

Supplementary material

The electric fields in propagation through the samples can be described by considering the wave equation [29]:

$$\nabla^2 E_{\pm} = -\frac{n_{\pm}^2 \omega^2}{c^2} E_{\pm}$$
 (S1)

In this mathematical equation E_{+} and E_{-} represent the circular components of the left and right electric fields in the TWM interaction. The optical frequency is described by ω , c corresponds to the speed of the light and n is the refractive index dependent on irradiance which can be also described by [29]:

$$n_{\pm}^{2} = n_{0}^{2} + 4\pi \left(\chi_{1122}^{(3)} \left| E_{\pm} \right|^{2} + \left(\chi_{122}^{(3)} + \chi_{1212}^{(3)} \right) \left| E_{\pm} \right|^{2} \right)$$
 (S2)

where n_0 is the weak-field refractive index. $\chi_{1122}^{(3)}$ and $\chi_{1212}^{(3)}$ are the independent components of the third-order susceptibility tensor $\chi^{(3)}$.

In the interaction of a beam of light with nonlinear optical media can be involved an intensity-dependent refractive index n:

$$n = n_0 + n_2 I \tag{S3}$$

where, n_0 is the weak-field refractive index, n_2 in the nonlinear refractive index, and I refers to the intensity of the optical field.

The Lorentz–Lorenz equation relates the refractive index of a material to its polarizability α , and it can be written in terms of mass density ρ_m [29]:

$$\frac{n^2 - 1}{n^2 + 2} = \frac{4\pi}{3} \frac{N_A \rho_m}{M} \alpha \tag{S4}$$

where N_A is the Avogadro's number and M is the molecular weight of the chemical element.