Supplemental table 2. The reported roles of dysregulated genes in neurodevelopment, nervous system physiology, and neurodegeneration

Gene Symbol	Description of genes	Experimental Models	Role in neurodevelopment and/or neurodegeneration	Reference
ADAM21	ADAM metallopeptidas e domain 21	rodent central nervous system (CNS)	ADAM21 is associated with neurogenesis and axonal growth in post-natal development	[1]
TBX1	T-box	mice	TBX1 encodes transcription factors specifically implicated in cardiac neural-crest-related developmental defects	[2]
PDGFC	platelet derived growth factor	mice	PDGFC is expressed in cerebellum and neurogenic derivatives of neural crest cells; palate formation, craniofacial structures, neural tube, and mesodermal organs	[3] [4]
KCNC1	potassium voltage-gated channel subfamily C member 1	whole-exome sequencing from diagnosed patients	KCNC1 mediates the voltage-dependent potassium ion permeability of excitable membranes, variants prevent neuronal inhibition, which is associated with epilepsy, ataxia, intellectual disability, and developmental delay	[5]
WNT7A	Wnt family member 7A	genetic mouse models, mouse embryos	WNT7A is crucial to the development of the cerebral cortex, synapse formation, and central nervous system vasculature formation and maintenance	[6]
MEF2C	myocyte enhancer factor 2C	mice	MEF2C is highly expressed in developing cortical excitatory neurons, variants linked to autism, intellectual	[7]

			disability, and schizophrenia	
			TLE1 inhibits differentiation	
	transducin like		of neural progenitor cells into	
TLE1	enhancer of	mice	neurons, necessary for the	[8]
	split 1		maintenance of neuronal	
			survival	
	hydroxysteroid		HSD11B2 is involved in	
	11-beta		stressor-mediated cortisol	
HSD11B2	dehydrogenase	zebrafish	regulation and protecting	[9]
	2		glucocorticoid-sensitive	
	-		tissues during stress	
	tumor	Glioblastomas	TUSC1 inhibits malignant	
TUSC1	suppressor	tissues and cell	brain tumor proliferation and	[10]
	candidate 1	lines	induces G1 phases arrest	_
			KIRREL3 is required for the	
	kirre like		formation of hippocampal	
			mossy fiber synapses, which	
KIRREL3	nephrin family adhesion	mice	regulate inhibition of cornu	[11]
	molecule 3		ammonis 3 (CA3) neurons,	
	molecule 3		variants associated with	
			intellectual disabilities	
			SHPRH found abundantly in	
			the human brain,	
0110011	SNF2 histone	diagnosed glioma	ubiquitinates proliferating cell	[40]
SHPRH	linker PHD	samples and normal brain tissue	nuclear antigen, leading to	[12]
	RING helicase		inhibited cell proliferation and	
			tumorigenicity	
			AKAIN1 is expressed	
	A-kinase	No. 10 Oct	preferentially in neural	
AKAIN1	anchor inhibitor	Neuro2a mouse	tissues and serves as a	[13]
	1	neuronal cell line	disruptor peptide for	
			PKA-AKAP interactions	
			PER2 is centrally involved	
	period circadian	UK biobank	with generating and	
PER2	regulator 2	dataset	maintaining circadian daily	[14]
	-		rhythms	
	gamma-aminob		GABRB3 is important for	
	utyric acid type		neurodevelopment,	
GABRG3	A receptor	genetic mouse	mutations are associated	[15]
-	gamma3	models	with epilepsy, autism, and	
	subunit		visual defects including	

			ocular hypopigmentation	
			CABYR plays a primary role	
			in the fibrous sheath but is	
	calcium binding		also expressed more	
CABYR	tyrosine	Yeast cloning and	distinctly in fetal than the	[16]
	phosphorylation	DNA sequencing	adult brain, providing a	,
	regulated		potential for a role in brain	
			development	
			EP400 is essential in the	
	E1A binding		myelination of axons in the	r
EP400	protein p400	mice	central and peripheral	[17]
			nervous systems	
			ALX3 encourages cell	
			differentiation and is involved	
	ALX homeobox		in cranial neural tube closure,	[4 0]
ALX3	3	mouse embryos	a possible role of patterning	[10]
			the mesoderm during	
			development	
	golgi associated, gamma adaptin ear containing, ARF binding	Neuro2A cells	GGA3 regulates trafficking	
			and degradation of enzymes	
			from the Golgi, including	
GGA3			some involved in Parkinson's	[19]
			disease and other	
	protein 3		age-related	
	protoni o		neurodegenerative disorders	
			ZBTB18 encodes	
		HeLa, HEK293,	DNA-binding transcription	
	zinc finger and	and P19	factors essential for	
ZBTB18	BTB domain	embryo-carcinoma	myogenesis and brain	[20]
	containing 18	cell lines	development, variants can	
			lead to brain developmental	
			disease	
			CHD5 plays a role in the	
	chromodomain	na da na secolo d	development of the nervous	
CHD5	helicase DNA	rodent cerebral	system by activating the	[21]
	binding protein	cortex	expression of genes	
	5		promoting neuron terminal	
	SS18L1, nBAF		differentiation SS18L1 encodes	
SS18L1	chromatin	genetic mouse	calcium-responsive	[22]
JUIDLI	remodeling	models	transactivator (CREST),	[44]
	remoueling	deling	(CIXEOI),	

	complex subunit		which when deleted leads to neuroinflammation and ALS-like motor defects	
RIMKLA	ribosomal modification protein rimK like family member A	murine brain tissue and sciatic nerves	RIMKLA synthesizes N-acetyl-L-asp artyl-L-glutamate (NAAG), found in sciatic nerves, spinal, cord, and brainstem and predicted to act as a neurotransmitter	[23]
EPHA7	EPH receptor A7	adult rat and mouse brain	EPHA7 regulates brain development modulating cell-cell adhesion and repulsion and plays key roles in adult CNS synaptic maintenance, plasticity, and function	[24]
FAT4	FAT atypical cadherin 4	complete coding sequence of FAT4_human	FAT4 acts as a positive regulator of planar cell polarity and is expressed in fetal brain, infant brain, brain tumor, and colorectal cancer	[25]
NAB1	NGFI-A binding protein 1	C. elegans ventral nerve cord	NAB1 can interact with SYD1 in absence of Rac proteins to inhibit axon outgrowth and prohibit neurite development	[26]
DENND2A	DENN domain containing 2A	Ischemic stroke and Parkinson's Disease patient tissue and whole blood samples	DENND2A acts as a specific guanine nucleotide exchange factor (GEF) for Rab9, possible role in mitophagy-determined etiology of Parkinson's disease and ischemic stroke	[27]
PCED1B	PC-esterase domain containing 1B	Human astrocyte and glioma cells	PCED1B knockdown restricted cell proliferation and induced cell apoptosis in glioma cells	[28]
MEF2A	myocyte enhancer factor 2A	human and rat temporal neocortex tissue	MEF2A regulates synaptogenesis, dendritic morphogenesis, and neuronal survival, and is	[29]

