OMTN, Volume 22

Supplemental Information

Genome Editing-Mediated Utrophin Upregulation

in Duchenne Muscular Dystrophy Stem Cells

Kasturi Sengupta, Manoj K. Mishra, Emanuele Loro, Melissa J. Spencer, April D. Pyle, and Tejvir S. Khurana

Supplemental Information

Genome editing-mediated Utrophin upregulation in Duchenne Muscular Dystrophy stem cells

Supplementary Methods

Off-targets prediction and validation

To determine the potential off target activity of guide RNAs we have used the COSMID offtarget prediction analysis tool (<u>https://crispr.bme.gatech.edu/</u>)⁴³ which rank order the off-target sites based on sequence similarity with the guide RNA provided. Top ranked homologous sites for each guide RNA are PCR amplified and sequenced to screen for any mutation in the genomic DNA of edited clonal cell lines.

Dual sgRNA mediated UTRNIMTR deletion efficiency quantification

To determine the cutting efficiency of the sgRNA pairs tested in this study, we transfected HEK 293T cells with plasmids expressing the SaCas9 and dual sgRNAs (sgRNA 1&3, sgRNA 1&4, sgRNA 2&4 and sgRNA 2&3). Three days after the transfected cells were lysed and PCR screened with *UTRN* forward and reverse primer mentioned before. Equal amount of PCR product and 5 µl of TrackIT 100 bp DNA ladder were run on 2% agarose gel. The gel image was captured using a G:Box imaging system (SYNGENE). Both unedited and UTRNAIMTR edited PCR products in each lane were quantified using ImageJ software v2.0 in reference with the appropriate size DNA ladder band in the same gel. Deletion efficiency of each pair of sgRNA were shown as percentage of number of DNA copies in edited PCR product normalized with DNA copies in the total PCR product.

Utrophin protein expression in hiPSC differentiated myotubes

The wild type, unedited DMD and the edited *UTRN* Δ IMTR hiPSC cell lines were differentiated by MyoD overexpression and total 10 µg cell protein extracts were loaded for utrophin western blotting. α -Tubulin was used as loading control.

Supplementary Figure legends

Supplementary Figure 1. UTRNIMTR Deletion efficiency of sgRNA pairs

The DNA gel shows PCR product from unedited and *UTRN*∆IMTR edited genome in HEK 293T cells transfected with SaCas9 and different sgRNA pairs. The sgRNA pair 1&4 shows maximum deletion efficiency (56%).

Supplementary Figure 2. Expression of β-dystroglycan (β-DG) in differentiated myotubes

Wild type, DMD and *UTRN* Δ IMTR myotubes were stained with mouse anti β -DG (green) and DAPI (blue). Scale bar = 200 μ m. The wild type myotubes show higher expression of cytoplasmic β -DG. In absence of dystrophin, the DMD myotubes show lack of β -DG staining. Whereas, *UTRN* Δ IMTR myotubes show restoration of β -DG expression compared with the DMD myotubes.

Supplementary Figure 3. SaCas9-GFP-SgRNA1&4 plasmid map

The plasmid map shows expression cassette SaCas9 with C-terminal EGFP transgene under EF1- α promoter. The guide RNA pairs are cloned under U6 promoter.

Supplementary Figure 4. Utrophin protein expression in hiPSC differentiated myotubes

Utrophin expression in wild type, DMD and *UTRN* Δ IMTR hiPSC cell line derived myotubes were quantified by western blotting. A. Representative western blot shows expression of utrophin in wild type, DMD and edited *UTRN* Δ IMTR hiPSC differentiated myotubes. α -Tubulin was used as loading control. B. Densitometric analysis of the utrophin western blot to quantify utrophin expression in the myotubes. Bars represent mean \pm SEM (Mean from three different experiments with three different wells each, n=9). Difference in utrophin expression between

DMD and UTRNAIMTR myotubes were statistically analyzed by Kruskal-Wallis test (*P=0.04).

