141 (.015) .131 (.016) .131 (.016) .131 (.016) .131 (.016) .131 (.016) .142 (.016)

Table T: This table displays the results for LassoSum. Each cell displays the accuracy of the selected model
on the testing data, as measured by the squared quasi-correlation, for the seven different methods of model
selection applied to simulation 1. Each value is the mean across the 20 different simulation settings, with the
standard deviation in parentheses.
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P Tuning R2 Pseudo AIC True AIC Pseudo BIC True BIC pseudoVal quasiCor

.001 .461 (.035) .452 (.039) .458 (.035) .431 (.037) .450 (.033) .459 (.037) .461 (.035)
.01 .314 (.023) .308 (.027) .310 (.031) .240 (.031) .248 (.033) .275 (.018) .315 (.024)
.1 .148 (.014) .136 (.016) .136 (.016) .136 (.016) .136 (.016) .136 (.015) .149 (.015)

Table U: This table displays the results for TlpSum. Each cell displays the accuracy of the selected model
on the testing data, as measured by the square of the quasi-correlation, for the seven different methods of
model selection applied to simulation 1. Each value is the mean across the 20 different simulation settings,
with the standard deviation in parentheses.

Fig B: Performance of the seven different model selection methods applied to a set of candidate TlpSum
models for simulation 1. Performance is measured by r2 on the testing data (the right bar in each group),
and by squared quasi-correlation on the testing data (the left bar in each group). Error bars represent the
standard deviation across 20 replications.

C Simulation Study without LD Blocks

Here, we present the predictive accuracy for the penalized regression models described in the simulation study
for penalized regression estimated without LD blocks. Otherwise, the simulation settings were the same as
those described in the simulation study for model selection without allelic heterogeneity, with the exception
that we did not exclude SNPs with MAF < .01 in this simulation. Because we do not expect SNPs with
MAF < .01 to contribute substantially to the genetic heritability of the simulated phenotype, this shouldn’t
have made a significant difference in estimating the predictive power of the models. The predicted accuracy
for the four methods that don’t use penalized regression are the same as in the results section. We find that
predictive accuracy is improved modestly by implementing LD blocks in most simulation settings. Tables
S22 and S23 below can be compared to tables S1 and S2 to see the differences in predictive accuracy.

P LDPred LDP-Inf LassoSum TlpSum ElNet PRS PRS P+T

.001 .411 (.030) .125 (.020) .433 (.021) .433 (.020) .432 (.018) .123 (.022) .380 (.024)
.01 .264 (.023) .123 (.011) .279 (.016) .277 (.017) .280 (.017) .122 (.014) .251 (.018)
.1 .132 (.012) .123 (.011) .128 (.014) .129 (.015) .126 (.015) .123 (.012) .123 (.012)

Table V: Prediction r2 values for simulation 1 estimated without LD blocks. Standard deviation across the
20 replications in parentheses.

7



P LDPred LDP-Inf LassoSum TlpSum ElNet PRS PRS P+T

.0005 .437 (.021) .072 (.023) .426 (.021) .425 (.022) .423 (.019) .071 (.022) .358 (.018)
.001 .412 (.025) .078 (.016) .392 (.024) .389 (.022) .392 (.024) .075 (.017) .346 (.032)
.01 .219 (.015) .076 (.009) .187 (.016) .180 (.013) .187 (.015) .074 (.009) .161 (.103)
.1 .076 (.010) .072 (.009) .070 (.009) .070 (.010) .0327 (.005) .072 (.010) .072 (.010)

Table W: Prediction r2 values for simulation 2. Standard deviation across the 20 replications in parentheses.
LDPred is the most accurate in all scenarios.

Following is the table describing the number of nonzero effect size estimates for the three penalized
estimation methods when estimation was done without LD blocks. Compared to table S9, we see that the
penalized regression methods estimate more nonzero effect sizes when p = .001.

P True LassoSum TlpSum ElNet

.001 39.5 121.5 103.5 129.4
.01 416.3 569.8 696.3 464.4
.1 4144.9 14,458.1 16.487.5 12,973.3

Table X: Comparing the mean number of nonzero effect size estimates of the penalized regression methods
against the ground truth in simulation 1, estimated without LD blocks. For the penalized regression estimates,
the number of nonzero effect size estimates corresponds to the model with the best tuning accuracy.

In total, the increases in accuracy and model sparsity that result from implementing blockwise estimation
are arguments for the use of LD blocks in the estimation of penalized regression models. Additionally, the
computation time is drastically decreased by implementing LD blocks. Estimation a set of ∼ 40 TLP models
for ∼ 60, 000 SNPs in simulation 2 could take as long as five hours without LD blocks, while taking an
average time of 15 minutes with LD blocks.

D Accuracy of Summary Statistic Approximations

In this section, we present results demonstrating the accuracy of the summary statistic based approximations
that comprise the estimation of the pseudo AIC, pseudo BIC, and quasi-correlation. Given that these
approximations are not perfect, we are interested in determining where the sources of error come from. This
section serves to demonstrate the accuracy of the various summary statistic approximations, and how that
accuracy changes depending on the simulation setting. We conclude generally that the approximations are
appropriate.

