Supplementary data

A ligand with two modes of interaction with the dopamine D₂ receptor – An induced-fit mechanism of insurmountable antagonism

Richard Ågren^{1,2}, Hugo Zeberg², Tomasz Maciej Stępniewski^{3,4,5}, R. Benjamin Free⁶, Sean W. Reilly⁷, Robert R. Luedtke⁸, Peter Århem^{1,2}, Francisco Ciruela^{9,10}, David R. Sibley⁶, Robert H. Mach⁷, Jana Selent³, Johanna Nilsson¹, Kristoffer Sahlholm^{2,11,12*}

¹ Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

² Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden

³ Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain.

⁴ InterAx Biotech AG, PARK innovAARE, 5234 Villigen, Switzerland

⁵ Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland

⁶ Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892-3723, USA.

⁷ Department of Radiology, Division of Nuclear Medicine and Clinical Molecular Imaging, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

⁸ Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA.

⁹ Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain.

¹⁰ Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain.

¹¹ Department of Integrative Medical Biology, Umeå University, Umeå, Sweden

¹² Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden

*Corresponding author: kristoffer.sahlholm@umu.se

Figure S1. Effect of competing ligands on GIRK currents in the absence of D2R expression. Current amplitudes following application of 30 μ M SWR-1-8 (0.99 \pm 0.06), 1 μ M SV-III-130 (1.00 \pm 0.02) and 30 μ M SWR-1-14 (0.90 \pm 0.01), in oocytes injected with GIRK1 and GIRK4.

Figure S2. Intrinsic activities of aripiprazole analogues at WT D_2R . Agonist responses of SWR-1-8, SV-III-130 and SWR-1-14 at the D2R, normalized to the response to 1 μ M DA.

Figure S3. Expression of WT D₂R and receptor mutants in oocytes.

Oocytes were mock manipulated (mock) or injected with WT D₂R, V91A, L94A, E95A, and W100A mutants. Receptor expression was analyzed by immunoblot using total membranes (2 oocytes/lane). Membranes (1 μ g/lane) from WT CD-1 mice (D₂R^{+/+}) and D₂R knockout (D₂R^{-/-}) mice were also immunoblotted and shown as controls. The immunodetection of β -tubulin was used as loading control.

Figure S4. Intrinsic activities of SV-III-130 at D_2R mutants. Agonist responses of SV-III-130 at the V91A, L94A and E95A D2R, normalized to the response to 1 μ M DA.