SUPPLEMENTAL MATERIAL
Expanded Materials & Methods
Preparation of Human Tissue for ChIP-Seq and RNA-Seq

Use of human embryonic tissue was reviewed and approved by the Human Subjects Protection
Program at UConn Health (UCHC 710-2-13-14-03. Human embryonic craniofacial tissue was collected,
staged and provided by the Joint MRC/Wellcome Trust Human Developmental Biology Resource
(www.hdbr.org). Tissues were flash frozen upon collection and stored at -80°C. For both ChIP-seq and
RNA-seq frozen human embryonic heart tissues frozen were removed from tubes to a petri dish with
cold PBS using 1ml of cold PBS and a cut pipette tip. Hearts were photographed from at least two
aspects and the tube with embryo ID photographed for records. Hearts were homogenized by
mechanical disruption and divided between samples for RNA-seq and ChIP-seq as necessary. For ChlIP-
seq, tissues were fixed by incubation in 1% formaldehyde for 15 minutes at room temperature with
agitation before being quenched by addition of 2.5M glycine to a concentration of 150mM with
rotation/agitation for 10 minutes. Tissues were spun down, washed once with PBS, and placed in a dry
ice- ethanol slurry to flash freeze. For RNA-Seq homogenized tissue was added to Qiazol (Qiagen) in a
non-stick 1.5ml eppendorf tube, inverted to mix and placed in a dry ice- ethanol slurry to flash freeze.

ChIP-Seq

Fixed cells pellets were processed for ChIP as previously described.'” Briefly, samples were
thawed in 1 mL of 1x Cell Lysis buffer and incubated on ice for 20 minutes. Cells were lysed with
dounce homogenization and nuclei were collected by centrifugation (5 min, 2500g, 4°C). Nuclei were
resuspended in 300 pL of 1x Nuclear Lysis buffer + 0.3% SDS + 2 mM sodium butyrate and incubated
on ice for 20 minutes. Chromatin was sheared with a Qsonica Q800R1 sonicator system operating at
amplitude 23 and 2°C for 30 minutes (10 seconds duty, 10 seconds rest). Samples were cleared by
centrifugation (5 min, 20,000g, 4°C) and soluble chromatin was transferred equally into seven separate
tubes with 10% reserved as an input control. SDS concentration was reduced to 0.18% with ChIP-seq
Dilution buffer. Protein G Dynabeads (ThermoFisher) separately preloaded with 2.5-5 ug of antibodies
were added to each chromatin aliquot. Antibodies used in this study were as follows: anti-H3K27ac
(C15410196, Diagenode), anti-H3K4mel (C15410194, Diagenode), anti-H3K4me?2 (ab7766, Abcam),
anti-H3K4me3 (C15410003, Diagenode), anti-H3K27me3 (C16410195, Diagenode), anti-H3K9me3
(C15410193, Diagenode) and anti-H3K36me3 (C15410192, Diagenode). All Diagenode antibodies
came pre-validated for ChIP, and the antibody from abcam (H3K4me?2) was validated using Absurance
H3 Histone Peptide Array (16-667, Millipore). ChIP samples were incubated overnight at 4°C on a
rotisserie. The chromatin was then immunoprecipitated on a magnet and the supernatant was discarded.
Beads were washed 8 times with 1 mL of 500 mM LiCl ChIP-Seq Wash Buffer and once with 1 mL of
TE. Chromatin was eluted from the beads twice with ChIP Elution buffer at 65°C for 10 minutes with
constant agitation. Combined eluates for each ChIP were subjected to crosslink reversal overnight at
65°C. Samples were then sequentially treated with RNAse A and proteinase K, purified with a PCR
Purification Kit (Qiagen), and eluted in 40 uL of EB. ChIP samples were then quantified with
picoGreen (ThermoFisher) and ChIP-seq libraries were prepared (SMARTer® ThruPLEX® DNA-seq
48S Kit, R400427, Takara Bio USA), then quantified by qPCR (NEBNext Library Quant Kit for
[lumina E7630L), multiplexed, and sequenced for 75 cycles across multiple flow cells on an Illumina
NextSeq 500 instrument using a NextSeq 500/550 High Output v2 kit (75 cycles, Cat No. FC-404-
2005).