D.1 Estimating Phenotypic Out-of-Sample Variance

Estimating the quasi-correlation requires estimating the phenotypic variance of the out-of-sample testing
data. We show that, for the three simulation settings with different proportions of causal SNPs as described
in this section, our methodology for estimating the variance of the out-of-sample phenotype as described in
the methods section is highly accurate. Note that each SNP generates an estimate of out of sample variance;
we used the median of the p estimates.
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Fig C: Plot of the estimated variance versus the true variance for each of the three simulation settings. Each
data point represents one of the twenty different simulations. The Pearson correlation coefficient r = 1 for
each of these three plots.

D.2 Accuracy of Residual Variance Estimation

An important component of our pseudo AIC / BIC methods is the estimation of the residual variance σ̃2.
We present here the accuracy of the residual variance estimation for the three simulation scenarios described
in this section Note that, when estimating σ̃2, we regularize the estimated covariance matrix as described
in the methods section. We select the set of SNPs used to estimate the residual variance as follows for the
three scenarios. For the scenario where the probability of a SNP being causal is p = .1, we do clumping
and pruning such that only SNPs with marginal p-value < .01 are included, and no two SNPs are in LD
r2 > .2. When the proportion of causal SNPs is p = .01, we do clumping and pruning with a marginal
p-value cutoff of < .001 and an LD cutoff of r2 > .2. Likewise, when the proportion of causal SNPs is
p = .001, we have a marginal p-value cutoff of < 1 × 10−4 and an LD cutoff of r2 > .2. Note that our
method estimates the proportion of residual variance that is not explained by ordinary least squares linear
regression. This is an application where OLSE will fail to capture much of the heritable variance, because of
the sparse signal and nuanced correlation structure of the data. This means that our estimates ˆ̃σ2 are biased
upwards. Nevertheless, we show that the estimates ˆ̃σ2 are well correlated with the true residual variance,
which is known in this simulation setting.

Fig D: Plot of the estimated residual variance versus the true residual variance for 20 replications at each of
the three simulation settings. Note that the residual variance is overestimated in all three simulation settings.

We see that the residual variance is significantly easier to model when the fraction of causal SNPs is
smaller. When the proportion of causal SNPs is p = .001, we have a correlation between true and estimated
residual variances of r = .97. Likewise, when the proportion of causal SNPs is p = .01, we have a correlation
of r = .96. When the proportion of causal SNPs is p = .1, we have a correlation of r = .49. To see why,

9



consider that estimation of ˆ̃σ2 can be thought of as prediction, where we are using ordinary least squares
estimates to predict the phenotype. As demonstrated in Fig 1, 2 and 3, prediction is more difficult as the
proportion of causal SNPs p increases. Likewise, estimation of ˆ̃σ2 is more difficult as p decreases. A further
analysis of methods of residual variance estimation is in Section E in S1 Text.

D.3 Accuracy of SSE estimation

Another component of our pseudo AIC / BIC methods is the estimation of model SSE on the training
data, as described in equation (20). For this method, we regularize the estimated covariance matrix as
described in the methods section. The estimation of the residual variance involves three approximations: the

approximation of 1
nX̂

TX (6), the approximation of 1
N Ŷ′Y (7), and the approximation of 1

N X̂′Y (8). We find
that the approximation described by equation (7) is nearly always accurate, as demonstrated in Section D
in S1 Text. Likewise, the approximation described in equation (8) is very accurate. The issue arises in the

approximation described in equation (6). 1
nX̂

TX is used to estimate the variance of the predicted phenotype
in the unseen training data. It is difficult to estimate this variance, because there may be overfitting effects
that are difficult to account for by using reference panel data to estimate covariance, especially for under-
penalized models with a large proportion of active parameters. We offset this somewhat with the penalty
described in the methods section, but it is difficult to account for completely.

The phenomenon described above explains the difference between the estimated and true SSE values.
We present three different plots for each different proportion of causal SNPs. Each plot represents one of
the twenty replications. Each point on the plot represents a unique TLP model, estimated via our TlpSum
method.

Fig E: True versus estimated SSE for TlpSum models applied to the simulation setting with the fraction of
causal SNPs p = .001. These plots describe the relationship between the true and estimated SSE for three
randomly chosen simulation settings among the twenty we conducted. Each plotted point represents one of
36 candidate models. The estimated Pearson correlation coefficients for the plots were, from left to right:
r = .65, r = .69, r = .67
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Fig F: True versus estimated SSE for TlpSum models applied to the simulation setting with the fraction of
causal SNPs p = .01. These plots describe the relationship between the true and estimated SSE for three
randomly chosen simulation settings among the twenty we conducted. Each plotted point represents one of
48 candidate models. The estimated Pearson correlation coefficients for the plots were, from left to right:
r = .41, r = .61, r = .73

Fig G: True versus estimated SSE for TlpSum models applied to the simulation setting with the fraction
of causal SNPs p = .1. These plots describe the relationship between the true and estimated SSE for three
randomly chosen simulation settings among the twenty we conducted. Each plotted point represents one of
48 candidate models. The estimated Pearson correlation coefficients for the plots were, from left to right:
r = .98, r = .98, r = .98

We see, contrary to the behavior of the estimated residual variance described in Section D in S1 Text,
that the SSE is easier to estimate as the fraction of causal SNPs p increases. To demonstrate why, consider
that SSE/σ2 is distributed χ2

n−k, where k is the number of active parameters in the model. As the fraction
of causal SNPs p decreases, the number of active parameters in a given model k will decrease, meaning
that the variance of SSE/σ2 ∼ χ2

n−k will increase, making estimation more difficult. Most important is the
behavior in the bottom left corner of these plots: we want the models with small true SSE also have small
estimated SSE. By and large, we find that this is the case. We do see some systematic underestimation of
the SSE. This is especially apparent by the plots for p = .1, where some of the estimated SSE values are in
fact negative. We stress that the estimation of these SSE values is of use for model comparison especially
in the context of AIC and BIC, and shouldn’t necessarily be used as a reliable estimate of the magnitude

of the SSE. This behavior is due to the systematic underestimation of the β
′
X
′
Xβ term that occurs when

a reference panel is used to approximate the X
′
X matrix. This effect is more pronounced as the number of

active parameters in the model grows.

