

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

The Effect of Metabolic Syndrome on Incidence of Oral Potentially Malignant Disorder

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-041971
Article Type:	Original research
Date Submitted by the Author:	22-Jun-2020
Complete List of Authors:	Siewchaisakul, Pallop; Taipei Medical University College of Oral Medicine, School of dentistry Wang, Sen-Te; Taipei Medical University Hospital Peng, Szu-Min; National Taiwan University, Institute of Epidemiology and Preventive Medicine, College of Public Health, Sarakarn, Pongdech; Khon Kaen University, Epidemiology and Biostatistics Department, Faculty of Public Health Chen, Li-Sheng; Taipei Medical University College of Oral Medicine, School of Oral Hygiene Chen, Tony Hsiu-Hsi; National Taiwan University, Division of Biostatistics Yeh, Yen-Po; Changhua County Public Health Bureau Yen, Amy Ming-Fang; Taipei Medical University College of Oral Medicine,
Keywords:	ORAL MEDICINE, ONCOLOGY, Epidemiology < ONCOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

The Effect of Metabolic Syndrome on Incidence of Oral Potentially Malignant Disorder

Pallop Siewchaisakul^{1,2,3*}, Sen-Te Wang^{4,5*}, Szu-Min Peng⁶, Pongdech Sarakarn⁷, Sam Li-Sheng

Chen^{2,3}, Hsiu-Hsi Chen⁶, Yen-Po Yeh^{6,8}, Amy Ming-Fang Yen^{2,3}

*equally contribution

¹School of Dentistry, Taipei Medical University, Taipei, Taiwan

² Oral Health Care Research Center, College of Oral Medicine, Taipei Medical University,

Taipei

³ School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan

⁴ Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

⁵ Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan

⁶ Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University

⁷ Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, F.

Khon Kaen, Thailand

⁸ Changhua County Public Health Bureau

Word counts of Abstract: 204, Manuscript: 2,743 Number of references: 46, Tables: 4, Figures: 1

Running title: Metabolic Syndrome and OPMD

*Corresponding author: Dr. Yen-Po Yeh, Changhua County Public Health Bureau, No.162, Sec. 2, Jhongshan Rd., Changhua City, Changhua County 500, Taiwan, Telephone: +886 -4-711-5141, E-mail: yeh.leego@gmail.com and Professor, Amy Ming-Fang Yen, School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing St. Taipei, Taiwan. Telephone: +886-2-27361661 ext 5152, Fax: +886-27362295, E-mail: amyyen@tmu.edu.tw

BMJ Open

Abstract

Objectives We aimed to assess the effect of Metabolic Syndrome (MetS) on incident Oral Potentially Malignant Disorder (OPMD).

Design We conducted a prospective cohort study by retrieving data from Changhua communitybased integrated screening program (CHCIS) and nationwide oral cancer screening program during the period from 2005 to 2014.

Setting Changhua community-based integrated screening program (CHCIS), Taiwan.

Participants We enrolled 17,638 participants aged over 30 years old.

Main outcomes and measures We measured impact of MetS on an interested outcome of incident OPMD.

Results: The incidence of OPMD among MetS and MetS-free were 8.15 ‰ and 5.66 ‰, respectively. After adjusted for confounders, subjects with MetS showed statistically the elevated risk of being OPMD as compared with those who were free of MetS by 32% (aRR=1.32, 95%CI: 1.14-1.53). The effect remained in the components of MetS, however only for central obesity (aRR=1.24, 95%CI: 1.06-1.45), hyper-triglyceride (aRR=1.27, 95%CI: 1.08-1.49), and hyperglycemia (aRR=1.23, 95%CI: 1.06-1.44). Individual components included central obesity and hyper-triglyceride were also associated with a sub-type of OPMD, leukoplakia.

Conclusion: The temporal influence of MetS on the risk of incident OPMD was noted in our longitudinal cohort study. Therefore, promoting MetS prevention and control program might reduce the occurrence of OPMD and oral cancer.

Strengths and limitations of this study

- A large population-based prospective cohort study was designed to examine the impact of metabolic syndrome (MetS) on incident oral potentially malignant disorder (OPMD).
- This is the first study to investigate the effect of metabolic syndrome on incidence of OPMD as well as sub-type of OPMD, especially leukoplakia and oral submucous fibrosis.
- Investigating other subtypes of OPMD are limited, due to scanty of other OPMD cases in our population.
- The results of our study were summarized from Taiwanese aged over 30, so that external generalization of our results to other regions would be limited especially on ethic, genetic and dietary background.