			found to be downregulated in	
			temporal lobe epilepsy	
	SUMO specific	murine brain tissue spines, and mitochondr axon terminals, sugges role for SUMOylation in synaptic regulation RASGEF1B is express primarily in cortical interneurons in the cort subventricular zone and play a role in tangential migration of interneuror GABRA2 variants are associated with early-o epileptic encephalopath intellectual disability wit seizures HOXC13 is upregulate vascular endothelial cells; sheep embryonic		
SENP5	peptidase 5	murine brain tissue		[30]
			axon terminals, suggesting a	
			RASGEF1B is expressed	
	RasGEF		primarily in cortical	
RASGEF1B	domain family	mouse embryos	interneurons in the cortical	[31]
	member 1B	subventricular	subventricular zone and may	[0.]
			play a role in tangential	
		_	migration of interneurons	
	gamma-aminob utyric acid type A receptor alpha2 subunit		GABRA2 variants are	
		data of diagnosed	associated with early-onset	
GABRA2			epileptic encephalopathy and	[32]
			intellectual disability with	
			seizures	
			HOXC13 is upregulated by	
		miaa brain	vascular endothelial growth	
			factor (VEGF) in vitro models	
	homoshov C12	of cerebral ischem	of cerebral ischemia,	[22]
HOXC13			aggravating the blood brain	[33]
			barrier; indicated in the	
		mRNA	development of hair, nail,	
			and filiform papilla	
			USPL1 changes in	
			alternative splicing found in	
		010 10	phenotypic-stage severe	
	ubiquitin	SMN2 mice	spinal muscular atrophy	
USPL1	specific	embryos and	embryo and neonate models	[34]
	peptidase like 1	neonates	and these changes became	
			more pronounced with the	
			severity of the disease	
			SPTB encodes a	
		patient with	cytoskeleton protein	
SPTB	spectrin beta,			[35]
SPTB	•	diagnosed autism	previously associated with	[ວວ]
SPTB	erythrocytic	diagnosed autism and spherocytosis	spherocytosis, deleted in	[55]

			spherocytosis, severe learning disabilities, and mild mental retardation	
DISP2	dispatched RND transporter family member 2	zebrafish	DISP2 is expressed in the telencephalon and ventral hindbrain in zebrafish found to be essential for normal embryonic development	[36]
GAN	gigaxonin	diagnosed giant axonal neuropathy patients	GAN synonymous mutations and intragenic deletions are involved in giant axonal neuropathy, an age-related progressive neurodegenerative disease involving PNS and CNS	[37]
PCDHB8	protocadherin beta 8	Ms5Yah mouse model	PCDHB8 is disrupted in genetic mouse models of partial monosomy 21, characterized by intellectual disabilities involving spatial learning and memory impairments, craniofacial dysmorphology, short stature, and muscular and heart defects	[38]
SNRK	SNF related kinase	rat cerebellar granule neurons	SNRK is implicated in the regulation of low K+ induced apoptosis of cerebellar granule neurons	[39]
CCSER1	coiled-coil serine rich protein 1	Parkinson's patient	CCSER1 is disrupted at the genomic breakpoint in early-onset, sever parkinsonism-dementia syndrome	[40]
ARFGEF1	ADP ribosylation factor guanine nucleotide exchange factor 1	genetic mouse models	ARFGEF1 haploinsufficiency is associated with developmental delay and decreased threshold to spontaneous seizure activity suggested to impair neuronal inhibition	[41]

-			CSRNP3 homologue is only	
CSRNP3	cysteine and serine rich nuclear protein 3	unigene libraries of mouse tissues	expressed in the mouse brain and spinal cord during embryonic development but in all regions of the adult	[42]
			brain MAPK8IP3 variants are	
ΜΑΡΚ8ΙΡ3	mitogen-activat ed protein kinase 8 interacting protein 3	MAPK8IP3 variant case studies, zebrafish embryos	associated with spastic diplegia, intellectual disability, cerebral atrophy, and corpus callosum hypoplasia; overexpression in zebrafish embryos had an adverse effect on developing axons	[43]
ALKBH8	alkB homolog 8, tRNA methyltransfera se	tRNA of ALKBH8 mutated individuals	ALKBH8 truncations affect wobble modifications, which the brain is sensitive to and is associated with intellectual disability	[44]
PDXDC1	pyridoxal dependent decarboxylase domain containing 1	genetic mouse models	PDXDC1 suppression increases acoustic prepulse inhibition, a schizophrenia endophenotype, and is highly expressed in the hippocampus	[45]
ANK3	ankyrin 3	genetic mouse models	ANK3 suppression is linked to schizophrenia, bipolar disorder, intellectual disability, and autism spectrum disorders, and heterozygous knockouts in mice show smaller cingulate cortex, granular retrosplenial cortex, primary motor cortex, and fimbria of the hippocampus	[46]
KCNB2	potassium voltage-gated channel subfamily B	mouse dorsal root ganglion neurons	KCNB2 plays a role in the postnatal maturation of dorsal root ganglion neurons, expression gradually	[47]

	member 2		decreases between 1 and 4 weeks of age	
SLC16A14	solute carrier family 16 member 14	mouse brain tissue	SLC16A14 encodes a protein exclusively localized in the soma of neurons and highly expressed in excitatory and inhibitory neurons and epithelial cells in the mouse brain suggested to be a neuronal aromatic-amino-acid transporter	[48]
RORB	RAR related orphan receptor B	whole exome sequencing from diagnosed patients	RORB variants are associated with neurodevelopmental disorders, especially in generalized epilepsies with predominant absence seizures, and is hypothesized to control cytoarchitectural patterning of neocortical neurons during development	[49]
SEMA4C	semaphorin 4C	genetic mouse models	SEMA4C signaling knockout in mouse forebrain indicates a large role of this gene in the recent and remote recall of fear memory, specifically by enhancing dendritic ramifications and modulating synaptic density in the adult hippocampus	[50]
CNTN1	contactin 1	healthy adult corpus collosum tissue	CNTN1 gene variations are linked to impacted axon density in the corpus collosum, and is suggested to be an axon guidance gene	[51]
PCDHB11	protocadherin beta 11	K562 cells	PCDBH11 is a human-specific brain-expressed protein with homophilic cell adhesion	[52]

			functions	
AASDHPPT	aminoadipate-s emialdehyde dehydrogenase -phosphopantet heinyl transferase	human glioma metabolomics	AASDHPPT is a sulfotransferase found up-regulated in malignant brain tumor	[53]
ZNF852	zinc finger protein 852	whole genome analysis of epileptic patients	ZNF852 downregulation was associated with seizure-free outcome of epileptic patients following anterior temporal lobectomy with amygdalohippocampectomy	[54]
MAPK8IP2	mitogen-activat ed protein kinase 8 interacting protein 2	RNA sequencing of human brain tissue	MAPK8IP2 expression is high throughout fetal life and infancy, and is suggested to enrich genes related to axonal growth and synaptic function during neurodevelopment; deleted in Phelan-McDermid syndrome, characterized by intellectual disability, severely delayed language development, and specific facial features	[55]
SLITRK1	SLIT and NTRK like family member 1	genomic screenings	SLITRK1 variants are associated with obsessive-compulsive disorder and Tourette disorder phenotypes	[56, 57]
PLXNC1	plexin C1	genetic mouse models	PLXNC1 directs axonal guidance of midbrain dopaminergic neurons and the segregation of mesolimbic and nigrostriatal dopaminergic pathways	[58]
ATP6V0A1	ATPase H ⁺ transporting V0 subunit a1	human microglial cells	ATP6V0A1 elevation attenuates rotenone-induced microglia inflammation, which is implicated in the	[59]

