Supporting Information

One-pot Parallel Synthesis of Unclosed Cryptands – Searching for Selective Anion Receptors *via* Static Combinatorial Chemistry Techniques

Patryk Niedbała and Janusz Jurczak *

Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. E-mail: jurczak_group@icho.edu.pl

<u>Contents</u>

1.	SYNTHETIC PROCEDURES AND STRUCTURAL ANALYSIS	2
1.1.	General Remarks	2
1.2.	Substance Analysis	2
1.3.	Conversions observed in combinatorial experiments	7
2.	COPIES OF ¹ H AND ¹³ C NMR SPECTRA	8
3.	TITRATION EXPERIMENTS	21
4.	REFERENCES	24

1. Synthetic Procedures and Structural Analysis

1.1. General Remarks

All solvents were of reagent grade quality. All reagents were purchased from Sigma-Aldrich and TCI Chemicals and used without further purification. Column chromatography was carried out using Merck Kieselgel 60 (63–100 μ m mesh size), TLC was carried out on Merck Kieselgel F254 plates. Melting points were determined using a Boëtius M HMK hot-stage apparatus and were uncorrected. The NMR spectra were recorded on a Bruker Mercury 400 instrument. Chemical shifts are reported in ppm and are set to solvent residue peak. The splitting pattern of multiplets is described by abbreviations (s – singlet, d – doublet, t – triplet, q – quartet, dd – doublet of doublets, m – multiplet, c – covered signal, b – broad peak). *J* coupling constants values are reported in Hz. Mass spectral analyses were performed with the ESI-TOF technique on a Mariner mass spectrometer from PerSeptive Biosystem.

1.2. Substance Analysis

31-amino-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1¹²,¹⁶]dotriaconta-1(31),12,14,16(32),27,29-hexaene-4,11,17,24-tetrone (**2**)

N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1¹², ¹⁶]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}acetamide (**3**)

Following General Procedure A and using acetyl chloride (20 μ L, 0.28 mmol) the product 3 (0.106 g, 0.19 mmol, 83%) was obtained as a colorless solid (mp > 300 °C)

¹H NMR (400 MHz, DMSO-*d*₆)

¹³C NMR (100 MHz, DMSO-*d*₆)

δ 9.52 (s, 1H), 9.37 (t, *J* = 6.0 Hz, 2H), 8.25 (t, *J* = 5.3 Hz, 2H), 8.22 – 8.10 (m, 3H), 7.15 (t, *J* = 8.4 Hz, 1H), 6.69 (d, *J* = 8.5 Hz, 2H), 4.51 (s, 4H), 3.30 (d, *J* = 7.0 Hz, 4H), 3.21 (dd, *J* = 10.9, 5.3 Hz, 4H), 1.95 (s, 3H), 1.68 (d, *J* = 6.2 Hz, 4H), 1.52 (d, *J* = 3.9 Hz, 4H). δ 169.0, 167.2, 163.0, 152.3, 148.9, 139.2, 127.1, 124.0, 114.8, 105.3, 66.9, 39.0, 37.9, 26.8, 26.3, 22.6.

N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1¹²,¹⁶]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}propanamide (**4**)

Following General Procedure **A** and using propionyl chloride (24 μ L, 0.28 mmol) the product **4** (0.122 g, 0.21 mmol, **93%**) was obtained as a colorless solid (mp 261-262 °C)

¹**H NMR** (400 MHz, DMSO-*d*₆)

¹³C NMR (100 MHz, DMSO-*d*₆)

HRMS ESI (m/z)

δ 9.42 (s, 1H), 9.36 (t, *J* = 5.1 Hz, 2H), 8.35 (t, *J* = 4.9 Hz, 2H), 8.20 – 8.10 (m, 3H), 7.15 (t, *J* = 8.3 Hz, 1H), 6.67 (d, *J* = 8.4 Hz, 2H), 4.53 (s, 4H), 3.31 – 3.26 (m, 4H), 3.20 (dd, *J* = 10.5, 5.6 Hz, 4H), 2.28 (dd, *J* = 14.7, 7.2 Hz, 2H), 1.73 – 1.62 (m, 4H), 1.56 – 1.45 (m, 4H), 0.59 (t, *J* = 7.4 Hz, 3H). δ 172.5, 167.3, 162.9, 152.3, 148.8, 139.1, 127.1, 123.9, 114.7, 105.1, 66.7, 39.0, 38.0, 28.2, 26.7, 26.2, 9.3. Calcd for C₂₈H₃₆N₆O₇Na [M + Na]⁺: 591.2543; found: 591.2546.