BMJ Open

Introduction

Oral potentially malignant disorders (OPMD) is an disorder that has potential for later progress to oral cancer [1]. Thus, knowledge of the risk factors for an occurrence of OPMD is an important issue for primary prevention of oral cancer [2]. The evidences on tobacco use, betel quid chewing, and alcohol have been well documented as major risk factors for oral potentially malignant disorders (OPMD) [3-7]. Metabolic syndrome (MetS) has been reported to be associated with increased risk of several cancers, including oral cancer [8,9]. In addition to that the presence of MetS has been noted to be associated with OPMD [10,11]. Such association due to the common share of underlying pathways (such as chronic inflammation) could be postulated to be attributed to OPMD. Several studies have proposed the possible biological linkage between OPMD and MetS, which may have pro-inflammatory markers and insulin resistance in common [12-19]. However, the true biological causes accounting for such an association between MetS and OPMD are still elusive. In spite of this, it is still very worthwhile to study how MetS is associated with OPMD by clarification of temporal relationship between MetS and OPMD. A prospective cohort study is therefore required.

In the community-based integrated screening in Changhua, a routine health check-up that embraces biomarker tests for MetS has been conducted annually since 2005 [20] and also the early detection of OPMD and oral cancer has been provided under the instruction of nationwide oral cancer screening program [21]. This screened cohort provides an opportunity to elucidate the effect of MetS on the incidence of OPMD with a normal cohort at baseline following over time until 2014.

Using empirical data from a large population-based integrated screening program in combination with oral cancer screening with oral visual inspection as conducted in Taiwanese

nationwide screening programs, the major aim of this study was to assess temporal influence of

MetS on OPMD.

For beer terien only

Materials and methods

Study design

Our study design consists of two main steps, the first step is for prevalence (cross-sectional design), and the second step is a longitudinal follow-up for incident cases of OPMD (Figure 1). We conducted cross-sectional analysis to determine the prevalence of OPMD among MetS and MetS-free group at baseline (first screening round). This would allow us to create normal cohorts by excluding those who has been diagnosed as OPMD at first screen and also participants who diagnosed as oral cancer. These cohorts retained to undergo repeated screening.

To address our initial hypothesis that whether MetS plays a role as etiology for OPMD, the prospective long-term follow-up study was adopted. We followed up the OPMD-free cohort who attended subsequence screening and linked the CHCIS and nationwide oral cancer registry iteratively to retrieve the status of OPMD in each screening round. Notably, due to the unmatched time of CHCIS and nationwide screening program, we therefore defined the status of being MetS of participants by using the first screening in CHCIS and also the subtype of OPMD at the first diagnosed outcome of the nationwide screening program.

Study population and data collection

Changhua community-based Integrated Screening is a population based screening program that is identical to the KCIS program which provided multiple cancers screening (liver cancer, breast cancer, colorectal cancer, oral cancer, and cervical cancer), chronic diseases (hyperlipidemia, hypertension, and hyperglycemia) and also MetS and anthropometric measurement [20]. The population in this study consists of dwellers aged 18 years or older that have been invited to participate in oral cancer screening service in Changhua (the CHCIS program) from 2005 to 2014. However, we recruited only participants aged 30 years or older because of sparse numbers of participant lower than 30 years. Therefore, the screening population contained of residents aged over 30 years-old who were free of oral cancer and had been screened at first round and subsequently repeated screening round.

The anthropometric measures for body height, body weight, and circumferences of waist and hip were measured by either public health nurses or well-trained volunteer social workers in the community settings. All participants in the CHCIS program were interviewed to obtain information on education level, oral habits (including betel nut chewing, cigarette smoking, and alcohol drinking), dietary habits, personal disease history, and family disease history, etc. For oral habits, we classified the habit as ex-, ever-, current betel nut chewing, cigarette smoking, or alcohol drinking. In addition to that information which based on questionnaire, the CHCIS program also documented the information of MetS's components, comprised of waist circumference, weight, height, blood pressure and other biochemistry indicator such as fasting glucose, triglyceride and high-density lipoprotein cholesterol levels. Full description of KCIS program [22] and additional information of CHCIS have been described elsewhere [20]. This study was approved by the Institutional Review Board of Taipei Medical University (TMU-JIRB: N201611014)

BMJ Open

Patient and Public Involvement

Our study was recruited subjects through the screening programme in Changhua where patient and public involvement was accomplished. In the programme, the Changhua personnel in the local and County Public Health Bureau were responsible. In addition, the staffs also help preparing and advising to facilitate screening service in the community.