			chronic inflammation of	
			Parkinson's disease	
			DPYSL2 is identified as an	
	dihydropyrimidi	genetic mouse	alcohol-sensitive Alzheimer's	
DPYSL2	nase like 2	models	Disease-related protein that	[60]
	hase like z	models	regulates cytoskeleton	
			development	
			CHRFAM7A variation is	
	CHRNA7		associated with	
	(exons 5-10)	clinical data of	pro-inflammatory responses,	
CHRFAM7A	and FAM7A	diagnosed patients	which is significantly linked to	[61]
	(exons A-E)	0	elevated pain experience	
	fusion		following spinal cord injury	
			L1CAM gene mutations are	
			associated with X-linked	
			human congenital	
			hydrocephalus and can	
	L1 cell		accelerate early	
L1CAM	adhesion	genetic rat models	hydrocephalus phenotypes	[62]
LICAM	molecule		of Ccdc39 knockout rats	[02]
	molecule			
		showing impaired cort development and glymph Cerebrospinal fluid (C	- .	
			,	
			flow	
			GREM2 effects	
			neuroprotection via	
			downregulation in neuronal	
	gremlin 2, DAN	SH-SY5Y	cells exposed to cadmium,	[00]
GREM2	family BMP	neuronal cells	which is linked to	[63]
	antagonist		neurotoxicity and	
			neurodegenerative diseases,	
			including Alzheimer's and	
			Parkinson's	
			KCNS2, via a microdeletion,	
	potassium		is a possible candidate for	
KCNS2	voltage-gated	genetic and clinical	explaining a complex	
	channel	data of a	neurological phenotype	[64]
	modifier	diagnosed patient	involving developmental	r <u>~</u> .1
	subfamily S	alagnooda patient	delay, microcephaly,	
	member 2		seizures, and typical facial	
			dysmorphism	

ATP7A	ATPase copper transporting alpha	genetic and clinical data of diagnosed patients	ATP7A mutations have been associated with severe infantile neurodegenerative Menkes diseases and Occipital horn syndrome, a novel missense mutation was identified in the familial presentation of distal motor neuropathy and autonomic dysfunction	[65]
HDAC2	histone deacetylase 2	genetic mouse models	HDAC2 upregulation in dorsal hippocampal neurons resulted in neuroinflammation-induced memory impairment and reduced histone acetylation, and suppression was able to reverse microglial activation and memory deficits	[66]
DGKD	diacylglycerol kinase delta	diagnosed epileptic patient, array Comparative Genomic Hybridization (CGH)	DGKD encodes a cytoplasmic enzyme involved in the production of phosphatic acid, deletion and mutations are associated with epilepsy and other neurological diseases, though the mutation alone is not sufficient to cause epilepsy	[67]
CPNE5	copine 5	genetic mouse models	CPNE5 deficiency in mice does not affect rodent locomotor activity or memory, but significantly decreased anxiety level during stress-inducing tasks, indicating a role of this gene in regulating anxiety level	[68]
GPR88	G protein-coupled receptor 88	genetic rat models	GPR88 knockdown reduced acute amphetamine-induced and increased L-DOPA-induced turning	[69]

			behavior in a rat model of hemiparkinsonism and normalized the upregulated expression of striatal Gad67, and is identified as a possible new target for the management of Parkinson's disease RPS6KA3 microduplication	
RPS6KA3	ribosomal protein S6 kinase A3	genetic and clinical data of diagnosed patients	is identified in several cases of X-linked intellectual disabilities, with carriers displaying major depression and mild intellectual disability	[70]
SPHKAP	SPHK1 interactor, AKAP domain containing	genomic wide association studies of Japanese population	SPHKAP is identified as a susceptibility locus for schizophrenia in the Japanese and Psychiatric Genomic Consortium populations	[71]
DRD1	dopamine receptor D1	prenatally stressed bull calves	DRD1 is associated with behavior and stress response and was found to be differentially methylated in the white blood cells of bull calves who underwent prenatal stress	[72]
FAM234B	family with sequence similarity 234 member B	exome sequencing of diagnosed patients	FAM234B homozygous truncations were identified in 31.6% of families associated with intellectual disability	[73]
CXorf56	chromosome X open reading frame 56	genetic and clinical data of diagnosed patients	CXorf56 reduced expression was identified in one family associated with X-linked intellectual disability of behavioral problems, and is present and located in the nucleus, cell, soma, dendrites, and dendritic spines of the murine brain and primary hippocampal	[74]

			neuron cultures	
MYCBP2	MYC binding protein 2, E3 ubiquitin protein ligase	GWAS, SH-SY5Y cells, and primary neuronal cultures	MYCBP2 induces the ubiquitination of TSC2 and downstream decreases transcription of SYT11, which can induce lysosomal dysfunction and impair degradation of autophagosomes, which is likely to contribute to some forms of Parkinson's disease associated neurodegeneration	[75]
RASGRF1	Ras protein specific guanine nucleotide releasing factor 1	primary cultured cortical neurons	RASGRF1 is an intrinsic key mediator for BDNF-induced R-Rase activation and R-Ras mediated axonal morphological regulation, which is a key enabler of higher brain function in the central nervous system	[76]
COL25A1	collagen type XXV alpha 1 chain	mouse brain	COL25A1 was found to be expressed in mouse retina and specifically enriched in retin-recipient nuclei within the brain, suggesting a role in brain development and function	[77]
VSNL1	visinin like 1	RNAseq on genetic mouse model	VSNL1 increase was found in genetic mouse models of Helios-specific spatial memory deficits, and normalization of VSNL1 was able to reverse their CA30CA1 neuronal spine density loss phenotype	[78]
DOCK4	dedicator of cytokinesis 4	genetic mouse models	DOCK4 knockout mice displayed a series of autism spectrum disorder-like behaviors, and restoration corrected impaired social	[79]