N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1¹²,¹⁶]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}butanamide (**5**)

Wiw = 382.00 g/110

¹**H NMR** (400 MHz, DMSO-*d*₆)

¹³C NMR (100 MHz, DMSO-*d*₆)

HRMS ESI (m/z)

Following General Procedure A and using butyryl chloride (29 μ L, 0.28 mmol) the product 5 (0.128 g, 0.23 mmol, 98%) was obtained as a colorless solid (mp 235-236 °C)

δ 9.45 (s, 1H), 9.38 (t, *J* = 5.2 Hz, 2H), 8.39 (t, *J* = 4.8 Hz, 2H), 8.22 – 8.08 (m, 3H), 7.15 (t, *J* = 8.3 Hz, 1H), 6.68 (d, *J* = 8.4 Hz, 2H), 4.53 (s, 4H), 3.29 (d, *J* = 6.1 Hz, 4H), 3.20 (d, *J* = 4.6 Hz, 4H), 2.23 (t, *J* = 7.3 Hz, 2H), 1.69 (s, 4H), 1.51 (s, 4H), 1.23 – 1.12 (m, 2H), 0.36 (t, *J* = 7.2 Hz, 3H). δ 171.8, 167.2, 162.9, 152.2, 148.9, 139.1, 127.1, 123.9, 114.6, 104.9, 66.6, 38.9, 37.9, 37.0, 26.6, 26.2, 18.5, 12.9. Calcd for C₂₉H₃₈N₆O₇Na [M + Na]⁺: 605.2700; found: 605.2697.

N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1¹²,¹⁶]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}pentanamide (**6**)

Following General Procedure A and using valeroyl chloride (33 μ L, 0.28 mmol) the product G (0.115 g, 0.19 mmol, 84%) was obtained as a colorless solid (mp 247-248 °C)

¹H NMR (400 MHz, DMSO-*d₆*)
¹³C NMR (100 MHz, DMSO-*d₆*)
HRMS ESI (m/z)

M_w = 596.69 g/mol

δ 9.46 (s, 1H), 9.39 (t, J = 5.1 Hz, 2H), 8.39 (bs, 2H), 8.22 – 8.10 (m, 3H), 7.15 (t, J = 8.3 Hz, 1H), 6.68 (d, J = 8.4 Hz, 2H), 4.53 (s, 4H), 3.31 – 3.26 (m, 4H), 3.23 – 3.18 (m, 4H), 2.26 (t, J = 7.4 Hz, 2H), 1.70 (bs, 4H), 1.51 (bs, 4H), 1.21 – 1.11 (m, 2H), 0.85 – 0.75 (m, 2H), 0.41 (t, J = 7.2 Hz, 3H). δ 171.9, 167.2, 162.9, 152.3, 148.9, 139.1, 127.1, 123.9, 114.6, 104.9, 66.6, 38.9, 37.9, 34.8, 27.0, 26.6, 26.2, 21.3, 13.2. Calcd for C₃₀H₄₀N₆O₇Na [M + Na]⁺: 619.2856; found: 619.2861.

N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1¹²,¹⁶]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}hexanamide (**7**)

Following General Procedure A and using caproyl chloride (39 μ L, 0.28 mmol) the product 7 (0.117 g, 0.19 mmol, 83%) was obtained as a colorless solid (mp 202-203 °C)

M_w = 610.71 g/mol

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.46 (s, 1H), 9.39 (bs, 2H), 8. = 7.3 Hz, 2H), 4.52 (s, 4H), 3.31

¹³C NMR (100 MHz, DMSO-*d*₆)

HRMS ESI (m/z)

δ 9.46 (s, 1H), 9.39 (bs, 2H), 8.39 (bs, 2H), 8.23 – 8.10 (m, 3H), 7.15 (t, *J* = 7.2 Hz, 1H), 6.68 (d, *J* = 7.3 Hz, 2H), 4.52 (s, 4H), 3.31 – 3.28 (m, 4H), 3.23 – 3.18 (m, 4H), 2.25 (t, *J* = 5.2 Hz, 2H), 1.74 – 1.66 (m, 4H), 1.56 – 1.48 (m, 4H), 1.16 (bs, 2H), 0.82 – 0.73 (m, 4H), 0.52 (t, *J* = 6.0 Hz, 3H). δ 172.0, 167.2, 162.9, 152.3, 148.9, 139.1, 127.1, 123.9, 114.6, 104.9, 66.6, 37.8, 35.2, 30.4, 26.6, 26.2, 24.9, 21.4, 13.6. Calcd for C₃₁H₄₂N₆O₇Na [M + Na]*: 633.3013; found: 633.3008.