The results of our study will be disseminated to the public in community through the personnel of the Changhua County Public Health Bureau.

OPMD detection

Since 2005, the oral visual inspection for all eligible participants has been performed in Changhua County. In each on-site screening center, trained dentists or physicians examined all participants, for those who were clinically diagnosed with oral leukoplakia, erythroleukoplakia, erythroplakia, oral submucous fibrosis (OSF), verrucous hyperplasia and epithelial dysplasia were recorded as positive for OPMD. Instruction on informed consent was first given and approved by those who expressed the willingness of participating in the study.

Metabolic syndrome

Metabolic syndrome (MetS) was defined according to the Epidemiology Task Force Consensus Group criteria (2005) [23] in which participants presented at least three or more of the five components including: (1) central obesity (waist circumference \geq 80 cm for female, and \geq 90 cm for male), (2) hyper-triglyceride (\geq 150 mg/dl), (3) low level of high-density lipoprotein cholesterol (HDL-C) (<50 mg/dl for female and <40 mg/dl for male), (4) elevated blood pressure (systolic blood pressure \geq 130 mm Hg or diastolic blood pressure \geq 85 mm Hg), and (5) hyperglycemia (fasting glucose \geq 100 mg/dl).

Statistical analysis

Prevalence of OPMD is presented as cases per 100 persons. Incidence rate of OPMD is presented as cases per 1,000 persons. The univariate Poisson regression model was first used to estimate the rate ratio (RR) for MetS and factors in association with the risk for developing OPMD. The adjusted incidence rate ratio (aRR) was further estimated using the multi-variable Poisson regression model when significant confounding factors from univariate analysis and other factors reported of having significant association with OPMD in previous studies were retained in the model. In addition to the dichotomous variable for whether having MetS or not, we also examined the effect of each individual component of MetS and also MetS's score in separate models with both univariate and multivariate analyses. The magnitude of the effect between MetS and OSF, leukoplakia, and combined erythroleukoplakia, erythroplakia, verrucous hyperplasia and epithelial dysplasia in each separate multi-variable Poisson regression was quantified. Except for the process of selecting variables to be included in the multivariate analysis, statistical significance was set when p<0.05. All analyses were conducted with SAS version 9.4 (SAS Institute Inc., Cary, NC).

BMJ Open

Results

A total of 35,424 subjects aged 30-years or older were included in this study from 2005 to 2014 in Changhua. The prevalence of OPMD was 0.906%. The prevalence of MetS was 31% (Figure 1). Subjects with MetS were statistically significantly 1.46-fold (95% CI: 1.16-1.83) risk for OPMD compared with those without MetS (see Supplementary Table 1).

The incidence of OPMD is shown to vary by demographic and life style factors (Table 1). Most of them were males with median age of 55 years. The incidence of OPMD in subjects with MetS is higher than who are free of MetS, with the corresponding value of 8.15 and 5.66 per thousand person-years respectively.

Table 2 shows the association between MetS and OPMD in the direction that MetS is a cause of OPMD. In univariate analysis, participants with MetS have a 44% increased risk of developing OPMD as compared with those who are MetS-free (RR=1.44, 95%CI: 1.24-1.66). Other factors also showed increased risk of developing OPMD, including male, age less than 70, ever betel nut chewing, cigarette smoking, alcohol drinking, and lower education level. In multivariable analysis, after adjusted for potential confounding factors including age, sex, education level, betel nut chewing, cigarette smoking and alcohol drinking, the MetS remained significant elevated risk of OPMD (aRR=1.32, 95%CI: 1.14-1.53).

BMJ Open

In addition to focusing just only defining MetS outcome, we also investigated the individual effect of its components (Table 3). The results showed that central obesity (aRR=1.24, 95%CI: 1.06-1.45), hyper-triglyceride (aRR=1.27, 95%CI: 1.08-1.49) and hyperglycemia (aRR=1.23, 95%CI: 1.05-1.44) had statistically significant increased risk of OPMD. However, the effects of MetS's components were shown differently in Table 4, when investigated in different subtypes of OPMD (leukoplakia and oral submucous fibrosis). For leukoplakia, there were only central obesity (aRR=1.30, 95%CI: 1.08-1.58) and hyper-triglyceride (aRR=1.29, 95%CI: 1.06-1.56) that remained effective significantly, while only hyperglycemia (aRR=1.41, 95%CI: 0.98-1.24) showed a borderline association with increased risk for OSF.