ERCC6	ERCC excision repair 6, chromatin remodeling factor	genetic and clinical data of diagnosed patients	deficits and social novelty deficits, suggesting a mechanism in regulating hippocampal excitatory synaptic transmission and social behavior ERCC6 variants are present in two thirds of individuals with Cackayne syndrome, a disease impacting a spectrum of phenotypes including impaired postnatal growth, progressive impairment of vision, central and peripheral nervous system function that leads to	[80]
ERCC6	repair 6, chromatin remodeling	data of diagnosed	in two thirds of individuals with Cackayne syndrome, a disease impacting a spectrum of phenotypes including impaired postnatal growth, progressive impairment of vision, central and peripheral nervous	[80]
EN2	engrailed homeobox 2	genetic mouse models	system function that leads to severe disability EN2 knockout in the excitatory cerebellar nuclei neurons (eCN) leads to reduced postnatal growth of the cerebellar cortex through the loss of the eCN and interactions with Purkinje cells, which regulate the production of granule cells	[81]
PRKAA2	protein kinase AMP-activated catalytic subunit alpha 2	genetic mouse models	and interneurons PRKAA2 disruption significantly decreased apoptosis of neural progenitor cells in mice after irradiation, suggesting a role of this gene in determining cell fate response following DNA damage in NPCs	[82]
GSG1L	GSG1 like	genetic mouse models	GSG1L is found to regulate the strength of AMPA receptor-mediated synaptic transmission in hippocampal dentate granule neurons, suggesting a neuronal-type	[83]

			specific role of this gene		
		genetic and clinical	KIF5A mediates the transport		
			of VAPB, mutations of this		
KIF5A	kinesin family	data of diagnosed	function and in the KIF5A	[84]	
KIF5A	member 5A	-	gene have been associated	[04]	
		patients	with late-onset spinal		
			muscular atrophy		
			DRD5, much like DRD1, is		
			associated with behavior and		
			stress response, and was		
			found to be differentially		
			methylated in the white blood		
			cells of bull calves who		
	dopamine	prenatally stressed	underwent prenatal stress;		
DRD5	receptor D5	bull calves;	DRD5 was also found to be	[72] [85]	
		SK-N-SH cell line	upregulated by		
			overexpression of a IncRNA		
			identified in peripheral blood		
			of schizophrenic patients,		
			and downregulated by its		
			knockdown		
			CACNG6 contributes to the		
	calcium voltage-gated channel auxiliary subunit gamma	WGAS of the Chinese Han population	gamma subunit of		
			voltage-gated L-type calcium		
			channels, with		
			polymorphisms in this gene		
CACNG6			found to potentially associate	[86]	
CACINOU			with increased risk of	[00]	
			schizophrenia, and a strong		
	6		interaction suggesting a		
			possible biological		
			interaction with CACNG5		
			B3GALT1 is contained within		
			a chromosomal region often		
	beta-1,3-galact osyltransferase	GWAS on	affected by Parkinson's		
B3GALT1		Parkinson's	disease, and variants in this	[87]	
	1	patients	gene have been identified in		
			PD patients but not yet		
			associated with particular		
			risk or phenotype		
WASF1	WAS protein	WGAS of ID	WASF1 truncations have	[88]	

	family member	patients, function	been identified in unrelated	
	1	studies of patient	individuals with intellectual	
		fibroblast cells	disability, autistic features,	
			and seizures, and have been	
			shown to affect the actin	
			remodeling in fibroblasts	
			from these patients	
			KCNV1 mutations have been	
			identified in male autism	
			spectrum disorder patients	
	potassium	WES and blood	and are associated with an	
	voltage-gated		ADHD phenotype, and	
	channel	cell transcriptome	defects in voltage-gated	[00]
KCNV1	modifier	of male autism	potassium channels have	[89]
	subfamily V	spectrum disorder	previously been noted in	
	member 1	(ASD) patients	other neuropsychiatric	
			disorders such as bipolar	
			disorder, ASD, and	
			schizophrenia	
			DNM1 encodes a protein	
			necessary in the process of	
			neurotransmitter signaling	
			and CNS development,	
5114		WES in diagnosed patients	variants have been	[0.0]
DNM1	dynamin 1		associated with global	[90]
			developmental delay and	
			severe intellectual disability,	
			and most with epileptic	
			encephalopathy	
			APCS encodes a protein that	
			can prevent cell death in the	
			CNS in diseased flies, and	
	amyloid P		prevent the accumulation of	
			insoluble forms of lysosomes	
APCS	component,	F57I fly variants	in both WT and diseased	[91]
	serum		flies, suggesting an ability of	
			this protein to prevent cell	
			death by preventing the	
			accumulation of toxic F57I	
			structures	
			3110010103	

	inhibitory	cells, MM cell	anti-apoptotic protein	
	molecule	lines, genetic data	upregulated in B cell	
		from diagnosed	receptor-activated V cells	
		patients	and provides resistance to	
			Fas-mediated cell death, but	
			has also been found to have	
			a function in cell growth,	
			metabolism, Alzheimer's	
			disease, and tumorigenesis	
			SOX14 has been found to be	
			an exclusive marker of	
			inhibitory projection neurons	
		mouse cerebellar	in the lateral and interposed	
SOX14	SRY-box 14	culture, genetic	cerebellar nuclei, targeted	[93]
		mouse models	ablation of Sox14 positive	
			cells leads to significantly	
			impaired motor learning	
	chromosome 5 open reading frame 63		C5orf63 was significantly	
			upregulated in meningiomas,	
			or primary brain tumors,	
C5orf63			classified as DCC (deleted in	[94]
			colorectal cancer) gene low	[0.]
		meningiomas	expression compared to high	
			expression	
			FCGR1B mutations were	
			found in human induced	
	Fc fragment of		pluripotent stem cells derived	
FCGR1B		GIBHi001-A	from a patient with autism	[95]
	IgG receptor Ib	hIPSC line	spectrum disorder and it has	
			a suggested role in the	
			humoral immune response	
			TMEM173 encodes a protein	
			that plays a crucial role in	
			modulating information, and	
	transmembrane	genetic mouse	knockout is shown to	
TMEM173	-	models	alleviate inflammatory	[96]
	•		response and facilitate	
			recovery following spinal	
			cord injury in mice	
		ich		
LRRN4	leucine rich	mouse embryos	LRRN4 is expressed in	[97]

			and a stand stand	
	4		cells of adult mice,	
			expression patterns show	
			increasing rates from embryo	
			to postnatal, then decrease	
			dramatically to adult levels,	
			suggesting a contribution to	
			synaptic formation or	
			development of synaptic	
			function in DRG neurons	
			NUPL2 expression shows	
			regional variability in the	
			brain, with the highest	
			expression being in temporal	
		mouse and human	cortex in normal brain tissue,	
NUPL2	nucleoporin like	cerebral cortex	and after introducing an SNP	[98]
	2	cells	seen in Parkinson's disease,	
			NUPL2 showed increased	
			expression in cerebellum,	
			temporal cortex, and frontal	
			cortex	
			CDCP2 downregulation,	
			much like ZNF852, was	
	CUB domain	whole genome	associated with seizure-free	
CDCP2	containing	analysis of	outcome of epileptic patients	[54]
	protein 2	epileptic patients	following anterior temporal	
	P	ophopuo padonto	lobectomy with	
			amygdalohippocampectomy	
			GAD1 expressing	
			interneurons block the	
	glutamate		antidepressant actions of	
			ketamine when GluN2B is	
GAD1	decarboxylase	GAD1	knocked down, this prevents	[99]
0/101	1	interneurons	an increase in extracellular	[00]
	·		glutamate and synaptic	
			formation in the prefrontal	
			cortex	
			SPTBN2 mutations are	
	anastrin hata		associated with infantile	
SPTBN2	spectrin beta,	genetic data of diagnosed patients	onset of spinocerebellar	[100]
ST I BINZ	non-erythrocyti c 2			[100]
			ataxia type 5, which presents	
			with ataxic cerebral palsy	

