Supporting Information

Exploring the potential of benzene-1,3,5tricarboxamide supramolecular polymers as biomaterials

Silvia Varela-Aramburu,^{$\ddagger, \uparrow, \$$} Giulia Morgese,^{$\ddagger, \uparrow, \$$} Lu Su,^{$\uparrow, \$} Sandra M.C. Schoenmakers,^{<math>\uparrow, \$$} Mattia Perrone,^{||} Luigi Leanza,^{||} Claudio Perego,[#] Giovanni M. Pavan^{$\ast, ||, #$} Anja R. A. Palmans, ^{$\ast, \uparrow, \$$} E. W. Meijer^{$\ast, \uparrow, \$$}</sup>

[†]Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

[§]Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box

513, 5600 MB Eindhoven, The Netherlands

^{II}Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

[#]Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, 6928 Manno, Switzerland

Figure S1. CD spectrum of BTA-OEG₄ incubated with BSA compared with native BSA and BSA denatured by urea.

Figure S2. CD spectrum of BTA-OEG4-Man/ BTA-OEG4 incubated with BSA compared with native BSA and BSA denatured by urea.

Figure S3. CD spectrum of BTA-Man/ BTA-OEG₄ incubated with BSA compared with native BSA and BSA denatured by urea.

Figure S4. CryoTEM of BTA-OEG₄ (a) and BTA-OEG₄ incubated with BSA (b). The BTA concentration is $250 \ \mu$ M.

Figure S5. TIRF image of Cy3-BTA-OEG₄ in PBS.

Figure S6. CryoTEM of BTA-OEG4 in MEM (a and b) and BTA-OEG4 in DMEM (c and d). The BTA concentration is 250 μ M.

	BSA + 100 BTA monomers	BSA + BTA fiber	Δ (fiber-monomers)
LJ energy per-BTA monomer (kcal/ mol)	-2682.68 ± 0.14	-2684.79 ± 0.14	- <mark>2.11</mark> (in favor of the fiber)
Total potential energy per-BTA monomer (kcal/ mol)	-2643.59 ± 0.06	-2645.76 ± 0.14	-2.17 (in favor of the fiber)

Table S1. Values of the total potential energy and the Lennard Jones LJ energy in the systems (per-monomer), computed on the equilibrated phase of 400 ns of the CG-MD simulations.