BMJ Open

Discussions

In contrast to previous studies that put emphasis on the association between the MetS and OPMD, the main objective of the present study, in addition to corroborating the association studies, was to investigate a temporal sequence pertaining to the effect of MetS on incident OPMD among non-OPMD subjects based on a longitudinal cohort study. It is very interesting to see the statistically significant impact of MetS on incident OPMD was noted. We use the longitudinal follow-up study design to cope with the limit of cross-sectional study design that cannot elucidate the temporal relationship between MetS and OPMD.

The association between MetS and OPMD has been elucidated in several previous crosssectional studies, conducted in Keelung community-based integrated screening program (KCIS) and in Yunlin county, that MetS was found to elevate the risk of OPMD by 68% and 39%, respectively [10,11] and also confirmed in our current study. We also found that MetS has a 46% increased risk associated with MetS for the presence of OPM.

Our result further indicated that MetS was associated with the risk of incident OPMD. The impact of MetS on OPMD is favored by an estimation of incidence rate ratio with adjustment for confounding factors (aRR=1.32, 95%CI: 1.14-1.53). Moreover, we found three individual components (central obesity, aRR=1.24, 95%CI: 1.06-1.45; hyper-triglyceride, aRR=1.27, 95%CI: 1.08-1.49 and hyperglycemia, aRR=1.23, 95%CI: 1.05-1.44) were statistically significant increasing the risk of OPMD. Such a causal relationship between MetS and the risk for OPM are independent of two well-established risk factors for oral pre-malignant lesions [3], [4], [5] tobacco use and betel quid chewing. Applying such information to oral cancer screening would add the extra value to identify high-risk category of OPMD.

BMJ Open

Regarding an independent contributory cause of MetS accounting for OPMD, the link between MetS and tumor progression in OPM and oral cancer might be attributable to the common underlying mechanism, an inflammatory process or immune response for both outcomes. To our knowledge, the exact pathway linking metabolic syndrome and OPMD is still not clear; however, previous studies proposed common sharable mechanism between MetS and OPMD, consisted of pro-inflammatory markers (TNF-alpha and C-reactive protein, IL-6), and insulin resistance [12,19,24]. MetS affects cancer tumor cells through an increasing proliferation, angiogenesis and damage to the DNA molecule under chronic hyperglycemia, insulin resistance and hyperinsulinemia [25-29]. In addition, MetS particularly with insulin resistance can overstimulate insulin growth factor-1 (IGF-1) and insulin receptor. An increasing and changing of IGF-1 signaling pathway and insulin receptor expression might lead to increase the risk of cancer [30]. In present study, we found that central obesity, hyperglycemia and hypertriglyceridemia are significant individual components of MetS for development of OPMD. Previous study revealed that the central obesity can stimulate insulin resistance, dyslipidemia and systematic inflammation and in turn, the components considered to play vital role in pathogenesis of certain type of cancer [31,32]. Moreover, the insulin resistance is also associated with an increasing of the production of glucose and triglyceride, both were highly associated with the risk of developing OPMD in our analysis.

We also estimated the effect of MetS on subtypes of OPMD (leukoplakia and OSF), and found that MetS increased risk of two types of OPMD, leukoplakia and OSF; however, statistically significance was only found in leukoplakia. In addition, among MetS's components, only central obesity and hyper-triglyceride significantly elevated risk of leukoplakia. These results were inconsistent with previous study that found only hyper-triglyceride and

BMJ Open

hyperglycemia significantly increased risk of leukoplakia [11]. Considering of hyper-triglyceride in leukoplakia, previous study reported significantly higher triglyceride level in leukoplakia than healthy people [33]. An increasing triglyceride is possibly due to the excessive release of free fatty acids, which resulted from insulin resistance. Moreover, insulin resistance can be stimulated by central obesity. In addition, Meisel et al, reported that visceral obesity was more likely to find in people with leukoplakia than those of non-leukoplakia [34]. The aforementioned studies support our findings that two of MetS's components, central obesity and hyper-triglyceride, associated with leukoplakia. However, the mechanism to explain this is still lacking.

Even though our study demonstrated that hyperglycemia didn't significantly increase the risk of OSF, the aRR showed largest increased risk magnitude in OSF. Regarding OSF, it has been recognized that the development of fibrosis is the pathologically responsible for tissue injury in which caused by chronic hyperglycemia. The development of fibrosis was driven by accumulation of extracellular matrix (ECM) [35].