DYRK1A	dual specificity tyrosine phosphorylation regulated kinase 1A	transgenic mouse models	DYRK1A overexpression is associated with cognitive phenotypes of down syndrome and is shown to alter protein and phosphoprotein levels of key postsynaptic and plasticity-related pathways	[101]
NVL	nuclear VCP-like	genetic data of diagnosed patients	NVL is suggested to contain overlapping genetic risk factors for major depressive disorder and schizophrenia in the Han Chinese population	[102]
OLR1	oxidized low density lipoprotein receptor 1	neuroinflammatory mouse model	OLR1 overexpression is found in activated microglia, while silencing of the gene inhibited MAPK phosphorylation, some nuclear transport, and pro-inflammatory factor production in microglia, suggesting a role of OLR1 in aggravating neuroinflammation-induced neuronal apoptosis	[103]

Note: CNS: central nervous system; PNS: peripheral nervous system; CSF: cerebrospinal fluid; GWAS: genome-wide association studies; NPC: neural progenitor cell; IncRNA: long non-coding RNA; PD: Parkinson's disease; ID: intellectual disability; WES: whole exome sequencing; ASD: Autism spectrum disorders; ADHD: attention deficit hyperactivity disorder; WT: wild type; MM: multiple myeloma; SNP: single nucleotide polymorphism; PKA: protein kinase A; AKAP: a-kinase anchoring protein; ALS: amyotrophic lateral sclerosis; BDNF: brain-derived neurotrophic factor; AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; GLUN2B: glutamate ionotropic receptor NMDA type subunit 2B; MAPK: mitogen-activated protein kinase

References

- 1. Yang P, Baker KA, Hagg T. A disintegrin and metalloprotease 21 (ADAM21) is associated with neurogenesis and axonal growth in developing and adult rodent CNS. *J Comp Neurol* 2005; **490**(2): 163-179.
- Calmont A, Ivins S, Van Bueren KL, Papangeli I, Kyriakopoulou V, Andrews WD et al. Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development 2009; 136(18): 3173-3183.
- 3. Ding H, Wu X, Kim I, Tam PP, Koh GY, Nagy A. The mouse Pdgfc gene: dynamic expression in embryonic tissues during organogenesis. *Mech Dev* 2000; **96**(2): 209-213.
- Ding H, Wu X, Boström H, Kim I, Wong N, Tsoi B *et al.* A specific requirement for PDGF-C in palate formation and PDGFR-alpha signaling. *Nat Genet* 2004; 36(10): 1111-1116.

- 5. Park J, Koko M, Hedrich UBS, Hermann A, Cremer K, Haberlandt E *et al.* KCNC1-related disorders: new de novo variants expand the phenotypic spectrum. *Ann Clin Transl Neurol* 2019; **6**(7): 1319-1326.
- Lan L, Wang W, Huang Y, Bu X, Zhao C. Roles of Wnt7a in embryo development, tissue homeostasis, and human diseases. *J Cell Biochem* 2019; 120(11): 18588-18598.
- Harrington AJ, Raissi A, Rajkovich K, Berto S, Kumar J, Molinaro G *et al.* MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders. *Elife* 2016; 5.
- Dastidar SG, Narayanan S, Stifani S, D'Mello SR. Transducin-like enhancer of Split-1 (TLE1) combines with Forkhead box protein G1 (FoxG1) to promote neuronal survival. *J Biol Chem* 2012; 287(18): 14749-14759.
- Alderman SL, Vijayan MM. 11β-Hydroxysteroid dehydrogenase type 2 in zebrafish brain: a functional role in hypothalamus-pituitary-interrenal axis regulation. *J Endocrinol* 2012; **215**(3): 393-402.
- Zhang R, Yu W, Liang G, Jia Z, Chen Z, Zhao L *et al.* Tumor Suppressor Candidate 1 Suppresses Cell Growth and Predicts Better Survival in Glioblastoma. *Cell Mol Neurobiol* 2017; **37**(1): 37-42.
- 11. Martin EA, Muralidhar S, Wang Z, Cervantes DC, Basu R, Taylor MR *et al.* The intellectual disability gene Kirrel3 regulates target-specific mossy fiber synapse development in the hippocampus. *Elife* 2015; **4**: e09395.
- Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F *et al.* A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. *Oncogene* 2018; **37**(13): 1805-1814.
- 13. Fukuda M, Aizawa Y. Hypothetical gene C18orf42 encodes a novel protein kinase A-binding protein. *Genes Cells* 2015; **20**(4): 267-280.
- 14. Chang AM, Duffy JF, Buxton OM, Lane JM, Aeschbach D, Anderson C *et al.* Chronotype Genetic Variant in PER2 is Associated with Intrinsic Circadian Period in Humans. *Sci Rep* 2019; **9**(1): 5350.
- Delahanty RJ, Zhang Y, Bichell TJ, Shen W, Verdier K, Macdonald RL *et al.* Beyond Epilepsy and Autism: Disruption of GABRB3 Causes Ocular Hypopigmentation. *Cell Rep* 2016; **17**(12): 3115-3124.
- 16. Hsu HC, Lee YL, Cheng TS, Howng SL, Chang LK, Lu PJ *et al.* Characterization of two non-testis-specific CABYR variants that bind to GSK3beta with a proline-rich extensin-like domain. *Biochem Biophys Res Commun* 2005; **329**(3): 1108-1117.
- Fröb F, Sock E, Tamm ER, Saur AL, Hillgärtner S, Williams TJ *et al.* Ep400 deficiency in Schwann cells causes persistent expression of early developmental regulators and peripheral neuropathy. *Nat Commun* 2019; **10**(1): 2361.
- Lakhwani S, García-Sanz P, Vallejo M. Alx3-deficient mice exhibit folic acid-resistant craniofacial midline and neural tube closure defects. *Dev Biol* 2010; **344**(2): 869-880.