ChIP-Seq Data Analysis



Quality control was performed on ChIP-seq reads using FastQC (version [v.] 0.11.5) and
MultiQC (v.1.1). Trimming for adapters, quality and length was performed using Trimmomatic (v.0.36)
for single end data. ChIP-seq reads were aligned to the human genome (hg19) using Bowtie2 (v.
2.2.5).""” Fragment sizes of each library were estimated using PhantomPeakQualTools (v.1.14).'® We
then generated p value-based signal tracks relative to appropriate input controls based on estimated
library fragment size using MACS2 (2.1.1.20160309).'” Bedgraph files for all p-value signals from
primary ChIP-Seq data were converted to 25 bp resolution and processed for model training and
generation of imputed signals for all samples using ChromImpute (v1.0.3) as previously described.”’
Resulting imputed signal tracks were converted to bigWig format for display in UCSC genome browser
and converted for use with ChromHMM (v1.12)""°, using ChromImpute’s ExportToChromHMM. Signal
files for individual chromosomes for each epigenome were binarized and segmentation was performed
using the previously published 25-state chromatin models using ChromHMM as previously described."
Following segmentation, annotation of states and generation of genome browser files was performed
based on annotations provided by Roadmap Epigenome. The accession number for the ChIP-seq signals,
imputed signal files and chromatin state segmentations reported in this paper is GEO: GSE137731.

Global Multi-tissue Comparisons of ChIP-Seq Signals

To qualitatively assess the similarity per mark of human embryonic heart ChIP-signals
generated and imputed in this paper across all time points, we extracted primary and imputed signals
from all samples for all marks in 10kb bins across the genome using the multiBigwigSummary
command from DeepTools (v2.0)!"" excluding all regions blacklisted by ENCODE, and outputting raw
counts. The PCA plot was made using the prcomp() function on the transformed matrix of these counts
using the built-in R stats (v3.4.1) package. To qualitatively assess similarity of human embryonic heart
samples generated here to other tissues throughout the human body, we assembled a list of all enhancer
states (states 13 through 18) from 127 tissues profiled by Roadmap Epigenome, craniofacial samples
previously profiled from our laboratory and those identified from human embryonic heart profiled
here.'”!'? We next extracted imputed H3K27ac signals from all samples at all enhancer regions using
the multiBigwigSummary command from DeepTools (v2.0) excluding all regions blacklisted by
ENCODE. The resulting signal matrix were filtered to remove regions were signal was low (>10) across
all samples (n = 163) and log10 transformed. This transformed matrix was used to calculate the
Euclidean distance between each sample. The resulting distance matrix was then processed for t-
Distributed Stochastic Neighbor Embedding using the Rtsne package ( v0.15,
https://github.com/jkrijthe/Rtsne) using options “is_distance = true, perplexity = 10, theta = 0.5, dims =
2, max_iter = 1000”. The x and y dimensions were combined with sample and group labels for plotting
with ggplot2 in R. We also identified super-enhancer regions using H3K27ac ChIP-Seq reads at all heart
enhancer segments with default parameters in ROSE.”

Differential Regulatory Site Activation and Motif Enrichment

To identify putative regulatory elements that are differentially utilized between Early (C13),
Mid (CS16 and CS17) and Late (CS23) human embryonic heart samples, we compared H3K27ac and
H3K4me?2 signals at enhancer chromatin state segmentations independently using DiffBind (V2.6.6) in
R (V3.4.1)."" For a specific chromatin signal, uniquely aligned reads from two to four replicates of
each time period were quantified and normalized for input signal at enhancer segments (states 13
through 18 from 25 state model) using fragment sizes determined by phantompeakqualtools (v.1.14)'%,
and the DBA_ SCORE_TMM_ MINUS FULL CPM function of DiffBind. Differential signals were
determined by DiffBind using DESeq2 and filtered for a false discovery rate less than 0.1. Known motif
enrichment in differentially activated regions for each histone modification were determined using
HOMER with the options “-size given -len 8,10,12,14 -mask -gc¢” (v4.9)."'* Resulting HOMER output



files were loaded into R using homerkit (https://github.com/slowkow/homerkit) and -log10 transformed
p-values for each motif were compared between regions more active in each time point vs each other
time point, comparisons were as follows: early up versus mid (EVM), early up versus late (EVL), mid
up versus early (MVE), mid up versus late (MVL), late up versus mid (LVM), late up versus early
(LVE). Z-score were calculated for each motif across the comparisons and plotted as heatmaps.
Differentially enriched regions were assigned to the single nearest gene up to 1 Mb away and resulting
gene lists were assessed for gene ontology enrichments using GREAT.'"®> All results from GREAT were
retrieved programmatically using rtGREAT (V1.17.1 https://doi.org/doi:10.18129/B9.bioc.rGREAT). Z-
score were calculated for each -log10 transformed p-value for each gene ontology enrichment across a
single comparison and plotted as a heatmap.