D.4 Accuracy of Quasi-Correlation

The simulation study for model selection demonstrates that quasi-correlation does a good job approximating
the true predictive r2 on out-of-sample data for selected models. Here we expand on those results, showing
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that quasi-correlation generally does a good job approximating the predictive r2 for all candidate models.
We use our simulation 1 to investigate the performance of quasi-correlation. We investiage the perfor-

mance of quasi-correlation as follows. For each of the twenty simulation settings, we have a set of candidate
models. For each candidate model, we calculate the predictive accuracy on the testing data using predictive
r2, which requires individual level data, and squared quasi-correlation, which requires only summary statis-
tics. We then calculate the correlation between the predictive r2 values and the squared quasi-correlation
values. Thus, for each combination of simulation setting (defined by the fraction of causal SNPs) and model
estimation method (i.e. TlpSum or LassoSum), we have a vector of twenty correlations. Entry i of the vector
corresponds to the correlation between the predictive r2 values and the squared quasi-correlation values for
the candidate models in replication i. This information is displayed in Fig H.

The reasoning behind this investigation is as follows. More of interest than whether the quasi-correlation
can precisely estimate the magnitude of the predictive r2 is whether the quasi-correlation can reliably differ-
entiate among the out-of-sample predictive performance for a set of candidate models. If such a differentiation
can be made, we can draw conclusions about the comparative quality of different models. Generally, Fig H in-
dicates that predictive r2 and squared quasi-correlation are well correlated, indicating that we can sufficiently
differentiate between candidate models.

Fig H: Accuracy of quasi-correlation approximations in simulation 1. Boxplots represent distribution across
twenty replications at each simulation setting of the correlation between predictive r2 and squared quasi-
correlation on out-of-sample testing data.

Fig H demonstrates that quasi-correlation approximates true correlation well in the majority of simula-
tions. In the simulation setting with the proportion of causal SNPs p = .001, there are a small number of
replications where the squared quasi-correlation does a somewhat poor job of approximating the predictive
r2 for the LassoSum. Nevertheless, the median value is well above .9 in all cases. Candidate sets of TlpSum
models are generally well differentiated by squared quasi-correlation, as demonstrated by Fig H. Generally,
the better performance of quasi-correlation in differentiating TlpSum models as opposed to LassoSum mod-
els can be explained as follows. Candidate sets of TlpSum models generally contain models with a wider
spread of predictive r2 values on out of sample data, due to the three-dimensional grid search that contains
some infeasible values of τ . Quasi-correlation can differentiate quite well between models with substantially
different predictive r2 performance on out of sample data. For several replications, candidate sets of Lasso-
Sum models contain models that perform reasonably similarly on out-of-sample data. Quasi-correlation has
more difficulty differentiating between these similar models, thus the correlation is lower. However, the sat-
isfactory performance of quasi-correlation for model selection and and for assessment of model performance
that we see in Fig 9 indicates that application of quasi-correlation to LassoSum models is feasible. From
the results displayed here and in the simulation study for model selection, we can generally conclude that
quasi-correlation is an appropriate and robust measure of predictive performance on out-of-sample data.
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E Methods for Residual Variance Estimation

We investigated different methods for estimating the residual variance in high dimensional penalized regres-
sion models; that is, the expression in equation (9). Of particular interest is the so-called ‘natural LASSO’
estimator described in the recent paper by Yu and Bien [4]. We compared this to our methodology described
in the methods section, and to other methods such as the so-called ‘naive’ estimator and the naive estimator
with correction for model size, both also described by Yu and Bien. The estimators are defined as follows,
with notation largely replicated from Yu and Bien. Consider that we have data of sample size n with p
predictors, and penalized regression estimates β̂λ for some tuning parameter λ. For the naive estimator, we
have the following expression:

σ̂2
naive =

1

n
||y −Xβ̂λ||22.

For the naive estimator with correction for model size, so-called σ̂2
R, we have the following expression:

σ̂2
R =

1

n− ŝλ
||y −Xβ̂λ||22.

We define ŝλ =
∑p
j=1 I(βj 6= 0). Note that this is only tractable for cases where ŝλ < n, which is often not

the case in our applications. This limits the usefulness of σ̂2
R substantially. For the natural LASSO estimate,

we have the following expression:

σ̂2
nat =

1

n
minβ

(
||y −Xβ̂||22 + 2λ||β||1

)
.

An oracle estimate of the residual variance, for the case where n < |S| where S = {j : βj 6= 0}, is defined as
follows:

σ̂2
oracle =

1

n− |S|
||y −XSX

+
S y||

2
2.

Where we define XS as the columns of design matrix X corresponding to indices in the set S. Clearly S is
unknowable in real data applications. Our estimator ˆ̃σ2 can be conceptualized as an approximation of the
oracle estimator, where we estimate S to be those SNPs that remain after clumping and thresholding.