2-methyl-N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1^{12,16}]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}propanamide (8)

2,2-dimethyl-N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32pentaazatricyclo[25.3.1.1¹², ¹⁶]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}propanamide (9)

M_w = 596.69 g/mol

¹H NMR (400 MHz, DMSO-*d*₆)

¹³C NMR (100 MHz, DMSO-*d*₆)

HRMS ESI (m/z)

δ 9.32 (bs, 2H), 8.94 (s, 1H), 8.22 – 8.09 (m, 3H), 7.94 (s, 2H), 7.16 (d, J = 7.6 Hz, 1H), 6.68 (d, J = 6.6 Hz, 2H), 4.54 (s, 4H), 3.29 (bs, 4H), 3.18 (bs, 4H), 1.64 (bs, 4H), 1.49 (bs, 4H), 0.97 (s, 9H). 26.3. Calcd for C₃₀H₄₀N₆O₇Na [M + Na]⁺: 619.2856; found: 619.2845.

Following General Procedure A and using pivaloyl chloride (35 µL, 0.28 mmol) the product 9

(0.108 g, 0.18 mmol, 79%) was obtained as a colorless solid (mp 161-162 °C)

N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1^{12,16}]dotriaconta-

1(31),12,14,16(32),27,29-hexaen-31-yl}cyclohexanecarboxamide (10)

Following General Procedure A and using cyclohexanecarbonyl chloride (37 µL, 0.28 mmol) the product 10 (0.125 g, 0.20 mmol, 87%) was obtained as a colorless solid (mp 268-269 °C)

¹ H NMR (400 MHz, DMSO- <i>d</i> ₆)	

M_w = 622.72 g/mol

¹³C NMR (100 MHz, DMSO-*d*₆)

HRMS ESI (m/z)

δ 9.44 – 9.27 (m, 3H), 8.36 (s, 2H), 8.22 – 8.07 (m, 3H), 7.15 (t, J = 7.3 Hz, 1H), 6.66 (d, J = 7.5 H	Ιz,
2H), 4.53 (s, 4H), 3.30 – 3.16 (m, 8H), 2.37 (t, J = 11.0 Hz, 1H), 1.71 (bs, 6H), 1.50 (bs, 4H), 1.25	; -
1.05 (m, 6H), 0.99 – 0.85 (m, 2H).	
$\delta \ 174.8, \ 167.3, \ 162.8, \ 152.2, \ 148.8, \ 139.0, \ 126.9, \ 123.8, \ 114.6, \ 104.8, \ 66.6, \ 43.4, \ 37.9, \ 29.2, \ 123.8, \ 114.6, \ 104.8, \ 1$	
26.5, 26.2, 24.9, 24.9.	
Calcd for $C_{32}H_{42}N_6O_7Na$ [M + Na] ⁺ : 645.3013; found: 645.3008.	

N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1^{12,16}]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}benzamide (11)

Following General Procedure **A** and using benzoyl chloride (33 µL, 0.28 mmol) the product **11** (0.136 g, 0.22 mmol, 96%) was obtained as a colorless solid (mp 283-284 °C)

M_w = 616.68 g/mol

δ 9.99 (s, 1H), 9.33 (t, J = 6.1 Hz, 2H), 8.26 – 8.16 (m, 3H), 8.08 (t, J = 5.4 Hz, 2H), 7.90 (d, J = 7.5 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 7.23 (t, J = 8.4 Hz, 1H), 6.89 (t, J = 7.8 Hz, 2H), 6.72 (d, J = 8.5 Hz, 2H), 4.57 (s, 4H), 3.19 (d, J = 5.8 Hz, 4H), 3.12 (d, J = 4.8 Hz, 4H), 1.41 (s, 8H). $\delta \ 167.3, 166.1, 162.8, 152.9, 149.0, 139.3, 133.6, 131.4, 128.0, 127.7, 127.6, 124.0, 114.9,$ 105.3, 66.8, 38.8, 37.8, 26.1. Calcd for C₃₂H₃₆N₆O₇Na [M + Na]⁺: 639.2543; found: 639.2542.