One of the unique characteristics of OSF is the symptom of mouth opening restriction [36], [37,38]. A possible causation for restricted mouth opening might be because of dynamics of ECM deposited around muscle fibers in different stages of OSF, and these lead to the consequence of loss of variety of ECM molecules including elastin into the uniform of collagen type I replacing muscle fibers [39]. Notably, it has been shown that hyperglycemia can alter the collagenolysis [40] and also ECM's components interaction through advanced glycation end products (AGEs) modification [41-45]. These reasons mentioned above may support the borderline impact of hyperglycemia on OSF and its symptom.

Another possibility of the discordance between these findings might be due to the difference of study approaches and community which dietary differs from each other. However,

BMJ Open

both studies pointed out that the hyper-triglyceride and hyperglycemia were related to OPMD. Exceptionally to those biological aspects, these results are supported by strong epidemiological study design in which we followed up the study population from being either MetS or OPMD-free until occurrence of interested outcomes (OPMD for MetS-free cohort and MetS for OPMD-free cohort).

In the view of oral cancer control, primary prevention is aimed to reduce the exposure to risk factors. In Taiwan, several cessation campaigns have been launched but most of these efforts were considered just for conventional risk factors including cigarette smoking and betel nut chewing. Our study result showed that MetS is one of risk factor for OPMD. In addition, a recent study also revealed that sweet beverage consumption elevated risk of overall cancer and breast cancer [46]. Promoting MetS prevention program with controlling of sugar-sweetened beverage or diet might reduce OPMD and oral cancer incidence in the future. Moreover, in countries like Taiwan that has nationwide oral cancer screening program, we recommended to consider MetS as a criterion for screening of oral cancer in addition to age and conventional risk factors.

Several limitations existed in our study. First, several confounding factors that may link MetS and oral cancer, such as family history of oral cancer and history of chronic diseases other than MetS, were not considered. Second, the results of our study were summarized from Taiwanese aged over 30, so that external generalization of our results to other regions would be limited especially on ethic genetic and dietary background. Third, we analyzed only subtype of OPMD including only leukoplakia and OSF, due to scanty of other OPMD cases in our population. Lastly, we did not estimate the effect of OPMD on MetS, for there were not enough incident MetS cases from people who diagnosed as OPMD at baseline.

BMJ Open

In conclusion, our prospective cohort study design affirmed the direction that MetS elevated risk of OPMD. This epidemiological evidence would lead new insight for policy makers to promote MetS prevention in order to reduce OPMD and oral cancer in the future.

Acknowledgements: We would like to thank the Taiwan Cancer registry and Changhua Health bureau for information on screening and cancer registry data.

Contributors: PS, ST-W, YP-Y, and AMF-Y conceived conceptualization, and methodology. SM-P and YP-Y contributed to data curation, investigation. PS, SSL-C, and AMF-Y carried out statistical analysis. PS and ST-W wrote original draft. This study was supervised by YP-Y and AMF-Y. HH-C and PS* participated in editing manuscript. All authors have reviewed and approved the final manuscript

Funding: This work was supported by Ministry of Science and Technology, Taiwan (MOST 108-2118-M-038 -001 -MY3 and MOST 108-2118-M-038 -002 -MY3)

Conflicts of interest: None

Ethics approval: Institutional Review Board of Taipei Medical University (TMU-JIRB: N201611014).

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement: No additional data are available.

Patient consent for publication: Not required.