The above methods for residual variance estimation can be applied to both individual level data and
summary statistic data. We are able to approximate the SSE for a penalized regression model using sum-
mary statistic data, as described in the methods section. Our estimator ˆ̃σ2 is described in terms of summary
statistics in equation (6). We investigate the performance of these residual variance estimators in application
to our simulation 1 without allelic heterogeneity. We consider σ̂2

naive, σ̂
2
R, and σ̂2

nat estimated both via sum-

mary statistics and individual level data, and ˆ̃σ2 estimated via summary statistics only. In this application,
we know the true value of the residual variance σ2, and thus can assess the accuracy of the estimators.

Because residual variance estimators σ̂2
naive, σ̂

2
R, and σ̂2

nat depend on the penalized regression estimates

β̂λ, it is useful to investigate the degree to which the residual variance estimators vary depending on the
choice of β̂λ. Note that our estimator ˆ̃σ2 uses OLSE approximations, and thus does not depend on β̂λ.
We investigated this as follows. For each fraction of causal SNPs p in simulation 1, we randomly chose
three of the 20 replications. Each unique LassoSum model (i.e. with unique tuning parameter values s and
λ) corresponds to a unique estimate of residual variance. We present the residual variance for each of the
estimators versus the number of nonzero parameters in the corresponding LassoSum model. We compare
those results to the true value of σ2. The following legend was used for these plots:

• σ̂2
nat, as estimated from summary statistics: circle.

• σ̂2
nat, as estimated from individual-level data: square.

• σ̂2
R, as estimated from summary statistics: triangle pointed up.

• σ̂2
R, as estimated from real data: ‘+’.

• σ̂2
naive, as estimated from summary data: ‘x’.

• σ̂2
naive, as estimated from real data: diamond.

• ˆ̃σ2, as currently used in our paper: triangle pointed down. The points are also colored red.
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• The true value of σ2: square with an x through it. The points are also colored blue.

Fig I: Estimates of residual variance for simulation setting with p = .001, plotted against number of nonzero
parameters. Estimates were calculated for each of 12 different LassoSum models.

Fig J: Estimates of residual variance for simulation setting with p = .01, plotted against number of nonzero
parameters. Estimates were calculated for 16 different LassoSum models.

Fig K: Estimates of residual variance for simulation setting with p = .001, plotted against number of nonzero
parameters. Estimates were calculated for 12 different LassoSum models.

When the fraction of causal SNPs p = .001, we see that all estimates for the residual variance perform
reasonably well. There is not substantial variability in estimating σ2 across the different LassoSum models,
given that most lines are nearly horizontal. However, both the individual-level and summary statistic based
estimates of σ̂2

nat are substantially biased upwards. The naive estimator σ̂2
naive is reasonable in simulations 1

and 12, but underestimates σ2 in replication 13. For the construction of confidence intervals, it is generally
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undesirable to underestimate σ2, as it will lead to increased type I error. For our application to pseudo
AIC/BIC, it is unclear that it is as undesirable to underestimate σ2. We note that our estimator ˆ̃σ2 performs
relatively well in all three replications.

When the fraction of causal SNPs p = .01, we see increased variability depending on the LassoSum model
used. Again, the natural LASSO estimates σ̂2

nat are substantially biased upwards for both summary statistic
based and individual based estimation, with a substantial upward trend as the number of active parameters
increases. σ̂2

R as estimated from individual level data also has a substantial upwards slope. The estimates
for σ̂2

nat and σ̂2
R based on summary data show no upward trend, but do substantially underestimate the

true value of σ2 for some models. This likely relates to the behavior we notice when estimating ŜSE for
highly parameterized penalized regression models from summary statistic data, namely that it is difficult

to approximate β
′
X
′
Xβ via summary statistics. This term is often underestimated, and the effect can be

substantial when the number of active parameters is large. As in the simulation setting with p = .001, ˆ̃σ2

performs relatively well in all three replications.
The performance of the estimators when p = .1 is inconsistent. The performance of σ̂2

R is highly unreliable
and often produces negative estimate, because the denominator term n−sλ is often negative as the number of
nonzero parameters exceeds the sample size of the training data (n = 6240). Likewise, the performance of the
summary-statistic based σ̂2

naive estimator occasionally produces negative estimates, which is troubling. This
is due to the aforementioned issue, i.e. the downward bias incurred when estimating β′X′Xβ via summary
statistics. As in the other simulation settings, the natural LASSO estimates have substantial upward bias.
None of the methods perform satisfactorily, with the exception of ˆ̃σ2.

These results provide some evidence that our current method of estimating residual variance, ˆ̃σ2, is the
best option. Because ˆ̃σ2 uses OLSE estimates, we do not incur the issue of downward bias when estimating
β′X′Xβ for overfit penalized regression models.