¹H NMR (400 MHz, DMSO-*d*₆)

¹³C NMR (100 MHz, DMSO-*d*₆)

HRMS ESI (m/z)

N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1¹²,¹⁶]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}naphthalene-1-carboxamide (**12**)

Following General Procedure A and using 1-naphthoyl chloride (42 μ L, 0.28 mmol) the product
12 (0.152 g, 0.23 mmol, 99%) was obtained as a colorless solid (mp 164-165 °C)*14 NMR (400 MHz, DMSO-d_6) δ 10.18 (s, 1H), 9.44 (t, J = 5.3 Hz, 2H), 8.41 (d, J = 7.8 Hz, 1H), 8.29 (t, J = 5.3 Hz, 2H), 8.22 - 8.11
(m, 3H), 7.87 (dd, J = 13.1, 8.2 Hz, 2H), 7.73 (d, J = 6.6 Hz, 1H), 7.53 - 7.44 (m, 2H), 7.24 (t, J =
8.3 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.75 (d, J = 8.4 Hz, 2H), 4.64 (s, 4H), 3.30 - 3.24 (m, 4H), 3.18
- 3.09 (m, 4H), 1.58 (bs, 4H).*3C NMR (100 MHz, DMSO-d_6) δ 167.8, 167.3, 163.0, 152.6, 148.9, 139.2, 134.7, 132.8, 129.9, 129.8, 128.1, 127.5, 126.8,
126.1, 125.8, 125.3, 124.3, 124.0, 114.6, 105.2, 67.0, 38.9, 37.8, 26.6, 26.2.
Calcd for C₃₆H₃₈N₆O₇Na [M + Na]⁺: 689.2700; found: 689.2693.

N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1¹²,¹⁶]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}naphthalene-2-carboxamide (**13**)

Following General Procedure **A** and using 2-naphthoyl chloride (54 mg, 0.28 mmol) the product **13** (0.149 g, 0.22 mmol, **97%**) was obtained as a colorless solid (mp 158-159 °C)

M_w = 666.74 g/mol **¹H NMR** (400 MHz, DMSO-*d*₆)

¹³C NMR (100 MHz, DMSO-*d*₆)

HRMS ESI (m/z)

δ 10.18 (s, 1H), 9.31 (bs, 2H), 8.59 (s, 1H), 8.21 (s, 3H), 8.16 (s, 2H), 7.94 (d, J = 8.2 Hz, 1H), 7.69 (t, J = 8.2 Hz, 2H), 7.53 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.2 Hz, 1H), 7.25 (t, J = 8.3 Hz, 1H), 7.16 (d, J = 8.3 Hz, 1H), 6.75 (d, J = 8.4 Hz, 2H), 4.60 (s, 4H), 3.14 (bs, 8H), 1.40 (bs, 8H). δ 167.4, 166.1, 162.8, 152.9, 148.9, 139.2, 134.1, 131.7, 130.1, 128.5, 128.4, 127.7 (x2), 127.4, 127.2, 126.5, 124.7, 124.0, 115.0, 105.3, 66.9, 38.7, 37.7, 26.1 (x2). Calcd for C₃₆H₃₈N₆O₇Na [M + Na]⁺: 689.2700; found: 689.2694.

Following General Procedure A and using 4-anisoyl chloride (36 µL, 0.28 mmol) the product 14

4-methoxy-N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-

pentaazatricyclo[25.3.1.1¹²,¹⁶]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}benzamide (**14**)

(0.140 g, 0.22 mmol, 94%) was obtained as a colorless solid (mp 233-234 °C)

м_w = 646.70 g/mol

¹**H NMR** (400 MHz, DMSO-*d*₆)

¹³C NMR (100 MHz, DMSO-*d*₆)

HRMS ESI (m/z)