Enrichment of Chromatin States at Cardiomyocyte Chromatin Loops

The non-promoter anchor points from published high-resolution promoter capture Hi-C
(PCHi-C) data from iPSC-derived cardiomyocytes (CMs) were overlapped with the chromatin state
segmentations from our human embryonic heart samples and chromatin states from Roadmap brain
samples (E053, E054, E067, E068, E069, E070, E071, E072, E073, E074, E081, E082, E125). The
fold enrichment of overlap was calculated by taking the fraction of overlap of the non-promoter
anchors with the desired tissue type state annotations over the fraction of overlap of randomly
selected segments to match the segments chromatin state annotations with the same non-promoter
anchors. Significance of difference between human embryonic heart and adult brain fold enrichments
were calculated using the Mann-Whitney test (p-value < 0.05 = *, < 0.01=**,<0.001= *** <
0.0001 = ***%*),

Enrichment of GWAS signals in enhancer chromatin state segmentations

Two linkage-disequilibrium (LD) aware approaches were used to determine enrichment of
cardiovascular and cardiac development related GWAS signals in enhancer chromatin state signals. In
the first approach only variants with genome-wide p-values < 5x10® were selected from the GWAS
catalog or published literature related to atrial fibrillation, resting heart rate, QRS interval, and P-wave
duration, aortic root size, congenital heart defects, and coronary artery disease (See Key Resources
Table for Term Accessions). Enhancer states (ChromHMM states 13 through 18) identified in
embryonic heart samples, embryonic craniofacial samples, and all tissues profiled by Roadmap
Epigenome were combined into a single annotation per embryo or tissue. Variant enrichment was then
determined using GREGOR for each embryo or tissue dataset. Testing was done by using 72> 0.8,
maximum LD window of 1 Mb, and 500 minimum neighboring SNPs for each variant based on variants
found in the 1000 Genome Project samples of European ancestry. In the second approach we first
collected full GWAS summary statistics from cardiac trait related studies of atrial fibrillation, resting
heart rate, QRS interval, and P-wave duration along with putative negative controls from immune
disease related studies of systemic lupus erythematous and Crohn’s disease (See STAR Methods for
individual study accessions). GWAS summary statistics were prepared for processing by GARFIELD
using garfield-create-input-gwas.sh script for each study. Individual chromatin state annotations for the
same embryos and tissues described above were prepared for processing by GARFIELD using
garfield annotate ukl10k.sh. Finally GARFIELD was used to determine enrichment of SNPs at multiple
GWAS significance thresholds (p<10-5 to p<10-8) in each chromatin state across all embryo and tissue
samples using settings as previously described.®’

ROC Curves

The ROC curves for each of the three types of data (ChromHMM, EMERGE, Dickel) used enhancers



verified by the Vista Enhancer browser. We used the full set of elements that had enhancer activity,
n=281 for true heart positives and n=846 for true heart negative. For ChromHMM prediction values for
enhancers in heart versus non heart, the posterior probabilities were used. Each chromatin state has a
posterior probability output file from ChromHMM segmented into 200bp bins. The mean of the sum of
the posterior probabilities for states 13,14,15 and 18 were calculated for the ROC curves. For the
EMERGE data, we were provided a bedgraph prediction track from the authors. Peaks were called on this
bedgraph using MACS. The command used was mac2 bdgpeakcall with -¢c = 0.05. The resulting peaks
were then merged with a gap distance of 75bp. We subtracted out overlapping the blacklist from
ENCODE and all peaks that intersected with a known TSS. To get the final prediction score for each
EMERGE peak, the prediction scores from the bedgraph track that spanned the peaks were summed. The
sum of the prediction scores from all peaks that intersected the true positive and true negative elements
were used for the ROC curves. From the Dickel et al. resource, we used the score Prenatal column of the
provided putative enhancers with overlapping TSS rows removed. The sum of the prenatal score across
the true positive and true negative elements were used for the ROC curves. The R package plotROC
(v2.2.1) was used to create the ROC curves and calculate the AUC values.