Another issue is the selection of a penalized regression model on which to base our estimation of σ2, given
that each different LassoSum model generates a unique estimate σ̂2. In ‘On the Degrees of Freedom of the
Lasso’ [5], the authors suggest using the ‘(residual variance) estimate based on the largest model’. This seems
somewhat impractical in our application, given that model size (as measured by number of active parameters)
can grow to be quite large, and large models may perform quite poorly. A close analogue would be selecting
the model that has the best predictive performance, i.e. the model that minimizes the corresponding estimate
of σ̂2. We present the accuracy of σ̂2 estimation based on the smallest estimate for the methods discussed
earlier - i.e. σ̂2

nat, σ̂
2
R, σ̂2

naive, and ˆ̃σ2 - as compared to the true value of σ2 across 20 replications. The results
are displayed below.
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Fig L: Estimates of residual variance plotted against the true residual variance in simulation setting p = .001.
Each point represents the estimate from one of the 20 replications.
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Fig M: Estimates of residual variance plotted against the true residual variance in simulation setting p = .01.
Each point represents the estimate from one of the 20 replications.
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Fig N: Estimates of residual variance plotted against the true residual variance in simulation setting p = .1.
Each point represents the estimate from one of the 20 replications.

In the simulation setting with p = .001, all estimates of σ2 are well correlated with the true residual
variance. The natural LASSO estimators are substantially biased upwards, while the σ̂2

R and σ̂2
naive do

not show substantial bias. The ˆ̃σ2 have the lowest correlation with the true values of σ2 among all of
the estimators; the difference is not substantial, given that all estimates are correlated with r > .97. The
estimates of ˆ̃σ2 show some upward bias, roughly commensurate with the bias shown by σ̂2

R estimated via
summary statistics.

In the simulation setting with p = .01, both natural LASSO estimators are well correlated with the
true residual variances, although there is still substantial upward bias. The individual-level estimates of σ̂2

R

and σ̂2
naive perform well, although the naive estimator shows some downward bias. The summary statistic

estimations of σ̂2
R and σ̂2

naive perform quite poorly, showing both substantial downward bias and near-zero
correlation with the true σ2. This is due to the issues estimating β′X′Xβ for overfit models, as mentioned
previously. The ˆ̃σ2 estimates perform reasonably well, although there is some upwards bias. It appears
beneficial that the ˆ̃σ2 avoids issues with the underestimation of β′X′Xβ by using OLSE estimates.

In the simulation setting with p = .1, the performance of the estimators is fairly irregular. Both natural
LASSO estimators are well correlated with the true residual variances, although there is now extreme upward
bias. The summary statistic based σ̂2

R and σ̂2
naive estimators are useless. Surprisingly, the individual level

18



σ̂2
naive performs quite well, showing low bias and strong correlation with the true σ2. The ˆ̃σ2 estimators

perform reasonably well; they exhibit low bias, but are only moderately correlated with the true residual
variances σ2.

In total, these results indicate that our estimator ˆ̃σ2 performs reasonably well as compared to the other
methods. The natural LASSO estimators appear reasonable, although they display substantial upward bias
that is undesirable in our application. The estimation of ŜSE for highly parameterized penalized regression
models is difficult in the context of summary statistics, which makes the performance of σ̂2

R and σ̂2
naive

untenable in the simulation setting with p = .1 and p = .01. Given this, we feel that the estimator ˆ̃σ2 is best
for our application.

F Application to Lung Cancer

We apply our penalized regression methods and pseudo AIC / BIC model selection to summary statistics
from a large lung cancer meta-analysis [6]. The published summary statistics contain information on 10,633
unique SNPs, all with marginal p < 10−6. The summary statistics are drawn from meta-analyses where the
sample size can vary by SNP. The distribution of the sample sizes is left-tailed, with greater than half of
the summary statistics corresponding to the maximum sample size of 85,716. The smallest sample size is
∼ 10, 000.

We apply the polygenic risk scores estimated from the McKay meta-analysis to the EAGLE study. The
EAGLE study, downloaded from dbGap [7], is a case-control study conducted in northern Italy, with sample
size N = 3936. There are 1945 cases and 1991 controls. The EAGLE study was genotyped on a set of 561,466
SNPs on the Illumina HapMap550v3-B array. The data was imputed to the 1000G Phase 3 V5 reference
panel using the Michigan Imputation Server [8]. After imputation, we removed all SNPs with imputation
quality score R2 < .8, Hardy-Weinberg p-value < 10−9, call rate < 90%, and minor allele frequency < .01.
We were left with around 7 million SNPs.

As a baseline, we describe the performance of some polygenic risk scores that do not explicitly model
linkage disequilibrium. We consider a polygenic score consisting of all marginal effect sizes from the lung
cancer meta-analysis [6], which we call the full polygenic risk score. Only about half of the SNPs present
in the meta-analysis achieve genome-wide significance with a marginal p-value < 5 × 10−8. We consider a
polygenic risk score including only those SNPs that achieve genome-wide significance, the so-called genome-
wide polygenic risk score. We also consider the clumped polygenic risk score. We performed clumping on
the summary statistics from the McKay paper using the EAGLE data as a reference panel to calculate the
correlation matrix of the SNPs. We performed clumping with PLINK [9] to prune correlated SNPs such
that no two remaining SNPs are in LD R2 > .5. This yielded a set of 633 SNPs. The accuracy of these
methods, as compared to the penalized regression methods, is displayed in Fig O. We see that the penalized
regression methods outperform the simple polygenic risk score methods. We also see that the genome-wide
PRS achieves worse performance than both the simple PRS and the full PRS. This illustrates that including
SNPs that are not genome-wide significant improves prediction, and that pruning based on LD helps reduce
noise and improve prediction.