δ 9.83 (s, 1H), 9.34 (t, *J* = 6.1 Hz, 2H), 8.28 – 8.15 (m, 3H), 8.08 (t, *J* = 5.4 Hz, 2H), 7.88 (d, *J* = 8.8 Hz, 2H), 7.22 (t, *J* = 8.4 Hz, 1H), 6.72 (d, *J* = 8.5 Hz, 2H), 6.35 (d, *J* = 8.8 Hz, 2H), 4.56 (s, 4H), 3.59 (s, 3H), 3.22 – 3.18 (m, 4H), 3.12 (d, *J* = 5.0 Hz, 4H), 1.41 (s, 8H). δ 167.4, 165.6, 162.8, 161.7, 152.9, 149.0, 139.3, 129.9, 127.6, 125.7, 124.0, 115.1, 112.8, 105.3, 66.8, 55.0, 38.8, 37.8, 26.1, 26.0. Calcd for C₃₃H₃₈N₆O₈Na [M + Na]⁺: 669.2649; found: 669.2646.

4-chloro-N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1^{12,16}]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}benzamide (**15**)

Following General Procedure **A** and using 2-naphthoyl chloride (36 μL, 0.28 mmol) the product **15** (0.133 g, 0.20 mmol, **89%**) was obtained as a colorless solid (mp 255-256 °C)

M_w = 651.12 g/mol

¹H NMR (400 MHz, DMSO-*d*₆)

¹³C NMR (100 MHz, DMSO-*d*₆)

HRMS ESI (m/z)

δ 10.08 (s, 1H), 9.31 (t, *J* = 5.6 Hz, 2H), 8.27 – 8.18 (m, 3H), 8.10 (t, *J* = 5.6 Hz, 2H), 7.92 (d, *J* = 8.2 Hz, 2H), 7.24 (t, *J* = 8.4 Hz, 1H), 6.87 (d, *J* = 8.2 Hz, 2H), 6.73 (d, *J* = 8.5 Hz, 2H), 4.58 (s, 4H), 3.20 (bs, 4H), 3.15 (bs, 4H), 1.43 (bs, 8H). δ 167.3, 164.9, 162.7, 152.8, 148.9, 139.3, 136.3, 132.2, 129.8, 127.8, 127.7, 124.1, 114.6, 105.3, 66.8, 38.8, 37.8, 26.2, 26.1.

Calcd for C₃₂H₃₅N₆O₇ClNa [M + Na]⁺: 673.2153; found: 673.2153.

4-cyano-N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1¹²,¹⁶]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}benzamide (**16**)

Following General Procedure **A** and using 4-cyanobenzoyl chloride (46 mg, 0.28 mmol) the product **16** (0.137 g, 0.21 mmol, **93%**) was obtained as a colorless solid (mp 276-277 °C (decomposition))

M_w = 641.69 g/mol ¹**H NMR** (400 MHz, DMSO-*d*₆)

¹³**C NMR** (100 MHz, DMSO-*d*₆)

HRMS ESI (m/z)

δ 10.26 (s, 1H), 9.26 (t, J = 5.7 Hz, 2H), 8.27 – 8.18 (m, 3H), 8.10 (t, J = 4.8 Hz, 2H), 8.04 (d, J = 8.0 Hz, 2H), 7.33 – 7.22 (m, 3H), 6.74 (d, J = 8.5 Hz, 2H), 4.58 (s, 4H), 3.17 (bs, 8H), 1.44 (bs, 8H). δ 167.3, 164.3, 162.7, 152.8, 148.9, 139.3, 137.4, 131.6, 128.7, 128.1, 124.1, 118.0, 114.2, 109.5, 105.3, 66.8, 38.8, 37.8, 26.3, 26.0. Calcd for C₃₃H₃₅N₇O₇Na [M + Na]*: 664.2496; found: 664.2496.

