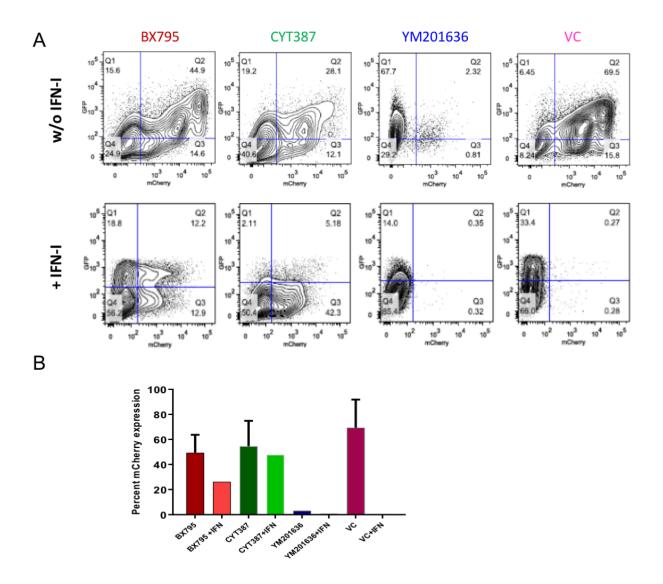
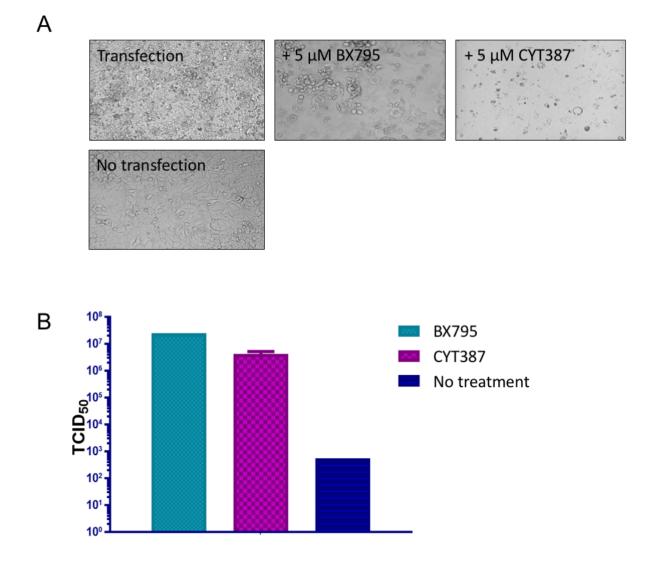
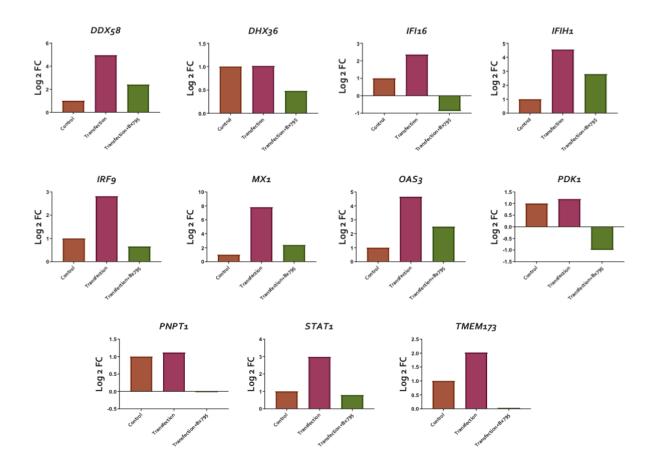