We also applied our penalized regression methods to construct polygenic risk scores. In line with existing
practice as described in the LassoSum paper [2], we conducted LD clumping in PLINK with the densely
imputed EAGLE data as a reference panel. This clumping ensured that no two SNPs had linkage disequilib-
rium R2 > .9. Note that this clumping is significantly less stringent than the clumping used to generate the
clumped polygenic risk score. After this step, there were 1524 remaining SNPs. We split the EAGLE study
into three datasets; the so called tuning-1 and tuning-2 datasets, each with N = 990, and the test dataset
with N = 1980. The tuning-1 dataset was used as a reference panel to estimate polygenic risk scores with
the penalized regression methods. We estimated models without LD blocks, because of the small number of
candidate SNPs. The tuning-2 dataset was used as a reference panel to estimate the model fitting criteria.
The testing dataset was used to evaluate predictive accuracy.

We used the observed phenotypes from the tuning-1 data to calculate the AUC for each candidate model.
We then used tuning-1 AUC as a model selection criteria, selecting the model that maximized the tuning-1
AUC. The results obtained by using tuning-1 AUC for model selection, as compared to simple polygenic
score methods that don’t account for LD, are displayed in Fig O. We compare the performance of tuning-1
AUC to pseudo AIC, pseudo BIC, and pseudovalidation, which do not require the existence of individual level
tuning data. When calculating the pseudo AIC and pseudo BIC, we regularized the estimated covariance
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matrix as described in the methods section. To facilitate the calculation of pseudo AIC / BIC for data with a
binary response, we performed the method outlined in the methods section to convert the univariate logistic
regression estimates to linear regression estimates. The performance of these methods, as applied to sets of
candidate models generated via TlpSum and LassoSum, are displayed in Fig P.

Fig O: AUC on the EAGLE study for different methods of estimating polygenic risk scores.

Fig P: Performance of different model selection methods applied to candidate sets of TlpSum (the left bar
in each group) and LassoSum models (the right bar in each group), as measured by AUC on the testing
EAGLE data.

We note, somewhat unexpectedly, that pseudovalidation is outperforming the pseudo AIC and pseudo
BIC. In this application, we are only considering SNPs with a small marginal p-value, and have done pruning
to ensure that no two SNPs are in LD R2 > .9. Thus, it might be that most SNPs under consideration
are truly associated with the phenotype. Pseudovalidation estimates predictive r2 on the training data,
which will generally select a model with many SNPs. In this scenario, where the majority of SNPs under
consideration are truly associated, there may be little possibility of overfitting, and adding many SNPs to the
model may be desirable. Thus, the penalties on model degree of freedom imposed by the pseudo AIC and
pseudo BIC methods is likely degrading their performance. For the application to TlpSum, pseudovalidation
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selects a model with 1310 nonzero parameters, which is 86.0% of the total variables considered. Pseudo
AIC selects a model with 608 nonzero paramteres (39.9%), while pseudo BIC selects a model with 8 nonzero
parameters (0.5%). This is further evidence that pseudo AIC and pseudo BIC impose substantial model
sparsity as compared to pseudovalidation, which is shown via simulation in the results section. The increased
sparsity is evidently not useful in this application.

A second issue with the application of pseudo AIC and BIC is the use of estimated SSE as a model selection
metric. Our penalized regression models and our pseudo AIC / BIC methods assume a linear response when
our data is binary. Although linear regression models can be estimated on data with a binary response,
applying a linear regression to binary data is a model misspecification and may lead to issues. One issue
is that we are using penalized SSE as our objective function in estimating the penalized regression models,
and we are using SSE to estimate the pseudo AIC / BIC. A more relevant measure of model performance
on binary data is AUC, which may not be closely related to SSE, as shown in the plots below. Nevertheless,
our penalized regression models outperform the simple PRS methods as measured by AUC on the test data,
indicating that our models have utility despite misspecifying the response. However, the plots below indicate
that the use of pseudo AIC / BIC may be fraught in this case.

Fig Q: Plots of the performance polygenic scores estimated by LassoSum and TlpSum on the testing data.
Each plotted point represents a model with a unique set of tuning parameters. The plots indicate that testing
SSE and testing AUC are not associated in this case, meaning that using pseudo AIC / BIC to do model
selection may be fraught.

Even given the issues with applying pseudo AIC and pseudo BIC to binary data, we view this application
to lung cancer as evidence that the estimation of polygenic risk scores via penalized regression on summary
statistics is useful, even when we have only a small subset of summary statistics. The penalized regression
methods outperform the simple polygenic risk score and the clumped polygenic risk score, demonstrating the
usefulness of accounting for linkage disequilibrium even when applied to a small subset of highly marginally
significant SNPs. Pseudovalidation performs fairly well for model selection, and the pseudo AIC performs
decently as well, although the performance of the pseudo BIC is quite poor for the TlpSum models. We
note that lung cancer is not a strongly heritable disease, and the best models only achieve an AUC of .61.
Thus, it may be difficult for pseudo AIC and pseudo BIC to select the best model, given that the difference
in predictive accuracy between the candidate models is fairly small, and the signal is not very strong.

G Application to Height

We leverage our quasi-correlation and model selection methodologies to assess the fit of penalized regression
models on large summary statistic data for height. We estimate polygenic risk scores on the UK BioBank
data for the height, then assess the accuracy of these polygenic risk scores on the GIANT consortium data.