References

- [1] Warnakulasuriya S. Clinical features and presentation of oral potentially malignant disorders. *Oral Surg Oral Med Oral Pathol Oral Radiol*. 2018;125(6):582-590.
- [2] Sankaranarayanan R, Ramadas K, Amarasinghe H, Subramanian S, Johnson N. Oral Cancer: Prevention, Early Detection, and Treatment. In: Gelband H, Jha P, Sankaranarayanan R, Horton S, eds. *Cancer: Disease Control Priorities, Third Edition* (Volume 3). The International Bank for Reconstruction and Development / The World Bank; 2015. Accessed October 13, 2019. http://www.ncbi.nlm.nih.gov/books/NBK343649/
- [3] Axell T, Holmstrup P, Kramer IRH, Pindborg JJ, Shear M. International seminar on oral leukoplakia and associated lesions related to tobacco habits. *Community Dent Oral Epidemiol.* 1984;12(3):145-154.
- [4] Shiu M-N, Chen T-H. Impact of betel quid, tobacco and alcohol on three-stage disease natural history of oral leukoplakia and cancer: implication for prevention of oral cancer. *Eur J Cancer Prev.* 2004;13(1):39-45.
- [5] Yen AM-F, Chen S-C, Chen TH-H. Dose-response relationships of oral habits associated with the risk of oral pre-malignant lesions among men who chew betel quid. *Oral Oncol.* 2007;43(7):634-638.
- [6] Yen AM-F, Chen S-C, Chang S-H, Chen TH-H. The effect of betel quid and cigarette on multistate progression of oral pre-malignancy. *J Oral Pathol Med*. 2008;37(7):417-422.
- [7] Juntanong N, Siewchaisakul P, Bradshaw P, et al. Prevalence and Factors Associated with Oral Pre-malignant Lesions in Northeast Thailand. *Asian Pac J Cancer Prev*. 2016;17(8):4175-4179.
- [8] Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D. Metabolic Syndrome and Risk of Cancer. *Diabetes Care*. 2012;35(11):2402-2411.
- [9] Stocks T, Bjørge T, Ulmer H, et al. Metabolic risk score and cancer risk: pooled analysis of seven cohorts. *Int J Epidemiol*. 2015;44(4):1353-1363.
- [10] Chang C-C, Lin M-S, Chen Y-T, Tu L-T, Jane S-W, Chen M-Y. Metabolic syndrome and health-related behaviours associated with pre-oral cancerous lesions among adults aged 20– 80 years in Yunlin County, Taiwan: a cross-sectional study. *BMJ Open*. 2015;5(12).
- [11] Yen AM-F, Chen SL-S, Chiu SY-H, Chen H-H. Association between metabolic syndrome and oral pre-malignancy: A community- and population-based study (KCIS No. 28). Oral Oncol. 2011;47(7):625-630.
- [12] Chiang CP, Wu HY, Liu BY, Wang JT, Kuo MYP. Quantitative analysis of immunocompetent cells in oral submucous fibrosis in Taiwan. *Oral Oncol.* 2002;38(1):56-63.