RNA-Seq

RNA was extracted using miRNeasy RNA extraction kit with on-column DNAse treatment
according to the manufacturer’s protocol (Qiagen). RNA integrity was checked using Agilent
Tapestation 2200. RNA-seq libraries were prepared from 100-200ng total RNA using the TruSeq
stranded mRNA kit (Illumina). Libraries were quantified using NEBNext Library Quant Kit for
[lumina and library quality checked using Agilent Tapestation 220. Libraries were pooled and diluted
to 1.8pm and sequenced on the NextSeq500 Illumina platform using 75bp paired end sequencing
according to manufacturer’s recommendations. The accession number for the RNA-seq bigWigs, and
counts matrices reported in this paper is GEO:138799.

RNA-Seq Data Processing

Quality control was performed on RNA-seq reads using FastQC (version [v.] 0.11.5) and
MultiQC (v.1.1). Trimming for adapters, quality and length was performed using Trimmomatic
(v.0.36). Trimmed fastqs were aligned with Rail-RNA’® using human assembly GRCh38/hg38. The
coverage bigWig files output by Rail-RNA were used as input for the generation of counts tables by
following the instructions and pipeline from recount (https://github.com/leekgroup/recount-
contributions), where the comprehensive gencode v.25 annotation was used.” The “level 3” genes
defined by gencode were excluded. The recount rse _gene objects for each sample were combined into
one rse_gene object and transformed with scale counts() from recount (v1.8.2).

RNA-Seq Differential Expression

The scaled rse gene recount object was made into a DESeq?2 (v1.22.2) object. Low gene
counts were filtered by removing all genes whose sum of counts across all samples was less than 100.
This left a total of 26,122 genes for downstream analysis. Batch effects were mitigated by using the sva
package in R. (v3.30.1) Pairwise, differential analysis of each of the eight carnegie stages was
performed with DESeq?2 including the surrogate variables identified from sva. For the heatmaps and
PCA plots the counts table was transformed using the surrogate variables, see provided code
(https://github.com/cotneylab) for these calculations. The PCA plots in the supplement were made
using the prcomp() function from the built-in R stats (v3.6.3) package. The genes shown in the
heatmaps and used for the PCA plot generation had a Benjamini Hochberg adjusted p-value less than
0.05 and a fold change greater than the absolute value of 1. heatmap.2() from the R library package




gplots(v3.0.1.1) was used to generate the heatmaps of the normalized SV corrected counts by setting
the scale option to “row”. The distance matrix of one minus the transpose of the kendall correlation of
the SV corrected counts was clustered using hclust() with method = “complete”. The resulting
hierarchical clustering was used in the heatmap.2() option Rowv to organize the gene rows.
clusterProfiler (v3.12.0) was used to obtain the gene ontology enrichments from the dendrogram
groups using the function enrichGO() with standard options. The enrichment map plots were made
using enrichplot (v1.6.0) function emaaplot(). Standard options were used with manual code changes to
the color and p-value settings

GTEx tSNE Analysis

The rse_gene R data object, or counts table of all GTEXx tissues was retrieved from the Recount2
database (https://jhubiostatistics.shinyapps.io/recount/). The GTEx counts table was generated using the
same Rail-RNA & Recount pipeline we used to generate the counts tables for our embryonic heart data
which is described above. The GTEx data contained 9,662 samples which we combined with the 24
embryonic heart samples to make one matrix containing 9,686 total samples by 58,037 genes. The meta-
data for GTEx is provided in a link under the phenotype column from the Recount2 database, and the
tissue assignments located under the column named smts was used, resulting in a total of 31 unique
tissues. The counts were transformed using the scale counts() function from the R library recount
(v1.8.2) as is recommended from the workflow in the Recount2 F1000 paper.''® Genes whose mean
across all GTEx and embryonic heart tissues was lower than or equal to 1 were removed, resulting in
36,990 genes. The filtered counts matrix was transformed by log10() with a pseudo count of 1 added to
all values. The transpose of the log10 transformed matrix was then converted to a distance matrix using
the dist() function in R. This distance matrix was used as input for the tsne model generated by using the
Rtsne() function from the R package Rtsne (v0.15). The parameters used in Rtsne() were the following:
perplexity=10, max_iter=1000, theta=0.5, dims=2.