In this analysis, we used the UK BioBank height data [10] as our training dataset (∼ 14 million SNPs,
N ∼ 360, 000), 1000G data [11] as our reference panel (∼ 9.5 million SNPs, N ∼ 503) and the GIANT data
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Fig R: Quasi-correlation versus fraction of nonzero parameters. The black crosses represent LassoSum models,
while the red circles represent TlpSum models. Each data point represents a unique set of tuning parameters.
The triangular points represent the model selected by pseudovalidation. The square points represent the
model selected by pseudo AIC, while the diamond points represent the models chosen by pseudo BIC.

[12] as our testing dataset (N ∼ 130, 000, ∼ 2.5 million SNPs). We limited the 1000G data to only those
individuals of European ancestry. We limited the data to include only the subset of SNPs contained in all
three studies. From this subset, we excluded SNPs with minor allele frequency < .01 in the 1000G data or
the UK BioBank data. Then, we performed LD clumping using the 1000G data for LD information and the
p-values from the UK BioBank study. The clumping was not especially stringent, only ensuring that no two
SNPs with R2 > .9 were included. From these, we also pruned out ambiguous SNPs (A/T, C/G). This left
us with a set of ∼ 715, 000 SNPs.

With these SNPs, we constructed a set of candidate polygenic risk scores using TlpSum and LassoSum.
We then performed model selection using our pseudo AIC and pseudo BIC methods, and compared these
results to the existing pseudovalidation method for model selection [2]. We split the 1000G data into two
datasets, so called 1000G-1 and 1000G-2, with N = 252 and N = 251, respectively. 1000G-1 was used as a
reference panel to estimate polygenic risk scores via TlpSum and LassoSum. 1000G-2 was used as a reference
panel to estimate the model fitting criteria. For the calculation of ˆ̃σ2 in the pseudo AIC / BIC, we used
stringent clumping such that only those SNPs with marginal p < 10−40 were leading a clump, and no two
SNPs in LD R2 > .5 were included. We regularized the estimated covariance matrices as described in the
methods section. We present in Fig R the accuracy of the polygenic risk scores estimated via penalized
regression as applied to the GIANT data.

In this application, TlpSum and LassoSum perform more or less equivalently. We see that adding more
parameters to the model generally increases the predictive accuracy of the model as applied to the GIANT
data. Because height is highly heritable phenotype, our training data has large sample size, and we have
performed LD clumping to remove highly correlated SNPs, it is possible that many of the candidate SNPs are
truly associated with the height phenotype. This means that adding more parameters to the model is generally
better, which may account for the better performance of pseudovalidation as compared to pseudo AIC / BIC.
The pseudo AIC / BIC select models that perform relatively well as measured by quasi-correlation, and have
a small proportion of active parameters. As the proportion of active parameters increases, the models achieve
modest but noticeable performance gains. However, the AIC and BIC prefer the models that perform decently
while having a small proportion of active parameters. This mirrors the behavior we saw in simulation.
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Fig S: Computational cost for three methods of estimating polygenic risk scores on summary statistics. Error
bars represent standard errors across simulation replications.

H Computational Cost

We describe the computational cost of TlpSum versus LassoSum and LDPred here. Fig S shows the average
computational time in seconds for a single set of tuning parameter values in our simulation 1 setting without
allelic heterogeneity. LassoSum is extremely fast, while LDPred is the slowest.

I Derivation of Standard Error for Linear Regression Estimates

We justify the expression for the standard error of linear regression estimates in the methods section as
follows. Let us denote the univariate logistic regression estimates as (b̂0, b̂1)

′
, and the univariate linear

regression estimates as (β̂0, β̂1)
′
. Using the law of total variance and conditioning on b̂0, we get the expression

V ar(β̂1) = V ar
( e−b̂0

(1 + e−b̂0)2
b̂1

)
= var(b̂1)E

( e−b̂0

(1 + e−b̂0)2

)2
+ var

( e−b̂0

(1 + e−b̂0)2

)
E(b̂1)2.

Plugging in e−b0 = p(Y=0)
p(Y=1) for e−b̂0 in the first term gives us our expression derived in the methods section,

namely

var(β̂1) =
( e−b̂0

(1 + e−b̂0)2

)2
var(b̂1).

Now, if we can show that the var
(

e−b̂0

(1+e−b̂0 )2

)
E(b̂1)2 term is negligible, our expression will be justified. To

do this, consider the following. We know that e−b̂0 = p̂0
1−p̂0 , where p̂0 = Ncontrol/N . Thus, we can define

e−b̂0

(1+e−b̂0 )2
= p̂0(1 − p̂0). We now need an expression for the variance of p̂0(1 − p̂0). We apply the delta

method for that purpose, with the function g(p0) = p0 ∗ (1 − p0) and the distributional assumption that

p̂0 ∼ N(p0,
p0(1−p0)

N ). Thus, we have the following expression:

p̂0(1− p̂0) ∼ N(p0(1− p0),
p0(1− p0)(1− 2p0)2

N
)
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Given this, we can state the following:

var
( e−b̂0

(1 + e−b̂0)2

)
E(b̂1)2 =

p̂0(1− p̂0)(1− 2p̂0)2

N
b̂21

This term is negligible in GWAS applications. Given the small effect size of individual SNPs (and thus small

b̂1) and the factor of N in the denominator which will be large in GWAS applications, this is reasonable.
Thus, we exclude this term in our expression in the methods section.

As an additional note, we only require the use of V ar(β̂1) for the estimation of 1
N Ŷ′Y in our equation (7).