je 19 of 30	BMJ Open
	[13] Haque MF, Harris M, Meghji S, Barrett AW. Immunolocalization of cytokines and growth factors in oral submucous fibrosis. <i>Cytokine</i> . 1998;10(9):713-719.
	[14] Ma N, Tagawa T, Hiraku Y, Murata M, Ding X, Kawanishi S. 8-Nitroguanine formation in oral leukoplakia, a premalignant lesion. <i>Nitric Oxide Biol Chem</i> . 2006;14(2):137-143.
	[15] Rhodus NL, Ho V, Miller CS, Myers S, Ondrey F. NF-kappaB dependent cytokine levels in saliva of patients with oral preneoplastic lesions and oral squamous cell carcinoma. <i>Cancer Detect Prev.</i> 2005;29(1):42-45.
	[16] Dietrich T, Reichart PA, Scheifele C. Clinical risk factors of oral leukoplakia in a representative sample of the US population. <i>Oral Oncol.</i> 2004;40(2):158-163.
	[17] Dikshit RP, Ramadas K, Hashibe M, Thomas G, Somanathan T, Sankaranarayanan R. Association between diabetes mellitus and pre-malignant oral diseases: a cross sectional study in Kerala, India. <i>Int J Cancer</i> . 2006;118(2):453-457.
	[18] Meisel P, Dau M, Sümnig W, et al. Association Between Glycemia, Serum Lipoproteins, and the Risk of Oral Leukoplakia. <i>Diabetes Care</i> . 2010;33(6):1230-1232.
	[19] Ujpál M, Matos O, Bíbok G, Somogyi A, Szabó G, Suba Z. Diabetes and oral tumors in Hungary: epidemiological correlations. <i>Diabetes Care</i> . 2004;27(3):770-774.
	[20] Yeh Y-P, Hu T-H, Cho P-Y, et al. Evaluation of Abdominal Ultrasonography Mass Screening for Hepatocellular Carcinoma in Taiwan. <i>Hepatol Baltim Md</i> . 2014;59(5):1840- 1849.
	[21] Chuang S-L, Su WW-Y, Chen SL-S, et al. Population-based screening program for reducing oral cancer mortality in 2,334,299 Taiwanese cigarette smokers and/or betel quid chewers. <i>Cancer</i> . 2017;123(9):1597-1609.
	[22] Chen TH-H, Chiu Y-H, Luh D-L, et al. Community-based multiple screening model: design, implementation, and analysis of 42,387 participants. <i>Cancer</i> . 2004;100(8):1734- 1743.
	[23] Alberti KGMM, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group. The metabolic syndromea new worldwide definition. <i>Lancet Lond Engl.</i> 2005;366(9491):1059-1062.
	[24] Hsu H-J, Yang Y-H, Shieh T-Y, et al. Role of cytokine gene (interferon- γ , transforming growth factor- β 1, tumor necrosis factor- α , interleukin-6, and interleukin-10) polymorphisms in the risk of oral precancerous lesions in Taiwanese. <i>Kaohsiung J Med Sci.</i> 2014;30(11):551-558.
	[25] Bellastella G, Scappaticcio L, Esposito K, Giugliano D, Maiorino MI. Metabolic syndrome and cancer: "The common soil hypothesis." <i>Diabetes Res Clin Pract</i> . 2018;143:389-397.
	18
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- [26] Kim S-Y, Han K, Joo Y-H. Metabolic Syndrome and Incidence of Laryngeal Cancer: A Nationwide Cohort Study. *Sci Rep.* 2019;9(1):1-6.
- [27] Berstein LM. Modern approach to metabolic rehabilitation of cancer patients: biguanides (phenformin and metformin) and beyond. *Future Oncol Lond Engl.* 2010;6(8):1313-1323.
- [28] Chia P-P, Fan S-H, Say Y-H. Screening of Peroxisome Proliferator-Activated Receptors (PPARs) α , γ and α Gene Polymorphisms for Obesity and Metabolic Syndrome Association in the Multi-Ethnic Malaysian Population. *Ethn Dis.* 2015;25(4):383-390.
- [29] Yunusova NV, Spirina LV, Frolova AE, Afanas'ev SG, Kolegova ES, Kondakova IV. Association of IGFBP-6 Expression with Metabolic Syndrome and Adiponectin and IGF-IR Receptor Levels in Colorectal Cancer. *Asian Pac J Cancer Prev APJCP*. 2016;17(8):3963-3969.
- [30] Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. *Nat Rev Immunol.* 2011;11(2):85-97.
- [31] Zhang Cuilin, Rexrode Kathryn M., van Dam Rob M., Li Tricia Y., Hu Frank B. Abdominal Obesity and the Risk of All-Cause, Cardiovascular, and Cancer Mortality. *Circulation*. 2008;117(13):1658-1667.
- [32] Owolabi EO, Ter Goon D, Adeniyi OV. Central obesity and normal-weight central obesity among adults attending healthcare facilities in Buffalo City Metropolitan Municipality, South Africa: a cross-sectional study. *J Health Popul Nutr*. 2017;36(1):54.
- [33] Granero Fernandez M, Lopez-Jornet P. Association between smoking, glycaemia, blood lipoproteins and risk of oral leukoplakia. *Aust Dent J.* 2017;62(1):47-51.
- [34] Meisel P, Dau M, Sümnig W, et al. Association between glycemia, serum lipoproteins, and the risk of oral leukoplakia: the population-based Study of Health in Pomerania (SHIP). *Diabetes Care*. 2010;33(6):1230-1232.
- [35] Ban CR, Twigg SM. Fibrosis in diabetes complications: Pathogenic mechanisms and circulating and urinary markers. *Vasc Health Risk Manag.* 2008;4(3):575-596.
- [36] Angadi PV, Rekha KP. Oral submucous fibrosis: a clinicopathologic review of 205 cases in Indians. *Oral Maxillofac Surg.* 2011;15(1):15-19.
- [37] Shih Y-H, Wang T-H, Shieh T-M, Tseng Y-H. Oral Submucous Fibrosis: A Review on Etiopathogenesis, Diagnosis, and Therapy. *Int J Mol Sci.* 2019;20(12):2940.
- [38] Fang C-Y, Hsia S-M, Hsieh P-L, et al. Slug mediates myofibroblastic differentiation to promote fibrogenesis in buccal mucosa. *J Cell Physiol*. 2019;234(5):6721-6730.
- [39] Utsunomiya H, Tilakaratne WM, Oshiro K, et al. Extracellular matrix remodeling in oral submucous fibrosis: its stage-specific modes revealed by immunohistochemistry and in situ

BMJ Open

hybridization. J Oral Pathol Med Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol. 2005;34(8):498-507.