В


С


Supplementary Figure 1 (A) Schematic representation of the YF17D virus genome and the NLuc (vellow box; Kum et al. 2020) and mCherry (red box; Kum et al. 2018) expressing derivatives thereof. (B) Schematic representation of the YF17D/mCherry cDNA expressing plasmid vector PLLAV-YF17D/mCherry (Kum et al. 2018) and its derivative PLLAV-YF17D/mCherry CMV-eGFP expressing eGFP (green box) from a second cistron, embedded in its plasmid backbone (pShuttle). SV40p, Simian virus 40 origin/promoter; Rz, hepatitis delta virus ribozyme; CMVp, cytomegalovirus immediate-early promoter. (C) Fluorescence micrograph showing BHK21-J (upper panel) and HEK293T cells (lower) transfected with PLLAV-YF17D/mCherry CMV-eGFP (three days post transfection). Highly permissive BHK21-J cell cultures (Lindenbach & Rice 1997) show relatively few transfected (eGFP, green) cells yet massive amplification and wide spread of virus progeny (YF17D/mCherry, red). In HEK293T, that are bona fide cGAS knockout cells (Sun et al. 2013) and are hence easier to transfect (more and brighter green cells), YF17D/mCherry replicates to lesser extent (fewer red cells). Few cells stain for both markers (yellow when merged), illustrating that PLLAV transfection and YF17D replication are not mutually exclusive; at least not in the absence of cGAS expression.


Supplementary Figure 2. Validation of HEK-ISRE reporter cells. (A) Schematic representation of the inhibition of TBK-1 by BX795 in HEK-ISRE reporter cells. (B) IFN-I dependent reporter gene expression in HEK-ISRE cells. Treatment with 10 IU mL⁻¹ IFN-I (+*IFN-I*) leads to a significant >10x induction (**, p>0.01) of the IRSE-dependent FFLuc expression (*RLU, relative light units*) as compared to non-treated cells. Treatment with 5 μ M BX795 counteracts this reporter gene induction fully reverting the thus detected IFN-I activity.

Supplementary Figure 3. Re-evaluation of HEK-ISRE reporter cells infected with YF17D/mCherry. (A) Flow cytometry analysis of HEK-ISRE shown in fluorescence micrographs in FIGURE 3. Cells were gated for mCherry (infection, *x-axis*) and GFP (ISRE activation, *y-axis*). **(B)** Quantitation of the fraction of infected cells in (A) when treated with and without IFN-I, plus different small molecule inhibitors with proviral activity. Treatment with 10 IU mL⁻¹ IFN-I was sufficient to ablate YF17D/mCherry replication. The TBK-1 inhibitors BX795 and CYT387 could revert the IFN-I mediated antiviral. Data represent mean +SD of three independent experiments.

Supplementary Figure 4. (A) CPE induced in A549 cells following PLLAV-YF17D/mCherry transfection. The TBK-1 inhibitors BX795 and CYT387 (both at 5μ M) enhanced the microscopically observed CPE (i.e. a destruction of the cell monolayer) that may result from active YF17D/mCherry replication in A549 cells. In absence of the inhibitors no CPE could be observed. (B) Titration of the infectious virus progeny produced in A549 cells following PLLAV-YF17D/mCherry transfection. The TBK-1 inhibitors BX795 and CYT387 (both at 5μ M) increased the virus yields from transfected A549 cells by about 4 Log10. Data represent mean +SD of three independent experiments.

Supplementary Figure 5. Differentially expressed genes (DEG) resulting from transfection of A549 cells, or resulting from transfection and concomitant treatment with the TBK-1 inhibitors BX795. Plasmid transfection lead to an upregulation of several marker genes (see Supplementary Table 2). Likewise treatment with 5µM BX795 could revert DEG expression for many prominent ISG (e.g. Mx1, OAS3, STAT1) to baseline levels (untreated cell controls); some DEG, including key factors involved in IFN-I expression (e.g. TMEM173/STING, IRF9), others less characterized (some involved in cellular RNA turnover, e.g. DHX36, PNPT2) even below basal level. Data represent means of three independent experiments. Log2 FC, Log2 fold change.

