OMTN, Volume 22

## **Supplemental Information**

## miR-146b-5p Enhances the Sensitivity of NSCLC

## to EGFR Tyrosine Kinase Inhibitors

## by Regulating the IRAK1/NF-κB Pathway

Yi-Nan Liu, Meng-Feng Tsai, Shang-Gin Wu, Tzu-Hua Chang, Tzu-Hsiu Tsai, Chien-Hung Gow, Hsin-Yi Wang, and Jin-Yuan Shih

## **Supporting Information:**

Supplementary Table S1. miRNAs showing differential expression in PC9 versus PC9/gef lung cancer cells, as evaluated with TaqMan Array Human MicroRNA A+B Cards Set (submitted as a separate file)

Supplementary Table S2. miRNAs showing differential expression in HCC827 versus HCC827/gef lung cancer cells, as evaluated with TaqMan Array Human MicroRNA A+B Cards Set (submitted as a separate file)

### Supplementary Table S3: Clinical characteristics of the 30 lung adenocarcinoma

|                              | Pleural effusion    |                     |                               |            |
|------------------------------|---------------------|---------------------|-------------------------------|------------|
|                              | Patient No.         | Before treatment    | Acquired<br>resistance to TKI | <b>P</b> * |
| Total No.                    | 30                  | 15                  | 15                            |            |
| Age, median years<br>(range) | 66.1<br>(29.5-88.0) | 68.9<br>(42.6-88.0) | 63.8<br>(29.5-85.3)           | 0.567#     |
| Sex                          |                     |                     |                               | 0.710      |
| Female                       | 18                  | 10                  | 8                             |            |
| Male                         | 12                  | 5                   | 7                             |            |
| Smoking<br>Nonsmokers        | 24                  | 12                  | 12                            | 1.000      |
| Smokers                      | 6                   | 3                   | 3                             |            |
| ECOG PS <sup>#</sup>         |                     |                     |                               | 1.000      |
|                              |                     |                     | 2                             |            |
| EGFR                         |                     |                     |                               | 0.311      |
| <b>Del-19</b>                | 12                  | 4                   | 8                             |            |
| L858R                        | 16                  | 10                  | 6                             |            |
| other                        | 2                   | $1^{\odot}$         | 1*                            |            |

#### patients with malignant pleural effusions

\* by Fisher's exact test; <sup>#</sup>by Mann-Whitney Test

<sup>©</sup> G719A; <sup>\*</sup>L858R+R776H

<sup>#</sup>Eastern Cooperative Oncology Group, performance status

| Cancer cell | Treatment<br>duration<br>(months) | EGFR mutation       | IC50 of<br>osimertinib<br>(µM) |
|-------------|-----------------------------------|---------------------|--------------------------------|
| PE2988      | 5                                 | del E746-A750+T790M | 4.53                           |
| PE3479      | 14                                | L858R+T790M+C797S   | 1.31                           |

Supplementary Table S4: EGFR mutations and IC<sub>50</sub> values for osimertinib of lung cancer cells which were isolated from patients' pleural effusions

# Supplementary Table S5: Potential targets of miR-146b-5p using TargetScan

## software

| Target gene | Conserved   | Conserved  | Conserved | Conserved     |
|-------------|-------------|------------|-----------|---------------|
|             | sites total | 8mer sites | 7mer-m8   | 7mer-A1 sites |
|             |             |            | sites     |               |
| TRAF6       | 3           | 3          | 0         | 0             |
| ST5         | 3           | 0          | 2         | 1             |
| IRAK1       | 2           | 2          | 0         | 0             |
| ACKR2       | 2           | 2          | 0         | 0             |
| CDKN2AIP    | 2           | 1          | 1         | 0             |
| NOVA1       | 2           | 1          | 1         | 0             |
| KLF7        | 2           | 1          | 1         | 0             |
| MED1        | 2           | 1          | 1         | 0             |
| VPS52       | 2           | 0          | 2         | 0             |
| ZNRF3       | 2           | 0          | 1         | 1             |
| LRRC15      | 2           | 0          | 2         | 0             |
| PRX         | 2           | 0          | 2         | 0             |
| MYO5A       | 2           | 0          | 1         | 1             |
| ATG7        | 2           | 0          | 0         | 2             |
|             |             |            |           |               |
| Target gene | Poorly      | Poorly     | Poorly    | Poorly        |
|             | conserved   | conserved  | conserved | conserved     |
|             | sites total | 8mer sites | 7mer-m8   | 7mer-A1 sites |
|             |             |            | sites     |               |
| EGFR        | 3           | 1          | 1         | 1             |

