Supporting Information

Outer Membranes of Polymyxin-Resistant *Acinetobacter baumannii* with Phosphoethanolamine-modified Lipid A and Lipopolysaccharide Loss Display Different Atomic-Scale Interactions with Polymyxins

Xukai Jiang¹, Kai Yang², Mei-Ling Han¹, Bing Yuan², Jingliang Li³, Bin Gong⁴, Tony Velkov⁵, Falk Schreiber⁶, Lushan Wang⁷, and Jian Li^{1,*}

¹Biomedicine Discovery Institute, Infection & Immunity Program, Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
²Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
³Institute for Frontier Materials, Deakin University, Geelong, VIC 3217, Australia
⁴School of Software, Shandong University, Jinan, 250101, China
⁵Department of Pharmacology & Therapeutics, University of Melbourne, Melbourne, VIC 3010, Australia
⁶Department of Computer and Information Science, University of Konstanz, Konstanz, 78467, Germany
⁷State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China

*Corresponding author: Jian Li. Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, 19 Innovation Walk, Monash University, Clayton Campus, Melbourne 3800, Australia. Telephone: +61 3 9903 9702. Facsimile: +61 3 9905 6450. Email: jian.li@monash.edu

The Supporting Information includes:

Pages S1-S11 Tables S1-S3 Figures S1-S6 Movies S1-S3

System	Total number of bound Ca ²⁺	Number of bound Ca ²⁺ per	
		lipid	
Lipid A OM	60	1.82	
Lipid A-pEtN OM	48	1.45	
LPS-deficient OM	19	0.24	

Table S1. Number of Ca²⁺ bound to the outer leaflet of the outer membrane (OM).

Outer membrane	Membrane composition	Lipid number	Membrane size
Lipid A	Outer leaflet: 75% lipid A, 18% POPE, 4% POPG, 3% PVCL2 Inner leaflet: 72% POPE, 16% POPG, 12% PVCL2	Lipid A: 25 POPE: 60 POPG: 14 PVCL2: 11	7.6 nm × 7.6 nm (x-y plane)
Lipid A-pEtN	Outer leaflet: 75% lipid A-pEtN, 14.5% POPE, 6.5% POPG, 4% PVCL2 Inner leaflet: 58% POPE, 26% POPG, 16% PVCL2	Lipid A-pEtN: 25 POPE: 48 POPG: 22 PVCL2: 14	7.7 nm × 7.7 nm (x-y plane)
LPS-deficient	Outer and inner leaflets: 64% POPE, 26% POPG, 10% PVCL2	POPE: 100 POPG: 40 PVCL2: 16	7.6 nm × 7.6 nm (x-y plane)

Table S2. Components of the outer membrane models.

POPE: phosphoethanolamine (16:0-18:1); POPG: phosphoglycerol (16:0-18:1); PVCL2:

cardiolipin (16:0, 18:1-16:0, 18:1).

Outer	S	Colistin	Simulation	Simulation
membrane		number	method	length
Lipid A	ОМ	0	Unconstrained MD	100 ns
	OM +	1	Steered MD	50 ns
	colistin			(n = 3)
	OM +	1	Umbrella sampling	50 ns
	colistin		MD	(×24 windows)
Lipid A-pEtN	ОМ	0	Unconstrained MD	100 ns
	OM +	1	Steered MD	50 ns
	colistin			(n = 3)
	OM +	1	Umbrella sampling	50 ns
	colistin		MD	(×24 windows)
LPS-deficient	OM	0	Unconstrained MD	100 ns
	OM +	1	Steered MD	50 ns
	colistin			(n = 3)
	OM +	1	Umbrella sampling	50 ns
	colistin		MD	(×28 windows)

Table S3. Details of molecular dynamics simulation systems.

Figure S1. Changes in the number of the inter-lipid hydrogen bonds in different systems calculated based on the steered simulation trajectories. The colistin penetration decreased the intramolecular hydrogen bonds after approximately 18-ns, 10-ns and 25-ns simulations in the lipid A, lipid A-pEtN and LPS-deficient OM systems, repectively.

Figure S2. Changes in the volume of the water pores in different outer membrane systems calculated based on the steered simulation trajectories.

Figure S3. Interaction of colistin A with the lipid A OM. The results were calculated from the (A) first and (B) second steered simulation replicates in the lipid A OM system. The electrostatic interactions between the Dab residues and the lipid A phosphate groups are shown in purple dashed lines.

Figure S4. Chemical structure of colistin A. The colistin molecule consists of a cyclic heptapeptide, a linking tripeptide and an *N*-terminal fatty acyl group. The hydrophobic fatty acyl tail, Leu6 and Leu7, and the positively charged Dab residues (at positions 1, 3, 5, 8 and 9) confer the amphipathic nature.

Figure S5. Free energy profiles (PMFs) calculated from 10-ns time blocks (A) and position distribution of colistin A in each umbrella sampling window (B). The minor variations between the PMFs from four time blocks and the overlap between adjacent windows indicate the convergence of free energy calculations.

Figure S6. Surface area of the outer membrane (x-y plane) in the unrestrained molecular dynamics simulations.

Movie S1. Structural recovery of the lipid A outer membrane. The movie was prepared based on the simulation trajectory from the 24th umbrella sampling window.

Movie S2. Structural recovery of the lipid A-pEtN outer membrane. The movie was prepared based on the simulation trajectory from the 24th umbrella sampling window.

Movie S3. Structural recovery of the LPS-deficient outer membrane. The movie was prepared based on the simulation trajectory from the 28th umbrella sampling window.