4-nitro-N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1¹²,¹⁶]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}benzamide (**17**)

Following General Procedure A and using 4-nitrobenzoyl chloride (52 mg, 0.28 mmol) the product 17 (0.145 g, 0.22 mmol, 95%) was obtained as an yellow solid (mp 168-169 $^{\circ}$ C)

¹**H NMR** (400 MHz, DMSO-*d*₆)

¹³C NMR (100 MHz, DMSO-*d*₆)

HRMS ESI (m/z)

δ 10.36 (s, 1H), 9.30 (t, J = 6.0 Hz, 2H), 8.21 (s, 3H), 8.16-8.09 (m, 4H), 7.65 (d, J = 8.7 Hz, 2H), 7.27 (t, J = 8.4 Hz, 1H), 6.75 (d, J = 8.5 Hz, 2H), 4.59 (s, 4H), 3.18 (dd, J = 13.6, 5.0 Hz, 8H), 1.44 (bs, 8H). δ 167.3, 164.1, 162.7, 152.7, 148.9, 148.8, 139.3, 139.1, 129.4, 128.1, 124.1, 122.7, 114.1, 105.3, 66.8, 38.8, 37.8, 26.3, 26.1. Calcd for C₃₂H₃₅N₇O₉Na [M + Na]⁺: 684.2389; found: 684.2412.

3-nitro-N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1¹²,¹⁶]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}benzamide (**18**)

 $M_{w} = 661.67 \text{ g/mol}$

¹**H NMR** (400 MHz, DMSO-*d*₆)

¹³C NMR (100 MHz, DMSO-*d*₆)

HRMS ESI (m/z)

Following General Procedure A and using 3-nitrobenzoyl chloride (52 mg, 0.28 mmol) the product 18 (0.146 g, 0.22 mmol, 96%) was obtained as an yellowish solid (mp 192-193 °C)

δ 10.39 (s, 1H), 9.18 (t, J = 5.7 Hz, 2H), 8.80 (s, 1H), 8.32 (d, J = 7.5 Hz, 1H), 8.22 – 8.13 (m, 6H), 7.27 (t, J = 8.4 Hz, 1H), 7.04 (t, J = 7.9 Hz, 1H), 6.75 (d, J = 8.5 Hz, 2H), 4.60 (s, 4H), 3.17 (bs, 8H), 1.46 (bs, 8H). δ 167.3, 163.5, 162.8, 152.8, 148.8, 147.2, 139.1, 134.8, 134.2, 129.3, 128.1, 126.1, 124.0, 122.7, 114.0, 105.2, 66.8, 38.7, 37.6, 26.1, 26.0. Calcd for C₃₂H₃₅N₇O₉Na [M + Na]⁺: 684.2389; found: 684.2394.

2-nitro-N-{4,11,17,24-tetraoxo-2,26-dioxa-5,10,18,23,32-pentaazatricyclo[25.3.1.1¹²,¹⁶]dotriaconta-1(31),12,14,16(32),27,29-hexaen-31-yl}benzamide (**19**)

o M_w = 661.67 g/mol

¹H NMR (400 MHz, DMSO-d₆)

¹³**C NMR** (100 MHz, DMSO-*d*₆)

HRMS ESI (m/z)

Following General Procedure A and using 2-nitrobenzoyl chloride (37 μ L, 0.28 mmol) the product **19** (0.145 g, 0.22 mmol, **95%**) was obtained as an yellowish solid (mp 167-168 °C)

δ 10.22 (s, 1H), 9.17 (bt, *J* = 5.8 Hz, 2H), 8.18 – 8.08 (m, 3H), 8.02 (bt, *J* = 5.1 Hz, 2H), 7.88 (d, *J* = 7.7 Hz, 1H), 7.78 (d, *J* = 6.9 Hz, 1H), 7.59 – 7.49 (m, 2H), 7.22 (t, *J* = 8.4 Hz, 1H), 6.72 (d, *J* = 8.5 Hz, 2H), 4.59 (s, 4H), 3.28 – 3.21 (m, 4H), 3.20 – 3.15 (m, 4H), 1.58 – 1.49 (m, 4H), 1.45 (bs, 4H). δ 167.3, 164.5, 162.9, 153.0, 148.8, 147.0, 139.1, 133.1, 131.6, 131.0, 129.6, 127.9, 124.0, 123.8, 113.8, 105.3, 67.0, 38.8, 37.9, 26.8, 26.4. Calcd for C₃₂H₃₅N₇O₉Na [M + Na]⁺: 684.2389; found: 684.2388.