Supplementary Table S6: Clinical characteristics of the 74 lung adenocarcinoma

|                              | Pleural effusion     |                     |                                  |       |
|------------------------------|----------------------|---------------------|----------------------------------|-------|
|                              | Patient No.          | Before treatment    | Acquired<br>resistance to<br>TKI | Р     |
| Total No.                    | 74                   | 40                  | 34                               |       |
| Age, median years<br>(range) | 65.7 (29.5-<br>89.4) | 66.8<br>(32.7-89.4) | 64.7<br>(29.5-89.4)              | 0.389 |
| Sex                          |                      |                     |                                  | 0.326 |
| Female                       | 50                   | 29                  | 21                               |       |
| Male                         | 24                   | 11                  | 13                               |       |
| Smoking                      |                      |                     |                                  | 0.359 |
| Nonsmokers                   | 61                   | 31                  | 30                               |       |
| Smokers                      | 13                   | 9                   | 4                                |       |
| ECOG PS                      |                      |                     |                                  | 0.496 |
| 0-1                          | 47                   | 24                  | 23                               |       |
| 2-4                          | 27                   | 16                  | 11                               |       |
| EGFR mutation                |                      |                     |                                  | 0.585 |
| <b>Del-19</b>                | 41                   | 21                  | 20                               |       |
| L858R                        | 33                   | 19                  | 14                               |       |

patients with malignant pleural effusions

| Gene    | Primer                        |
|---------|-------------------------------|
| EGFR-F  | 5'- CGCAAAGGGCATGAACTACTT-3'  |
| EGFR-R  | 5'- CTTGACATGCTGCGGTGTTT-3'   |
| TRAF6-F | 5'- TTTTGGTTGCCATGAAAAGA-3'   |
| TRAF6-R | 5'-TTCTCATGTGTGACTGGGTGT-3'   |
| IRAK1-F | 5'-GAGACCTTGGCTGGTCAGAG-3'    |
| IRAK1-R | 5'-GTGCTTCTCAAAGCCACTCC-3'    |
| IL6-F   | 5'-TCAGCCCTGAGAAAGGAGACAT-3'  |
| IL6-R   | 5'-CATCCATCTTTTTCAGCCATCTT-3' |
| IL8-F   | 5'-ACTCCAAACCTTTCCACCC-3'     |
| IL8-R   | 5'-AAACTTCTCCACAACCTCTG-3'    |
| TBP-F   | 5'-CACGAACCACGGCACTGATT-3'    |
| TBP-R   | 5'-TTTTCTTGCTGCCAGTCTGGAC-3'  |

Supplementary Table S7: List of primers

| Name                     | Company                   | Catalog  |
|--------------------------|---------------------------|----------|
|                          |                           | number   |
| PARP                     | Cell Signaling Technology | #9542    |
| Caspase-3                | Cell Signaling Technology | #9662    |
| TRAF6                    | Cell Signaling Technology | #8028s   |
| IRAK1                    | Cell Signaling Technology | #4504s   |
| Phospho-EGFR (Tyr1045)   | Cell Signaling Technology | #2237    |
| EGFR                     | Santa Cruz Biotechnology  | #sc-03   |
| β-actin                  | Millipore                 | #MAB1501 |
| α-tubulin                | Millipore                 | #04-1117 |
| NF-кВ p65                | Cell Signaling Technology | #8242    |
| NF-κB1 p105/p50          | Cell Signaling Technology | #12540   |
| Lamin B                  | Santa Cruz                | #sc-6210 |
| IRAK1-3'UTR-WT reporter  | Addgene                   | #15095   |
| IRAK1-3'UTR-Mut reporter | Addgene                   | #15096   |

Supplementary Table S8: Antibodies and plasmids used in the study

#### **Supplementary Figure**





**Supplementary Fig. S1. The effect of miR-146b-5p on gefitinib-induced cell death and proliferation.** (A) HCC827/gef cells were transfected with miR-Ctl (scrambled control) or miR-146b-5p mimic and incubated for 24 h, followed by treatment with the indicated concentrations of gefitinib. Cell viability was assessed using the MTT assay as described in "Materials and Methods". (B) PC9/gef cells were plated overnight, and then transiently transfected with miR-Ctl or miR-146b-5p. The day of transfection was set as "0" and the growth of cells was determined at the indicated time points by MTT assay. (C) After transfection with miR-Ctl (scrambled control) or miR-146b-5p mimic, the ratio of apoptotic cells was analyzing by annexinV assays. Figure S2



**Supplementary Fig. S2. Expression of downstream targets of miR-146b-5p.** (A) The expression levels of the IRAK1 protein after transfection of anti-miR-Ctl or anti-miR-146b-5p inhibitor in PC9 cells. (B) The phospho-EGFR and EGFR expressions were detected using and immunoblotting.

## Figure S3



Supplementary Fig. S3. IRAK1 expression. The levels of *IRAK1* mRNA were detected using RT-qPCR.

## Figure S4



Supplementary Fig. S4. IRAK1 knockdown enhanced gefitinib-mediated cell death.

PC9/gef cells were transfected with siCTL (scrambled control) or si*IRAK1* for 24 h, and then treated with the indicated concentrations of gefitinib for 72 h. Cell viability was assessed using the MTT assay as described in the "Materials and Methods".

## Figure S5 (refer to Figure 2)

(refer to Fig. 2C)



Supplementary Fig. S5. Original films refer to figure 2C and 2E.

### Figure S6 (refer to Figure 3)

(refer to Fig.3B, left)



Supplementary Fig. S6. Original films refer to figure 3B and 3C.

#### Figure S7 (refer to Figure 3)

(refer to Fig. 3C)



104

Supplementary Fig. S7. Original dot plots refer to figure 3C.

### Figure S8 (refer to Figure 4)



Supplementary Fig. S8. Original films refer to figure 4A and 4B.

## Figure S9 (refer to Figure 5)



Supplementary Fig. S9. Original films refer to figure 5C.



Supplementary Fig. S10. Original films refer to figure 6A and 6B.