Supplementary Table 1: RT-qPCR Taqman assays for analysis of DEG in PLLAV transfected cells

Supplementary Table 1

Gene of Interest	Proposed MoA in immune response to YF17D	Reference	Assay ID
18s rRNA	House keeping gene		Hs99999901_s1
GAPDH	House keeping gene		Hs02786624_g1
AIM2	Cytosolic DNA sensor	Yu and Levine ¹	Hs00915710_m1
AKTI	Controls innate immune cell development and function	Zhang et al ²	Hs00178289_m1
CHUK (IKK)	Inhibitor of nuclear factor kappa-B kinase subunit alpha (IKK-α)	Llona-Minguez et al ³	Hs00989497_m1
CXCL11	Interferon inducible T cell alpha chemoattractant	Ventor et al ⁴	Hs00171138_m1
DHX36	Enhances RIG-I Signaling	Yoo et al ⁵	Hs00325797_m1
DDX58	Antiviral, IFN signalling , innate immune receptor	Pulendran et al ⁶ , Querec et al ⁷	Hs01061436_m1
EIF2AK 2	Antiviral, IFN signalling	Querec et al ⁷ Gaucher et al ⁸	Hs00169345_m1
IFI16	Interferon Gamma Inducible Protein 16	Trapani et al ⁹	Hs00986757_m1
IFIH1	Antiviral, IFN signalling, innate immune receptor	Pulendran et al ⁶ Querec et al ⁷	Hs00223420_m1
IFT122	Intraflagellar Transport 122	Boubakri et al ¹⁰	Hs00217508_m1
IRF3	Interferon regulatory factor 3	Collins et al ¹¹	Hs01547283_m1
IRF9	Antiviral, IFN signalling	Gaucher et al ⁸	Hs00196051_m1
MB21D1(cGAS)	Cytosolic DNA sensor	Liang et al ¹²	Hs00403553_m1
MRE11	Double strand break repair nuclease	Shibata et al ¹³	Hs00967437_m1
OASI	Antiviral, IFN signalling	Gaucher et al ⁸	Hs00973635_m1

OAS3	Antiviral, IFN signalling	Gaucher et al ⁸	Hs00196324_m1
MX1	Antiviral, IFN signalling	Querec et al ⁷ , Gaucher et al ⁸	Hs00895608_m1
PDK1	Key role in regulation of glucose and fatty acid metabolism	Tan et al ¹⁴	Hs01561847_m1
PDPK1	Important role in the signalling pathways	Sato et al ¹⁵	Hs00928927_m1
PLSCR1	Antiviral, IFN signalling	Querec et al ⁷ , Gaucher et al ⁸	Hs01062171_m1
PNPT1	Antiviral, IFN signalling , innate immune receptor	Pulendran et al ⁶ , Querec et al ⁷	Hs01105971_m1
STATI	Key regulators of the early innate immune response	Decker et al ¹⁶	Hs01013996_m1
STAT3	Control of inflammation and immunity	Hillmer et al ¹⁷	Hs00374280_m1
TBK1	Cytosolic DNA sensor	Lam et al ¹⁸	Hs00179410_m1
TLR3	pattern-recognition receptors (PRRs)	Yu and Levine ¹	Hs01551079_g1
TLR9	Cytosolic DNA sensor	Yu and Levine ¹	Hs00370913_s1
TMEM173(STING)	Stimulator of IFN response	Lam et al ¹⁸	Hs00736955_g1
TP53	Tumor protein 53	Matlashewski et al ¹⁹	Hs01034249_m1
TRAF6	TNF receptor associated factor (TRAF)	Youseff et al ²⁰	Hs00939742_g1

Extra references to Supplementary Table 1

- 1. Yu M, Levine SJ. Toll-like receptor 3, RIG-I-like receptors and the NLRP3 inflammasome: Key modulators of innate immune responses to double-stranded RNA viruses. Cytokine and Growth Factor Reviews. 2011. doi:10.1016/j.cytogfr.2011.02.001
- 2. Zhang Y, Wang X, Yang H, Liu H, Lu Y, Han L, Liu G. Kinase AKT controls innate immune cell development and function. Immunology. 2013. doi:10.1111/imm.12123
- 3. Llona-Minguez S, Baiget J, Mackay SP. Small-molecule inhibitors of IκB kinase (IKK) and IKK-related kinases. Pharmaceutical Patent Analyst. 2013. doi:10.4155/ppa.13.31
- Venter M, Myers TG, Wilson MA, Kindt TJ, Paweska JT, Burt FJ, Leman PA, Swanepoel R. Gene expression in mice infected with West Nile virus strains of different neurovirulence. Virology. 2005. doi:10.1016/j.virol.2005.07.013