An intuitive approach, the so-called ‘marginal approach’ in that it is derived from the marginal distribution

of Y, is detailed as follows. Note that if Y is a centered binary phenotype, 1
N Ŷ′Y is simply the variance of

Y. This is simply the variance of Bernoulli variable. Given observed p̂ = Ncase/N (i.e. the proportion of

cases in the summary statistic data), we have that 1
N Ŷ′Y = p̂∗(1− p̂). Assuming that we have the quantities

Ncase, N in our summary statistic data, this should be straightforward to calculate. There is, however, an
issue when summary statistics are taken from a GWAS that included covariates. A detailed description of
this issue is in Section L in S1 Text. For this reason, we recommend in general using the approach based
on V ar(β̂1) we have detailed in the methods section, and not using the marginal approach to estimation of
1
N Ŷ′Y

J Additional Results for Application to Lipids

Here we present the results for applying model selection methods to a set of candidate LassoSum models in
the application of our methodology to lipid data. This contrasts with the results section, where we used a
set of candidate TlpSum models. Results are similar, with the pseudo-AIC outperforming pseudovalidation
in all cases, and pseudo-BIC either performing equivalently or outperforming pseudovalidation.

Table Y: Model performance, as measured by quasi-correlation of the model predicted into the BioBank data,
for each model selection method. Models were estimated via LassoSum on the Teslovich data.

Quasi-cor Pseudo AIC Pseudo BIC Pseudoval Maximum
TG .14 .13 .11 .11 .22
LDL .13 .16 .14 .11 .21
HDL .21 .21 .18 .18 .30

K Simulating Effect Sizes Under Allelic Heterogeneity

The algorithm for simulating effect sizes under allelic heterogeneity is as follows. Note that this simulation
process assumes an ordering of the SNPs where nearby SNPS are in high linkage disequilibrium. We define
h2 as the SNP-based heritability of the disease (0.5 in our simulation), M as the number of SNPs, p as
the fraction of causal SNPs, and q as the number of SNPs in the simulation. We considered values of
p = .005, p = .002 and h2 ∈ [.2, .5, .6].
i = 0
while i ≤ q:
d ∼ Bernoulli(p/5)
if(d == 0):

βi = 0
i = i+ 1

if(d == 1):
k ∼ round(unif(1, 7))

for j ∈ [0, . . . , k] βi+j ∼ N(0, h
2

Mp )
i = i+ k
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L Considerations for Summary Statistics Estimated with Covari-
ates

It is often the case that summary statistics from published GWAS are estimated via multiple regression with
non-SNP covariates such as age, PCs, etc. also included. Our expressions (6), (7), and (8) have been derived
assuming single linear regression. These expressions are still valid assuming multiple regression with some
very mild assumptions and some changes in interpretation, detailed here.

Say we have design matrix Zi = (Xi,Z), where Xi is one of p SNPs in the GWAS and Z is a set of
other covariates (i.e. age, gender, PCs). Let us denote the genotype matrix of SNPs as X, comprised of p
columns X1, . . . ,Xp. Say our summary statistics for the SNP effects consist of estimates from multiple linear
regression:

Y = βiXi +αZ + ε (S.8)

Note that α may be a vector. Model (S.8) would be estimated p times for each of the p SNPs in the

GWAS, giving us a set of summary statistic estimates (β̂1, . . . , β̂p)
′
. β̂i from model (S.8) does not have

straightforward application to our equation (8), given that equation (S.8) is derived assuming single linear
regression. Consider the following models, again for some SNP i:

Y = γZ + ωY (S.9)

Xi = λiZ + ωX (S.10)

We define Ye and Xie, representing the residuals from models (S.9) and (S.10), as Ye = Y − γ̂Z and

Xie = Xi − λ̂iZ. We can then define the following model:

Ye = τiXie + ωie (S.11)

It is the case that τ̂i = β̂i. Thus, if we replace Y in our equations (7) and (8) with Ye, i.e. the phenotype data
with the effect of non-SNP covariates regressed out, the expression holds. Consider that Xe = (X1e, . . . ,Xpe).
If Xe 6= X, it will be difficult or impossible to estimate the covariance matrix of Xe from a reference panel.

It is a widely held implicit assumption of all summary statistic based estimation of polygenic risk scores
on GWAS data with covariates that Xe 6= X, and we justify that assumption here. If we examine expression
(S.10), we note that it is unlikely that a substantial proportion of the variance of a single SNP Xi is explained
by covariates Z, which tend to be multifactorial features such as principal components, or features that are
uncorrelated with the SNP such as age. Thus, we make the implicit assumption that λi ≈ 0,∀i. Thus,
we assume that Xe = X. Existing methods, such as LassoSum, LDPred, and pseudovalidation, are widely
applied to summary statistic data that was estimated using multivariable regression, i.e. with non-SNP
covariates. All these methods make the implicit assumption that λi ≈ 0,∀i. Thus, we do not need to replace
X with Xe in our equations (6) and (8).

This has interesting application to our equation (7). As referenced in Section H in S1 Text, we do not
recommend the use of the marginal approach to estimation of Y

′
Y for binary Y when summary statistics

are taken from a GWAS that includes non-SNP covariates. The reasoning behind this is as follows. If the
covariates Z control a substantial proportion of the variation in Y, then Ye will have substantially different
variance than Y. We implicitly replace Y with Ye when summary statistics are estimated with covariates,
which the marginal approach to estimation of Y

′
Y does not account for. Thus, estimation of Y

′
Y for binary

data is best done via the methodology outlined in the methods section.
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