Tissue Specificity of Gene Expression (GINI)

The combined, filtered GTEx and human embryonic heart counts matrix used for the tsne
analysis was also used to calculate the tissue specificity for each gene. The Gini Index for each gene was
calculated using the Gini() function from R library Ineq (v0.2-13) on the average counts per tissue. A
gene was given a tissue assignment based on the tissue with the maximum count for that gene. To create
the heatmap of the various tissues, the distance matrix of one minus the transpose of the pearson
correlation of the average expression per tissue for all genes with a Gini score of 0.5 and above was
clustered using hclust() with method = “complete”. The z-scores of this average expression per tissue
matrix was plotted using heatmap.2 with the gene rows organized by the dendrogram calculated from
hclust(). The genes for the embryonic heart, spleen and adult heart were determined by cutree() such that
it would result in 25 groups to correspond to the 25 tissues. RDAVIDWebService (v1.22.0) was used to
obtain the gene ontology enrichments using the original 36,990 genes as the background.

Novel Heart Enhancer Effects on Gene Expression

Assignment of enhancers to genes was made using GREAT v.4.0.4 using human embryonic heart
specific enhancers on hg19 with the whole genome as background and using the single nearest gene
association rule setting. The line graph of the enhancers versus expression used the average expression
per tissue type from GTEx and our heart enhancer data using geom_smooth() from ggplot2 with the
method set to “loess”. The corresponding violin plot included only average gene expression from genes
with more than 25 enhancers targeting. Stat compare means() was used to compare all tissues against
the embryonic heart, using the Mann-Whitney test (p-value < 0.05 = *, <0.01= **, < 0.001= *** <
0.0001 = ***%*),

Weighted Gene Co-Expression Network Analysis



We generated co-expression networks using the WGCNA Rpackage based on
recommendations put forth by the Horvath group.

Network Construction

For the WGCNA a soft-thresholding power of 8 was chosen assuming an unsigned network and based on
recommendations put forth by the Horvath group for samples between 20 and 30. The modules were
detected from the network from the cutreeDynamic() function from the WGCNA package with the
following parameters, minClusterSize=100, deepSplit=2. Detected modules were merged based on their
eigengene correlation. To do this a dendrogram of the module eigengenes was generated and a threshold
value of 0.18 was chosen as input for the function mergeCloseModules(). The intra-modular connectivity
of each gene was calculated using the intramodularConnectivity() function from the WGCNA library
which determined the hub and non-hub designation. The resulting network contained 29 modules.

Plotting of Modules

A multidimensional scaling of the module eigenvectors output from WGCNA was generated to plot
the modules in 2-D space using the function cmdscale() from the stats v3.6.1 package. A pearson
correlation of the module eigenvectors was calculated for the edges. Positive correlations of 0.5 and
greater were included. Modules were plotted that fulfilled the criteria of having significant adjusted p-
values (< 0.05) from the GO analysis, significant permutation p-values (< 0.05) of embryonic heart
specific enhancers, and/or of embryonic heart specific Gini genes, this resulted in exclusion of 9
modules from the plot. The module eigenvectors of each of the 20 modules were plotted using ggplot2,
geom_smooth() function with the loess smoothing method. The confidence intervals were removed for
ease of visualization.

Gene Ontology and Functional Enrichments

RDAVIDWebService (v1.22.0) was used to obtain gene ontology enrichment of the genes within each
of the 29 WGCNA modules. The gene background list used was all the genes input into the WGCNA.
The module enrichments of embryonic heart specific Gini genes, embryonic heart specific enhancers,
various disease gene lists, and the NKX2-5 bound gene lists were determined by a permutation test
with 1000 iterations. The single-cell RNA-seq differential expression for genes with an adjusted-p
value <= 0.05 were used. For the LOEUF enrichment analysis among the hub vs non-hub genes, the
non-hub genes were randomly sampled using the R function sample(). The number of non-hub genes
sampled were the same number of total hub genes within the network- 10% of 26,122 genes or 2,612
from the 23,510 non-hub gene list. This process was iterated 1000 times to get a mean (gray bars) and
standard deviation (shown as error bars) for each LOEUF decile. The LOEUF score and decile
designation for each gene is freely available through gnomAD v2.1.1

Protein-protein interaction analysis

To generate the ppi histogram, 100 randomized versions of the WGCNA network were made. This was
done by randomly assigning the 26,122 genes to 29 modules of equal gene sizes to the original network
using the R function sample(). The ppi enrichment of up to 500 randomly chosen genes for each
module of each of the 100 randomized versions was then determined using the STRINGdb (v1.24.0)
package. Up to 500 genes were used due to constraints from the STRINGdb package. The ppi database
was loaded by using STRINGdb$new with version =10 and score_threshold=0.4. For each iteration,
the output p-value of the STRINGdb call get ppi_enrichment() was adjusted using the Bonferroni
method. The number of modules that met the adjusted p-value cut off of 0.05 was counted for each
iteration to produce frequency values.