- von Einem B, Eschbach J, Kiechle M, Wahler A, Thal DR, McLean PJ *et al.* The Golgi-localized, gamma ear-containing, ARF-binding (GGA) protein family alters alpha synuclein (α-syn) oligomerization and secretion. *Aging (Albany NY)* 2017;
 9(7): 1677-1697.
- 20. Hemming IA, Clément O, Gladwyn-Ng IE, Cullen HD, Ng HL, See HB *et al.* Disease-associated missense variants in ZBTB18 disrupt DNA binding and impair the development of neurons within the embryonic cerebral cortex. *Hum Mutat* 2019; **40**(10): 1841-1855.
- 21. Goodman JV, Bonni A. Regulation of neuronal connectivity in the mammalian brain by chromatin remodeling. *Curr Opin Neurobiol* 2019; **59:** 59-68.
- 22. Cheng C, Yang K, Wu X, Zhang Y, Shan S, Gitler A *et al.* Loss of CREST leads to neuroinflammatory responses and ALS-like motor defects in mice. *Transl Neurodegener* 2019; **8:** 13.
- 23. Lodder-Gadaczek J, Becker I, Gieselmann V, Wang-Eckhardt L, Eckhardt M. N-acetylaspartylglutamate synthetase II synthesizes N-acetylaspartylglutamylglutamate. *J Biol Chem* 2011; **286**(19): 16693-16706.
- 24. Amegandjin CA, Jammow W, Laforest S, Riad M, Baharnoori M, Badeaux F *et al.* Regional expression and ultrastructural localization of EphA7 in the hippocampus and cerebellum of adult rat. *J Comp Neurol* 2016; **524**(12): 2462-2478.
- 25. Katoh Y, Katoh M. Comparative integromics on FAT1, FAT2, FAT3 and FAT4. *Int J Mol Med* 2006; **18**(3): 523-528.
- 26. Nørgaard S, Deng S, Cao W, Pocock R. Distinct CED-10/Rac1 domains confer context-specific functions in development. *PLoS Genet* 2018; **14**(9): e1007670.
- 27. Lang W, Wang J, Ma X, Zhang N, Li H, Cui P *et al.* Identification of Shared Genes Between Ischemic Stroke and Parkinson's Disease Using Genome-Wide Association Studies. *Front Neurol* 2019; **10:** 297.
- 28. Yang J, Yu D, Liu X, Changyong E, Yu S. LncRNA PCED1B-AS1 activates the proliferation and restricts the apoptosis of glioma through cooperating with miR-194-5p/PCED1B axis. *J Cell Biochem* 2019.
- Huang Y, Wu X, Guo J, Yuan J. Myocyte-specific enhancer binding factor 2A expression is downregulated during temporal lobe epilepsy. *Int J Neurosci* 2016; **126**(9): 786-796.
- 30. Akiyama H, Nakadate K, Sakakibara SI. Synaptic localization of the SUMOylation-regulating protease SENP5 in the adult mouse brain. *J Comp Neurol* 2018; **526**(6): 990-1005.
- 31. Tao G, Li Z, Wen Y, Song X, Wei S, Du H *et al.* Transcription Factors. *Front Mol Neurosci* 2019; **12:** 75.
- 32. Maljevic S, Keren B, Aung YH, Forster IC, Mignot C, Buratti J *et al.* Novel GABRA2 variants in epileptic encephalopathy and intellectual disability with seizures. *Brain* 2019; **142**(5): e15.

- 33. Sulayman A, Tian K, Huang X, Tian Y, Xu X, Fu X *et al.* Genome-wide identification and characterization of long non-coding RNAs expressed during sheep fetal and postnatal hair follicle development. *Sci Rep* 2019; **9**(1): 8501.
- 34. Liu H, Shafey D, Moores JN, Kothary R. Neurodevelopmental consequences of Smn depletion in a mouse model of spinal muscular atrophy. *J Neurosci Res* 2010; **88**(1): 111-122.
- 35. Griswold AJ, Ma D, Sacharow SJ, Robinson JL, Jaworski JM, Wright HH *et al.* A de novo 1.5 Mb microdeletion on chromosome 14q23.2-23.3 in a patient with autism and spherocytosis. *Autism Res* 2011; **4**(3): 221-227.
- 36. Li N, Flynt AS, Kim HR, Solnica-Krezel L, Patton JG. Dispatched Homolog 2 is targeted by miR-214 through a combination of three weak microRNA recognition sites. *Nucleic Acids Res* 2008; **36**(13): 4277-4285.
- 37. Echaniz-Laguna A, Cuisset JM, Guyant-Marechal L, Aubourg P, Kremer L, Baaloul N *et al.* Giant axonal neuropathy: a multicenter retrospective study with genotypic spectrum expansion. *Neurogenetics* 2019.
- Arbogast T, Raveau M, Chevalier C, Nalesso V, Dembele D, Jacobs H *et al.* Deletion of the App-Runx1 region in mice models human partial monosomy 21. *Dis Model Mech* 2015; 8(6): 623-634.
- 39. Yoshida K, Yamada M, Nishio C, Konishi A, Hatanaka H. SNRK, a member of the SNF1 family, is related to low K(+)-induced apoptosis of cultured rat cerebellar granule neurons. *Brain Res* 2000; **873**(2): 274-282.
- 40. Zafar F, Valappil RA, Kim S, Johansen KK, Chang ALS, Tetrud JW *et al.* Genetic fine-mapping of the Iowan. *NPJ Parkinsons Dis* 2018; **4:** 18.
- 41. Teoh J, Subramanian N, Pero ME, Bartolini F, Amador A, Kanber A *et al.* Arfgef1 haploinsufficiency in mice alters neuronal endosome composition and decreases membrane surface postsynaptic GABA. *Neurobiol Dis* 2019; **134**: 104632.
- 42. Yang HL, Cho EY, Han KH, Kim H, Kim SJ. Characterization of a novel mouse brain gene (mbu-1) identified by digital differential display. *Gene* 2007; **395**(1-2): 144-150.
- 43. Iwasawa S, Yanagi K, Kikuchi A, Kobayashi Y, Haginoya K, Matsumoto H *et al.* Recurrent de novo MAPK8IP3 variants cause neurological phenotypes. *Ann Neurol* 2019; **85**(6): 927-933.
- 44. Monies D, Vågbø CB, Al-Owain M, Alhomaidi S, Alkuraya FS. Recessive Truncating Mutations in ALKBH8 Cause Intellectual Disability and Severe Impairment of Wobble Uridine Modification. *Am J Hum Genet* 2019; **104**(6): 1202-1209.
- 45. Feldcamp LA, Boutros PC, Raymond R, Fletcher PJ, Nobrega JN, Wong AHC. Pdxdc1 modulates prepulse inhibition of acoustic startle in the mouse. *Transl Psychiatry* 2017; **7**(5): e1125.
- 46. van der Werf IM, Van Dam D, Missault S, Yalcin B, De Deyn PP, Vandeweyer G *et al.* Behavioural characterization of AnkyrinG deficient mice, a model for ANK3 related disorders. *Behav Brain Res* 2017; **328:** 218-226.

