Supporting Information for:

Microfluidic encapsulation of hydrophobic antifouling biocides in calcium-alginate hydrogels for controllable release

Yingzhe Liu[†] and Takasi Nisisako*[‡]

† Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology,
 Tokyo, 152-8552 Japan

‡ Institute of Innovative Research, Tokyo Institute of Technology, R2-9, Nagatsuta-cho, Midori-ku,

Yokohama, Kanagawa, 226-8503 Japan

*To whom correspondence should be addressed: nisisako.t.aa@m.titech.ac.jp

Supporting information includes:

Figure S-1. Introduction of antifouling biocides into paint formulation.

Figure S-2. Antifouling mechanism of Irgarol on aquatic plant species.

Figure S-3. Scanning electron microscopy (SEM) images of the cross-section of the Ca-alginate hydrogel particles.

Figure S-4. ATR-FTIR spectra of sodium alginate (Na-alginate) powder, synthesized Ca-alginate particles, Ca-alginate particles containing Irgarol, and Irgarol powder.

Figure S-5. High speed photomicrographs showing the break-off of a Na-alginate droplet containing both the drug and cellulose fibers.

Figure S-6. A photograph from the side showing the particles deformation measurement.

Figure S-7. A SEM image of the cellulose fibers.

Figure S-8. Schematic illustration of the UV-Vis measurement process.

Figure S-9. Measurement of UV-Vis absorbance spectra of Irgarol (Sample 1) at different dilution ratios.

Figure S-10. Relationship between the UV-Vis absorbance and the drug concentration.

Table S-1. Sizes and size distributions of microcapsules for biocides encapsulation in literature.

- Table S-2. Contents of the disperse phase used in the experiment.
- **Table S-3.** The details of the five samples.
- Table S-4. Results of the linear fitting.
- Table S-5. Details of the hydrogel samples for the UV-Vis measurement.

Figure S-1. Antifouling biocides can be introduced into paint formulation by (a) molecular dispersion,(b) immobilization to a large component, and (c) encapsulation.

Figure S-2. Antifouling mechanism of Irgarol on aquatic plant species.

Figure S-3. Scanning electron microscopy (SEM) images of the cross-section of the Ca-alginate hydrogel particles.

Figure S-4. ATR-FTIR spectra of sodium alginate (Na-alginate) powder, synthesized Ca-alginate particles, Ca-alginate particles containing Irgarol, and Irgarol powder. For the spectra of Ca-alginate particles, compared with the Na-alginate powder, the asymmetric stretching peak of $-COO^-$ at 1590 cm⁻¹ is gradually replaced by a new absorption peak at 1624 cm⁻¹, which is caused by the interaction of Ca²⁺ with the $-COO^-$ groups of Na-alginate ¹. Further, the spectrum of the Ca-alginate beads with Irgarol shows more absorption peaks than the Ca-alginate beads without Irgarol in the wavenumber ranging from 1552 cm⁻¹ to 1198 cm⁻¹, suggesting the presence of Irgarol. The absorption peaks at 2925 cm⁻¹ and 2854 cm⁻¹ of the hydrogel samples were caused by the residual corn oil ².

Figure S-5. High speed photomicrographs showing the break-off of a Na-alginate droplet containing both the drug and cellulose fibers. Flow rates of the droplet phase, carrier oil phase, and reactant emulsion stream are 0.1 mL/h, 2.0 mL/h (= $1.0 \text{ mL/h} \times 2$) and 20.0 mL/h (= $10.0 \text{ mL/h} \times 2$), respectively.

Figure S-6. An SEM image of the cellulose fibers.

Figure S-7. Schematic illustration of the UV-Vis measurement process.

Figure S-8. Measurement of UV-Vis absorbance spectra of Irgarol (Sample 1) at different dilution ratios. The inset is an SEM image of Irgarol.

Figure S-9. Relationship between the UV-Vis absorbance and the drug concentration. (a) Relationship between the UV-Vis absorbance and the drug concentration of five samples. (b) The average data and linear fitting.

Figure S-10. A photograph from the side showing the particles deformation measurement.

Tuble 5 1. Sizes and size distributions of microcapsures for brochdes encapsulation in includic.				
Materials	Biocides	Average	Coefficient	Reference
		diameter	variation	
PLA (Poly(L-lactide))	Chlorhexidine	1 µm	N.A.	[19]
PLGA and PLGA-PEG	Perfluorooctyl bromide	12–26 µm	N.A.	[20]
Melamine	Aldehydes, alcohols,	15 µm	13%	[21]
formaldehyde	esters			
PMMA	Medetomidine	12 µm	41.6%	[8]
PMMA	Dodecane	2.4 μm	19%	[22]
PMMA	IPBC	N.A.	N.A.	[23]
PMMA	Aurantiol	20–200 μm	N.A.	[24]

Table S-1. Sizes and size distributions of microcapsules for biocides encapsulation in literature.

Table S-2. Contents of the disperse phase used in the experiment.

	3 wt% Na-alginate solution	Irgarol [®] 1071	Cellulose fiber	Mixing time (30000 rpm)
D: //1	20.0	0.1		2 :
Disperse #1	20.0 g	0.1 g	-	3 min
Disperse #2	20.0 g	0.05 g	-	3 min
Disperse #3	20.0 g	0.1 g	1.0 g	5 min

Table S-3. The details of the five samples.

	Water (mL)	Drug weight (mg)	Concentration (mg/L)
Sample 1	399.6	3.0	7.5
Sample 2	399.4	2.9	7.3
Sample 3	399.5	3.0	7.5
Sample 4	399.4	3.0	7.5
Sample 5	399.6	3.0	7.5

Table S-4. Results of the linear fitting.

Intercept		Slope		Statistics	
Value	Standard Error	Value	Standard Error	Adj. R-Square	
0.02245	0.00363	0.10524	0.00137	0.99841	

Table S-5. Details of the hydrogel samples for the UV-Vis measurement.

	The type of used disperse phase	Collection time	Encapsulated amount (m_e)
Type 1	Disperse #1	30 min	0.250 mg
Type 2	Disperse #2	30 min	0.125 mg
Type 3	Disperse #1	60 min	0.500 mg
Type 4	Disperse #2	60 min	0.250 mg
Type 5	Disperse #3	60 min	0.500 mg

References

- Saarai, A.; Kasparkova, V.; Sedlacek, T.; Saha, P. On the development and characterisation of crosslinked sodium alginate/gelatine hydrogels. *J. Mech. Behav. Biomed.* 2013, *18*, 152–166.
- (2) Setyaningrum, D. L.; Riyanto, S.; Rohman, A. Analysis of corn and soybean oils in red fruit oil using FTIR spectroscopy in combination with partial least square. *Int. Food Res. J.* 2013, 20, 1977–1981.