Data display

Throughout this work we make heavy use of the ggplot2 package (v3.2.0) in R(v3.6.1) package.



Online Tables

Online Table |

Sample Date of Collection |Collection
ID Stage |processing [Karyotype Site Date
14131 |CS12 |[1/11/2019 [rsa(13,15,16,18,21,22,X)x2 Newcastle [4/27/2018
12383 |CS13|7/26/2018 {46,XY London 1/13/2015
12690 |CS13|7/26/2018 [46,XY London 6/23/2015
14401 |CS13 |1/11/2019 [rsa(13,15,16,18,21,22)x2,(X,Y)x1 |London 10/16/2018
14479 |CS13 |1/11/2019 [rsa(13,15,16,18,21,22)x2,(X,Y)x1 [Newcastle [11/22/2018
12408 |CS14 |1/11/2019 {46, XY London 1/20/2015
14135 |CS14 |1/11/2019 [rsa(13,15,16,18,21,22,X)x2 Newcastle [5/3/2018
12997 |CS16 |1/11/2019 [46,XY London 1/14/2016
14213 |CS16 |1/11/2019 [rsa(13,15,16,18,21,22,X)x2 Newcastle [6/21/2018
14315 |CS16 |1/11/2019 [rsa(13,15,16,18,21,22,X)x2 Newcastle [8/16/2018
14209 |CS16 [1/11/2019 [rsa(13,15,16,18,21,22)x2,(X,Y)x1 [Newcastle [6/19/2018
12291 |CS17 |6/21/2018 [46,XY Newcastle [1/1/2017
12331 |CS17 |6/21/2018 [46,XX Newcastle [1/1/2017
12752 |CS17 |6/21/2018 [46,XX Newcastle [1/1/2017
12059 |CS18|7/23/2018 [46,XY London 5/21/2014
12456 |CS18 |7/23/2018 [46,XY London 12/6/2016
13474 |CS18 |7/23/2018 [46,XX London 2/11/2015
11914 |CS19 |6/18/2018 [46,XX London 1/8/2014
12135 |CS19 |6/18/2018 [46,XY London 7/23/2014
12248 |CS19 |6/20/2018 [46,XY London 10/8/2014
12448 |CS20 |7/24/2018 [46,XY London 2/11/2015
12451 |CS20 |7/24/2018 [46,XX London 2/11/2015
13068 |CS20 |7/24/2018 [46,XX London 2/23/2016
11849 |CS21 |7/25/2018 [46,XY London 10/2/2013
12093 |CS21 |7/25/2018 [46,XX London 6/18/2014
12210 |CS21 |7/25/2018 [46,XX London 9/10/2014
12058 |CS23 |7/27/2018 {46,XY London 5/21/2014
12151 |CS23 |7/27/2018 {46,XX London 8/6/2014
12193 |CS23 |7/27/2018 [46,XY London 9/3/2014

Online Table I. Embryo ID and Karyotype. The embryo ID and karyotype of every
embryo used in the experiments in this paper as reported from HDBR. Related to

Figure 1.




Online Table Il. Bed files of enhancer coordinates. Tab 1 - Read me document. Tab 2-
Reproducible Enhancers in human embryonic heart (HEH). All DNA segments called as any
enhancer state in two or more samples. Tab 3- Strong HEH Enhancers not in Roadmap. All
enhancer segments that do not overlap with any enhancer segment called in any tissue in
Roadmap Epigenome known as EHEs. Tab 4- All super enhancers called by the ROSE
algorithm from the human embryonic heart samples. Tab 5- Super enhancers that are called
only in human embryonic heart samples and not in dbSuper database, annotated by GREAT
version 4.0.4 on hg19 using association rule: Single nearest gene: 1000000 bp max
extension, curated regulatory domains included. Tab 6 - Functional enrichments of gene
residing in super enhancers as determined by DAVID. Related to Figure 2.