- 47. Regnier G, Bocksteins E, Van de Vijver G, Snyders DJ, van Bogaert PP. The contribution of Kv2.2-mediated currents decreases during the postnatal development of mouse dorsal root ganglion neurons. *Physiol Rep* 2016; **4**(6).
- 48. Roshanbin S, Lindberg FA, Lekholm E, Eriksson MM, Perland E, Åhlund J *et al.* Histological characterization of orphan transporter MCT14 (SLC16A14) shows abundant expression in mouse CNS and kidney. *BMC Neurosci* 2016; **17**(1): 43.
- 49. Rudolf G, Lesca G, Mehrjouy MM, Labalme A, Salmi M, Bache I *et al.* Loss of function of the retinoid-related nuclear receptor (RORB) gene and epilepsy. *Eur J Hum Genet* 2016; **24**(12): 1761-1770.
- 50. Simonetti M, Paldy E, Njoo C, Bali KK, Worzfeld T, Pitzer C *et al.* The impact of Semaphorin 4C/Plexin-B2 signaling on fear memory via remodeling of neuronal and synaptic morphology. *Mol Psychiatry* 2019.
- 51. Anderson C, Gerding WM, Fraenz C, Schlüter C, Friedrich P, Raane M *et al.* PLP1 and CNTN1 gene variation modulates the microstructure of human white matter in the corpus callosum. *Brain Struct Funct* 2018; **223**(8): 3875-3887.
- 52. de Freitas GB, Gonçalves RA, Gralle M. Functional test of PCDHB11, the most human-specific neuronal surface protein. *BMC Evol Biol* 2016; **16:** 75.
- 53. Li W, Jia H, Li Q, Cui J, Li R, Zou Z *et al.* Glycerophosphatidylcholine PC(36:1) absence and 3'-phosphoadenylate (pAp) accumulation are hallmarks of the human glioma metabolome. *Sci Rep* 2018; **8**(1): 14783.
- 54. Gallek MJ, Skoch J, Ansay T, Behbahani M, Mount D, Manziello A *et al.* Cortical gene expression: prognostic value for seizure outcome following temporal lobectomy and amygdalohippocampectomy. *Neurogenetics* 2016; **17**(4): 211-218.
- 55. Ziats CA, Grosvenor LP, Sarasua SM, Thurm AE, Swedo SE, Mahfouz A *et al.* Functional genomics analysis of Phelan-McDermid syndrome 22q13 region during human neurodevelopment. *PLoS One* 2019; **14**(3): e0213921.
- 56. Melo-Felippe FB, Fontenelle LF, Kohlrausch FB. Gene variations in PBX1, LMX1A and SLITRK1 are associated with obsessive-compulsive disorder and its clinical features. *J Clin Neurosci* 2019; **61:** 180-185.
- 57. Fernandez TV, State MW, Pittenger C. Tourette disorder and other tic disorders. *Handb Clin Neurol* 2018; **147:** 343-354.
- Chabrat A, Brisson G, Doucet-Beaupré H, Salesse C, Schaan Profes M, Dovonou A *et al.* Transcriptional repression of Plxnc1 by Lmx1a and Lmx1b directs topographic dopaminergic circuit formation. *Nat Commun* 2017; 8(1): 933.
- 59. Liang Y, Zheng D, Peng S, Lin D, Jing X, Zeng Z *et al.* Rifampicin attenuates rotenone-treated microglia inflammation via improving lysosomal function. *Toxicol In Vitro* 2019; **63:** 104690.
- 60. Hoffman JL, Faccidomo S, Kim M, Taylor SM, Agoglia AE, May AM *et al.* Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. *Int Rev Neurobiol* 2019; **148:** 169-230.

- 61. Huang W, Kabbani N, Brannan TK, Lin MK, Theiss MM, Hamilton JF *et al.* Association of a Functional Polymorphism in the. *J Neurotrauma* 2019; **36**(21): 3026-3033.
- 62. Emmert AS, Iwasawa E, Shula C, Schultz P, Lindquist D, Dunn RS *et al.* Impaired neural differentiation and glymphatic CSF flow in the. *Dis Model Mech* 2019; **12**(11).
- 63. Forcella M, Lau P, Oldani M, Melchioretto P, Bogni A, Gribaldo L *et al.* Neuronal specific and non-specific responses to cadmium possibly involved in neurodegeneration: A toxicogenomics study in a human neuronal cell model. *Neurotoxicology* 2019; **76:** 162-173.
- 64. Rincon A, Paez-Rojas P, Suárez-Obando F. 8q22.2q22.3 Microdeletion Syndrome Associated with Hearing Loss and Intractable Epilepsy. *Case Rep Genet* 2019; **2019**: 7608348.
- 65. Gualandi F, Sette E, Fortunato F, Bigoni S, De Grandis D, Scotton C *et al.* Report of a novel ATP7A mutation causing distal motor neuropathy. *Neuromuscul Disord* 2019; **29**(10): 776-785.
- 66. Sun XY, Zheng T, Yang X, Liu L, Gao SS, Xu HB *et al.* HDAC2 hyperexpression alters hippocampal neuronal transcription and microglial activity in neuroinflammation-induced cognitive dysfunction. *J Neuroinflammation* 2019; **16**(1): 249.
- 67. Bertini V, Valetto A, Azzarà A, Legitimo A, Saggese G, Consolini R *et al.* A Case of 22q11 Deletion Syndrome (22q11DS) with a Panayiotopoulos Epileptic Pattern: Are Additional Copy-Number Variations a Possible Second Hit in Modulating the 22q11DS Phenotype? *Front Pediatr* 2017; **5:** 48.
- 68. Ding XF, Wang HJ, Qian L, Hu ZY, Feng SF, Wu Y *et al.* Cpne5 is Involved in Regulating Rodent Anxiety Level. *CNS Neurosci Ther* 2017; **23**(3): 266-268.
- Ingallinesi M, Galet B, Pegon J, Faucon Biguet N, Do Thi A, Millan MJ *et al.* Knock-Down of GPR88 in the Dorsal Striatum Alters the Response of Medium Spiny Neurons to the Loss of Dopamine Input and L-3-4-Dyhydroxyphenylalanine. *Front Pharmacol* 2019; **10:** 1233.
- Uliana V, Bonatti F, Zanatta V, Mozzoni P, Martorana D, Percesepe A. Spectrum of X-linked intellectual disabilities and psychiatric symptoms in a family harbouring a Xp22.12 microduplication encompassing the. *J Genet* 2019; 98.
- 71. Ikeda M, Takahashi A, Kamatani Y, Momozawa Y, Saito T, Kondo K *et al.* Genome-Wide Association Study Detected Novel Susceptibility Genes for Schizophrenia and Shared Trans-Populations/Diseases Genetic Effect. *Schizophr Bull* 2019; **45**(4): 824-834.
- 72. Littlejohn BP, Price DM, Neuendorff DA, Carroll JA, Vann RC, Riggs PK *et al.* Influence of prenatal transportation stress-induced differential DNA methylation on the physiological control of behavior and stress response in suckling Brahman bull calves. *J Anim Sci* 2019.