1.3. Conversions observed in combinatorial experiments

Table S1. Conversions of macroc	cyclic compound 2	in combinatorial	experiments ^a

Fastaria	Comment	Tanalata								Conv	ersion [۶/	6]							
Entry	Compound	Template	Α	В	С	D	Е	F	G	н	1	J	к	L	М	Ν	0	Р	Q
1	^	Untemplated		81	73	77	71	78	90	70	75	82	73	77	73	77	77	78	76
1	A	$TBA-H_2PO_4$		71	73	82	77	81	80	75	77	74	76	78	77	74	71	72	71
r	в	Untemplated	81		80	75	85	92	96	95	98	100	97	99	98	100	100	98	100
Z	D	$TBA-H_2PO_4$	71		73	79	68	55	73	80	38	75	55	84	20	32	15	14	19
2	C	Untemplated	73	80		77	91	b	99	91	100	100	98	97	100	b	97	99	b
5	C	$TBA-H_2PO_4$	73	73		48	55	-	81	77	39	43	76	84	19	-	17	13	-
Λ	п	Untemplated	77	75	77		93	97	b	99	99	95	97	b	100	99	_b	98	94
4	D	$TBA-H_2PO_4$	82	79	48		77	79	-	81	83	81	81	-	82	81	-	81	81
5	F	Untemplated	71	85	91	93		100	97	b	100	b	1008	99	99	98	100	98	99
J	-	$TBA-H_2PO_4$	77	68	55	77		68	59	-	53	-	2	93	36	55	25	20	34
6	F	Untemplated	78	92	_ b	97	100		100	99	99	98	99	96	100	_ b	99	99	_ b
Ū	•	TBA-H ₂ PO ₄	81	55		79	68		49	55	34	56	62	85	22		17	13	
7	G	Untemplated	90	96	99	_ b	97	100		100	_ b	96	99	_b	98	95	_ b	100	98
,	G	TBA-H ₂ PO ₄	80	73	81		59	49		61		76	59		49	61		50	55
8	н	Untemplated	70	95	91	99	_ b	99	100		95	b	97	100	91	95	99	100	98
0		TBA-H ₂ PO ₄	75	80	77	81		55	61		34		65	83	17	11	23	10	15
9	1	Untemplated	75	98	100	99	100	99	_ b	95		95	97	95	98	98	_ b	_ b	100
5	•	TBA-H ₂ PO ₄	77	38	39	83	53	34		34		80	80	86	76	78			77
10	1	Untemplated	82	100	100	95	_ b	98	96	_ b	95		99	98	100	97	96	99	98
10	,	$TBA-H_2PO_4$	74	75	43	81		56	76		80		83	88	81	78	74	73	74
11	к	Untemplated	73	97	98	97	100	99	99	97	97	99		100	96	99	97	97	94
	n	TBA-H ₂ PO ₄	76	55	76	81	82	62	59	65	80	83		91	83	82	77	76	78
12	1	Untemplated	77	99	97	_ b	99	96	_ b	100	95	98	100		98	99	_ b	99	100
	-	TBA-H ₂ PO ₄	78	84	84		93	85		83	86	88	91		89	90		83	87
13	м	Untemplated	73	98	100	100	99	100	98	91	98	100	96	98		97	99	99	96
10		TBA-H ₂ PO ₄	77	20	19	82	36	22	49	17	76	81	83	89		82	74	73	74
14	N	Untemplated	77	100	_ b	99	98	_ b	95	95	98	97	99	99	97		97	94	_ b
		TBA-H ₂ PO ₄	74	32		81	55		61	11	78	78	82	90	82		71	73	
15	0	Untemplated	77	100	97	_ b	100	99	_ b	99	_ b	96	97	_ b	99	97		100	99
10	U	TBA-H ₂ PO ₄	71	15	17		25	17		23		74	77		74	71		68	72
16	Р	Untemplated	78	98	99	98	98	99	100	100	b	99	97	99	99	94	100		99
10	•	TBA-H ₂ PO ₄	72	14	13	81	20	13	50	10		73	76	83	73	73	68		65
17	0	Untemplated	76	100	_ b	94	99	_ b	98	98	100	98	94	100	96	_ b	99	99	
1,	~	$TBA-H_2PO_4$	71	19		81	34		55	15	77	74	78	87	74		72	65	

^a Determined using HPLC analysis, ^b Impossible to determine due to overlapping signals

2. Copies of ¹H and ¹³C NMR spectra

Figure S1. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of compound 4 in DMSO-d₆.

Figure S2. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of compound 5 in DMSO-d₆.

Figure S3. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of compound 6 in DMSO-d₆.