Supplementary Tables

Table S1. Oligonucleotide sequences for guide RNAs cloning

Name	Guide RNA Sequence	Sense Oligo (5'-3')	Antisense oligo (5'-3')
sg1	TCTATGTCACTGCT	CACCGTCTATGTCACTGC	AAACCTGTAGAAGCAGT
	TCTACAG	TTCTACAG	GACATAGAC
sg2	GGTACCTCCACCT	CACCGGGTACCTCCACCT	AAACAAAGATGTAGGTG
	ACATCTTT	ACATCTTT	GAGGTACCC
sg3	CATAAAGCAGTTT	CACCGCATAAAGCAGTT	AAACTGCATTGGAAACT
	CCAATGCA	TCCAATGCA	GCTTTATGC
sg4	GAAGACACCAAAT	CACCGGAAGACACCAAA	AAACAGTTGTAGATTTG
	CTACAACT	TCTACAACT	GTGTCTTCC

Table S2. Off-target sites of guide RNA1.

	Chromosome position	Query type	Mismatch	Cut site	COSMID Score
1	Chr12:111687717-111687742	Del 9	2	111687733	1.68
2	Chr6:145581830-145581855	Del 9	2	145581846	1.85
3	Chr4:97683403-97683428	Del 14	2	97683412	2.99
4	Chr4:97683403-97683428	Del 12	2	97683412	2.99
5	Chr7:118654093-118654118	Del 19	2	118654109	6.81

Table S3. Off-target sites of guide RNA4.

	Chromosome position	Query type	Mismatch	Cut site	COSMID Score
1	Chr6:47204675-47204701	No indel	3	47204692	1.1
2	Chr5:32834524-32834549	Del 18	2	32834540	1.57
3	Chr1:180279087-180279114	Ins 18	2	180279105	2.14
4	Chr5:26710353-26710380	Ins 11	2	26710371	5.32
5	Chr15:82779792-82779818	No indel	3	82779801	5.85

Table S4. Primer sequences used for off-target sites PCR amplification.

Target	Forward primer (5'-3')	Reverse primer (5'-3')
Off-target1/sgRNA1	AGTAGCACCTCTCCCCAGG	CTGAGGCAGGAAGCTTGAA

	Т	С
Off-target2/sgRNA1	TTGCAATTGTTTTTGGCATC	CTATGCCCAAATAGCCAAG
		G
Off-	ACAATGAGCCCTTACCCAG	GCATCTCGTGTCTCAACAT
target3/4/sgRNA1	А	СА
Off-target5/sgRNA 1	GCCAGGAAGTCCAAGATCA	GCAAACATCGTTTTGTGAA
	G	GG
Off-target1/sgRNA 4	TGCACACAAGGTAAGCCAA	GAACCAGGGGGAGTGATCTG
	А	А
Off-target2/sgRNA 4	CCCTCATCACAGGCAGTTT	TTCACTCGGTGTTTCTGACG
	Т	
Off-target3/sgRNA 4	AAAAAGACCCACCCATCCT	CAACAGCGCAAGACTCTGT
	Т	С
Off-target4/sgRNA 4	CTGATGCCCACCTGCTAAG	GGCTGTGGTGAGCCATTAT
	Т	Т
Off-target5/sgRNA 4	TGCAGTGAGCTGAGACCTT	AGGGCTAGTAGGGAGCGTG
	G	Т

Table S5. Primer sequences used for qPCR.

Target	Forward primer (5'-3')	Reverse primer (5'-3')
MyoD1	TACCCAAGGTGGAGATCCTG	ATAGATCATGGGCGGTTCAG
NANOG	CAAAGGCAAACAACCCACTT	TCTGCTGGAGGCTGAGGTAT
MyoG	CAGTGCCATCCAGTACATCG	AGGTTGTGGGCATCTGTAGG
MyoD1endo	CCCAAGGTGGAGATCCTG	CCGCTGTAGTCCATCATGC
GAPDH	GAGTCAACGGATTTGGTCGT	GACAAGCTTCCCGTTCTCAG

Supplemental References

1. Cradick, TJ, Qiu, P, Lee, CM, Fine, EJ, and Bao, G (2014). COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites. *Mol Ther Nucleic Acids***3**: e214.

Supplementary Figure 3