- 73. Reuter MS, Tawamie H, Buchert R, Hosny Gebril O, Froukh T, Thiel C *et al.* Diagnostic Yield and Novel Candidate Genes by Exome Sequencing in 152 Consanguineous Families With Neurodevelopmental Disorders. *JAMA Psychiatry* 2017; **74**(3): 293-299.
- 74. Verkerk AJMH, Zeidler S, Breedveld G, Overbeek L, Huigh D, Koster L *et al.* CXorf56, a dendritic neuronal protein, identified as a new candidate gene for X-linked intellectual disability. *Eur J Hum Genet* 2018; **26**(4): 552-560.
- 75. Bento CF, Ashkenazi A, Jimenez-Sanchez M, Rubinsztein DC. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. *Nat Commun* 2016; **7:** 11803.
- 76. Umeda K, Negishi M, Katoh H. RasGRF1 mediates brain-derived neurotrophic factor-induced axonal growth in primary cultured cortical neurons. *Biochem Biophys Rep* 2019; **17:** 56-64.
- 77. Monavarfeshani A, Knill CN, Sabbagh U, Su J, Fox MA. Region- and Cell-Specific Expression of Transmembrane Collagens in Mouse Brain. *Front Integr Neurosci* 2017; **11:** 20.
- 78. Giralt A, Brito V, Pardo M, Rubio SE, Marion-Poll L, Martín-Ibáñez R *et al.* Helios modulates the maturation of a CA1 neuronal subpopulation required for spatial memory formation. *Exp Neurol* 2020; **323:** 113095.
- 79. Guo D, Peng Y, Wang L, Sun X, Wang X, Liang C *et al.* Autism-like social deficit generated by Dock4 deficiency is rescued by restoration of Rac1 activity and NMDA receptor function. *Mol Psychiatry* 2019.
- 80. Laugel V. Cockayne syndrome: the expanding clinical and mutational spectrum. *Mech Ageing Dev* 2013; **134**(5-6): 161-170.
- 81. Willett RT, Bayin NS, Lee AS, Krishnamurthy A, Wojcinski A, Lao Z *et al.* Cerebellar nuclei excitatory neurons regulate developmental scaling of presynaptic Purkinje cell number and organ growth. *Elife* 2019; **8**.
- 82. Li YQ, Koritzinsky M, Wong CS. Metabolic Regulation of Hippocampal Neuroprogenitor Apoptosis After Irradiation. *J Neuropathol Exp Neurol* 2019.
- 83. Mao X, Gu X, Lu W. GSG1L regulates the strength of AMPA receptor-mediated synaptic transmission but not AMPA receptor kinetics in hippocampal dentate granule neurons. *J Neurophysiol* 2017; **117**(1): 28-35.
- 84. de Fuenmayor-Fernández de la Hoz CP, Hernández-Laín A, Olivé M, Sánchez-Calvín MT, Gonzalo-Martínez JF, Domínguez-González C. Adult-onset distal spinal muscular atrophy: a new phenotype associated with KIF5A mutations. *Brain* 2019; **142**(12): e66.
- 85. Chen S, Zhu X, Niu W, Yao G, Kong L, He M *et al.* Regulatory Role of IncRNA NONHSAT089447 in the Dopamine Signaling Pathway in Schizophrenic Patients. *Med Sci Monit* 2019; **25:** 4322-4332.
- 86. Guan F, Zhang T, Liu X, Han W, Lin H, Li L *et al.* Evaluation of voltage-dependent calcium channel γ gene families identified several novel potential susceptible genes to schizophrenia. *Sci Rep* 2016; **6**: 24914.

- Labbé C, Ogaki K, Lorenzo-Betancor O, Carrasquillo MM, Heckman MG, McCarthy A *et al.* Exonic Re-Sequencing of the Chromosome 2q24.3 Parkinson's Disease Locus. *PLoS One* 2015; **10**(6): e0128586.
- 88. Ito Y, Carss KJ, Duarte ST, Hartley T, Keren B, Kurian MA *et al.* De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures. *Am J Hum Genet* 2018; **103**(1): 144-153.
- 89. Codina-Solà M, Rodríguez-Santiago B, Homs A, Santoyo J, Rigau M, Aznar-Laín G *et al.* Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders. *Mol Autism* 2015; **6:** 21.
- 90. Brereton E, Fassi E, Araujo GC, Dodd J, Telegrafi A, Pathak SJ *et al.* Mutations in the PH Domain of DNM1 are associated with a nonepileptic phenotype characterized by developmental delay and neurobehavioral abnormalities. *Mol Genet Genomic Med* 2018; **6**(2): 294-300.
- Helmfors L, Bergkvist L, Brorsson AC. Serum Amyloid P Component Ameliorates Neurological Damage Caused by Expressing a Lysozyme Variant in the Central Nervous System of Drosophila melanogaster. *PLoS One* 2016; 11(7): e0159294.
- 92. Huo J, Xu S, Lam KP. FAIM: An Antagonist of Fas-Killing and Beyond. *Cells* 2019; **8**(6).
- 93. Prekop HT, Kroiss A, Rook V, Zagoraiou L, Jessell TM, Fernandes C *et al.* Sox14 Is Required for a Specific Subset of Cerebello-Olivary Projections. J *Neurosci* 2018; **38**(44): 9539-9550.
- 94. Schulten HJ, Hussein D, Al-Adwani F, Karim S, Al-Maghrabi J, Al-Sharif M *et al.* Microarray Expression Data Identify DCC as a Candidate Gene for Early Meningioma Progression. *PLoS One* 2016; **11**(4): e0153681.
- 95. Li S, Zhao H, Huang R, He L, Tian C, Huang H *et al.* Generation of iPSC line (GIBHi001-A) from a patient with autism spectrum disorder. *Stem Cell Res* 2019; **40:** 101571.
- 96. Wang YY, Shen D, Zhao LJ, Zeng N, Hu TH. Sting is a critical regulator of spinal cord injury by regulating microglial inflammation via interacting with TBK1 in mice. *Biochem Biophys Res Commun* 2019; **517**(4): 741-748.
- 97. Bando T, Morikawa Y, Hisaoka T, Komori T, Miyajima A, Senba E. Dynamic expression pattern of leucine-rich repeat neuronal protein 4 in the mouse dorsal root ganglia during development. *Neurosci Lett* 2013; **548**: 73-78.
- 98. Murthy MN, Blauwendraat C, Guelfi S, Hardy J, Lewis PA, Trabzuni D *et al.* Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson's disease on chromosome 7p15.3. *Neurogenetics* 2017; **18**(3): 121-133.
- 99. Gerhard DM, Pothula S, Liu RJ, Wu M, Li XY, Girgenti MJ *et al.* GABA interneurons are the cellular trigger for ketamine's rapid antidepressant actions. *J Clin Invest* 2019.

- 100. Rea G, Tirupathi S, Williams J, Clouston P, Morrison PJ. Infantile Onset of Spinocerebellar Ataxia Type 5 (SCA-5) in a 6 Month Old with Ataxic Cerebral Palsy. *Cerebellum* 2019.
- 101. De Toma I, Ortega M, Aloy P, Sabidó E, Dierssen M. DYRK1A Overexpression Alters Cognition and Neural-Related Proteomic Pathways in the Hippocampus That Are Rescued by Green Tea Extract and/or Environmental Enrichment. *Front Mol Neurosci* 2019; **12:** 272.
- 102. Wang M, Chen J, He K, Wang Q, Li Z, Shen J *et al.* The NVL gene confers risk for both major depressive disorder and schizophrenia in the Han Chinese population. *Prog Neuropsychopharmacol Biol Psychiatry* 2015; **62:** 7-13.
- 103. Ge X, Zhang DM, Li MM, Zhang Y, Zhu XY, Zhou Y *et al.* Microglial LOX-1/MAPKs/NF-κB positive loop promotes the vicious cycle of neuroinflammation and neural injury. *Int Immunopharmacol* 2019; **70**: 187-200.