Figure S4. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of compound 7 in DMSO- d_6 .

Figure S5. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of compound 8 in DMSO-d₆.

Figure S6. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of compound 9 in DMSO-d₆.

Figure S7. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of compound 10 in DMSO-d₆.

Figure S9. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of compound 13 in DMSO-d₆.

Figure S10. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of compound 15 in DMSO-d₆.

Figure S11. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of compound 16 in DMSO-d₆.

Figure S12. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of compound 18 in DMSO-d₆.

Figure S13. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of compound 19 in DMSO-d₆.

3. Titration experiments

As the source of anion, commercially available tetrabutylammonium salt was used. HPLC grade water was added to the commercially available DMSO- d_6 of 99.9% isotopic purity to obtain the appropriate water concentration. The host solution was titrated in a NMR tube with the solution of the TBA salt in receptor aliquots (details are given in Table S1). The binding constants were calculated from the changes in chemical shifts of ligand protons which were shifted during titration. Nonlinear curve fitting was carried out with HypNMR 2008² (Version 4.0.71) program with fitting to the appropriate global binding model (see Table S1).

Table. S2. Titration details, global stability constants K_a (M⁻¹), and selected maximum signal shifts ($\Delta \delta_{max}$) of amide protons for Receptors **3**, **5**, **6**, **10**, **11**, **14**, and **17** with H₂PO₄⁻ in DMSO- d_6 + 0.5% H₂O^a

Entry Bocontor		Curr [M]	Court [M]	Ka [M ⁻¹]		$\Delta\delta_{max}$	Δδ _{max} [ppm]				
Entry Receptor	CHost [IVI]		(H:G)	NH	NH	CH▲	CH				
1	3	0.01558	0.09008	8600 (1:1) 210 (1:2)	1.42	0.18	-0.06	-0.04			
2	5	0.01440	0.08960	40 (1:1) 100 (2:1)	1.05	0.10	-0.08	-0.07			
3	6	0.01494	0.08859	1520 (1:1) 6 (1:2)	1.52	0.06	-0.05	-0.02			
4	10	0.01401	0.08802	1620 (1:1) 20 (1:2)	1.75	0.10	-0.04	-0.01			
5	11	0.01518	0.06653	1700 (1:1) 290 (2:1)	1.47	0.31	-0.07	-0.01			
6	14	0.01439	0.08763	1020 (1:1) 210 (2:1)	1.75	0.27	-0.01	-			
7	17	0.01033	0.05327	3770 (1:1) 40 (1:2)	1.72	0.27	-0.10	-0.08			

^a Values determined by ¹H NMR titration experiments at T = 298 K using HypNMR 2008 software,² errors < 10%, TBA salt as the source of anion.

Figure S14.	Labeling	of the	selected	proton	peaks c	of the	receptors	3 , 5,	, 6 ,	10,	11, 14,	and 17	

3

5

6

10

1.78 1.51 1.21 1.27 0.81 0.51 0.26 : ŝ * . 0.00 114

Figure S15. Corresponding experimental chemical shift changes (symbols) and calculated binding isotherms (lines) (left); Stacked plots from ¹H NMR titrations of Receptors **3**, **5**, **6**, **10**, **11**, **14**, and **17** with increasing amount of *n*-Bu₄NH₂PO₄ in DMSO-*d*₆ + 0.5% H₂O (v/v) (right).

Figure S16. Calculated binding isotherms of UV-Vis titration of Receptor 3 with increasing amount of *n*-Bu₄NH₂PO₄ in DCM.

4. References

- Dabrowa, K.; Niedbała, P.; Majdecki, M.; Duszewski, P.; Jurczak, J. A General Method for Synthesis of Unclosed Cryptands via H-Bond Templated Macrocyclization and Subsequent Mild Postfunctionalization. Org. Lett. 2015, 17, 4774-4777.
- [2] Rodríguez-Barrientos, D.; Rojas-Hernández, A.; Gutiérrez, A.; Moya-Hernández, R.; Gómez-Balderas, R.; Ramírez-Silva, M. T. Determination of pKa values of tenoxicam from 1H NMR chemical shifts and of oxicams from electrophoretic mobilities (CZE) with the aid of programs SQUAD and HYPNMR. *Talanta* 2009, *80*, 754-762.