Online Table Ill. GREAT Results. Tab 1 - GREAT version 4.0.4 using single nearest gene
association rule output for all enhancers not found in roadmap. Tab 2 - Assignment of human
heart enhancers to potential regulatory gene targets using the same rule as in Tab 1. Related
to Figure 2.

Online Table IV. Full Homer Results for TF Motifs In Human Embryonic
Heart Enhancers. Related to Figure 2.

Online Table V. List of Gini Score and Tissue Specificity per Gene. Related
to Figure 6.

Online Table VI. Gini Heart oPOSSUM and IPA Results. Related to Figure 6.
Online Table VII. DAVID GO Differential Expression. Related to Figure 6.
Online Table VIII. GO of WGCNA Modules. Related to Figure 7.

Online Table IX. Novel CHD genes. Related to Figure 6, 7 and 8.

Online Table X. WGCNA Results. Related to Figures 7 and 8.



Online Figure |

CS13 CS14 CS16

CS17 CS18 CS19

CS20 CS21 CS23

Online Figure I. Example Images of Embryos at Each Carnegie Stage. Images of one
embryo for Carnegie Stages 13 through 23 that were used for experiments in this paper.
Related to Figure 1.
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Online Figure Il. Pearson Correlation Plots of Primary and Imputed ChlP-seq Signals. A. Pearson
correlation of primary ChIP-Seq signals by 10kb bins across the genome showing general correlation by mark. B. Pear-
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Online Figure IV. Exploration of the ChromHMM 25 state model. A..Distance of segments from protein

coding TSS in base pairs per state with Dickel and EMERGE. B. Length of segments per state with Dickel and EMERGE in
base pairs. C. Conservation based on phyloP (phylogenetic p-values) scores per state with Dickel and EMERGE from the
PHAST package for multiple alignments of 99 vertebrate genomes to the human genome (100 way). Significance of
difference of scores between strong enhancer state 13 and other states along with Dickel and EMERGE were calculated
using the Mann-Whitney test and is shown at top (p-value < 0.05 =*, < 0.01=**, < 0.001=*** , < 0.0001 = ****), D CADD
scores per state with Dickel and EMERGE. E. LINSIGHT scores per state with Dickel and EMERGE F. Activity of overlap
with MPRA for in vivo mouse cardiomvocvtes. Sianificance of difference of activity score between repressed state 24
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Online Figure VI. Overlap of Human Embryonic Heart States with VISTA Positive Heart and
Non-Heart Enhancers for ChromHMM 15 and 18 State Models. A. 15 state ChromHMM model analysis of the
embryonic heart data. Boxplot where solid bar indicates fraction of overlap of VISTA heart positive enhancers with each
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Online Figure VII. Examination of the EMERGE dataset and ROC Curves. A. Boxplot representing the
fraction of each state in our embryonic heart samples that overlaps with peaks called from EMERGE bedgraph showing
the greatest overlap between EMERGE and our TSS and Promoter States (specifically States 1-3), followed by strong
enhancer states (States 13-15), and transcribed and regulatory states (States 9-10). In the upper right corner is an inset
of a meta-gene plot of the distribution of EMERGE peaks, which also shows that a majority of peaks can be found very
close to the TSS. B. Violin plot of the distribution of the scores calculated over EMERGE peaks from bedgraph signal,
with again the highest concentration of higher scores being seen in the TSS and promoter states (States 1-4). C. ROC
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Online Figure XIV. Gene Ontology Dot Plots and Full Differential Expression Heatmap. A The gene
ontologies for the CS16 (pink cluster, left panel) time point. The gene ontologies for the CS17 (green cluster, right panel)
time periods. B. Violin plot of the expression of Genes with greater than 15 embryonic heart-specific enhancers in
embrvonic heart cambplec ac well a< all other GTEx tic<ties Sianificance of difference< were calculated u<ina the
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Online Figure XVI. Enrichment of embryonic heart specific gene lists in developing Brain WGCNA.
Enrichment of curated gene lists in WGCNA of human time-series brain RNA-seq. The enrichment of heart specific
lists (EHE, GINI) do not line up with cardiomyocytes like was observed for the embryonic heart network. Also there is
significant enrichment of embryonic heart specific genes in their null module (unassigned, grey). As expect-ed, a
subset of modules get enrichment for constrained genes (LoF d1/d2, pLI). Related to Figure 8.