- Yoo JS, Takahasi K, Ng CS, Ouda R, Onomoto K, Yoneyama M, Lai JC, Lattmann S, Nagamine Y, Matsui T, et al. DHX36 Enhances RIG-I Signaling by Facilitating PKR-Mediated Antiviral Stress Granule Formation. PLoS Pathogens. 2014. doi:10.1371/journal.ppat.1004012
- 6. Pulendran B. Learning immunology from the yellow fever vaccine: Innate immunity to systems vaccinology. Nature Reviews Immunology. 2009. doi:10.1038/nri2629
- 7. Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, Pirani A, Gernert K, Deng J, Marzolf B, et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nature Immunology. 2009. doi:10.1038/ni.1688
- Gaucher D, Therrien R, Kettaf N, Angermann BR, Boucher G, Filali-Mouhim A, Moser JM, Mehta RS, Drake DR, Castro E, et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. Journal of Experimental Medicine. 2008. doi:10.1084/jem.20082292
- Trapani JA, Dawson M, Apostolidis VA, Browne KA. Genomic organization of IFI16, an interferon-inducible gene whose expression is associated with human myeloid cell differentiation: correlation of predicted protein domains with exon organization. Immunogenetics. 1994. doi:10.1007/BF00177824
- Boubakri M, Chaya T, Hirata H, Kajimura N, Kuwahara R, Ueno A, Malicki J, Furukawa T, Omori Y. Loss of ift122, a Retrograde Intraflagellar Transport (IFT) complex component, leads to slow, progressive photoreceptor degeneration due to inefficient opsin transport. Journal of Biological Chemistry. 2016. doi:10.1074/jbc.M116.738658
- Collins SE, Noyce RS, Mossman KL. Innate Cellular Response to Virus Particle Entry Requires IRF3 but Not Virus Replication. Journal of Virology. 2004. doi:10.1128/jvi.78.4.1706-1717.2004
- Liang Y, Peng H. STING-cytosolic DNA sensing: The backbone for an effective tumor radiation therapy. Annals of Translational Medicine. 2016. doi:10.3978/j.issn.2305-5839.2015.12.48
- Shibata A, Moiani D, Arvai AS, Perry J, Harding SM, Genois MM, Maity R, van Rossum-Fikkert S, Kertokalio A, Romoli F, et al. DNA Double-Strand Break Repair Pathway Choice Is Directed by Distinct MRE11 Nuclease Activities. Molecular Cell. 2014. doi:10.1016/j.molcel.2013.11.003
- 14. Tan J, Li Z, Lee PL, Guan P, Aau MY, Lee ST, Feng M, Lim CZ, Lee EYJ, Wee ZN, et al. PDK1 signaling toward PLK1-MYC activation confers oncogenic transformation, tumor-initiating cell activation, and resistance to mTOR-targeted therapy. Cancer Discovery. 2013. doi:10.1158/2159-8290.CD-12-0595
- Sato S, Fujita N, Tsuruo T. Regulation of kinase activity of 3-phosphoinositide-dependent protein kinase-1 by binding to 14-3-3. Journal of Biological Chemistry. 2002. doi:10.1074/jbc.M205141200
- Decker T, Stockinger S, Karaghiosoff M, Müller M, Kovarik P. IFNs and STATs in innate immunity to microorganisms. Journal of Clinical Investigation. 2002. doi:10.1172/jci15770
- 17. Hillmer EJ, Zhang H, Li HS, Watowich SS. STAT3 signaling in immunity. Cytokine and Growth Factor Reviews. 2016. doi:10.1016/j.cytogfr.2016.05.001