- [40] Stultz CM, Edelman ER. A Structural Model that Explains the Effects of Hyperglycemia on Collagenolysis. *Biophys J.* 2003;85(4):2198-2204.
- [41] Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol Off J Korean Physiol Soc Korean Soc Pharmacol. 2014;18(1):1-14.
- [42] Ashraf JM, Ansari MA, Khan HM, Alzohairy MA, Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. *Sci Rep.* 2016;6:20414.
- [43] Bartling B, Desole M, Rohrbach S, Silber R-E, Simm A. Age-associated changes of extracellular matrix collagen impair lung cancer cell migration. FASEB J Off Publ Fed Am Soc Exp Biol. 2009;23(5):1510-1520.
- [44] Tarsio JF, Reger LA, Furcht LT. Decreased interaction of fibronectin, type IV collagen, and heparin due to nonenzymatic glycation. Implications for diabetes mellitus. *Biochemistry*. 1987;26(4):1014-1020.
- [45] Pastino AK, Greco TM, Mathias RA, Cristea IM, Schwarzbauer JE. Stimulatory effects of advanced glycation endproducts (AGEs) on fibronectin matrix assembly. *Matrix Biol J Int Soc Matrix Biol*. 2017;59:39-53.
- [46] Chazelas E, Srour B, Desmetz E, et al. Sugary drink consumption and risk of cancer: results from NutriNet-Santé prospective cohort. *BMJ*. 2019;366.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

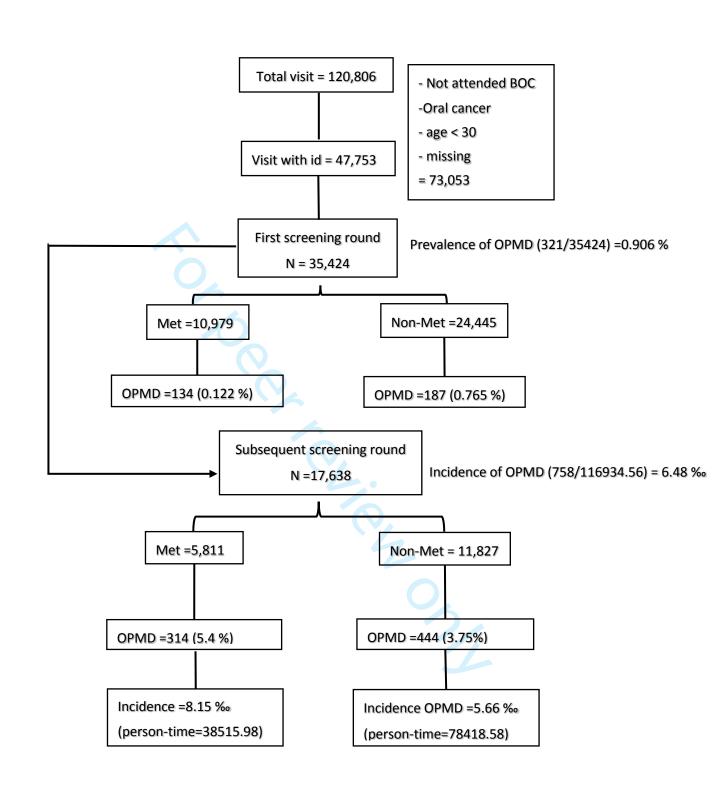


Figure 1 The flow chart for prospective normal cohort study design

Table 1 The incidence (per 1,000) of oral potentially malignant disorders by demographic features, status of metabolic syndrome and other associated risk factors

	Person- years OPMD			OSF		ukoplakia	Erykoplakia + Erythroleukoplakia + Verrucous hyperplasia + Epithelial Dysplasia		
		No.	Incidence, ‰	No.	Incidence, ‰	No.	Incidence, ‰	No.	Incidence, ‰
Overall Metabolic syndrome	116934.6	758	6.5	150	1.3	521	4.5	87	0.7
Yes	38516.0	314	8.2	58	1.5	219	5.7	37	1.0
No	78418.6	444	5.7	92	1.2	302	3.9	50	0.6
Age									
30-39	8321.2	52	6.2	13	1.6	28	3.4	11	1.3
40-49	29240.6	218	7.5	42	1.4	154	5.3	22	0.8
50-59	35218.4	287	8.1	49	1.4	205	5.8	33	0.9
60-69	27820.5	167	6.0	37	1.3	115	4.1	15	0.5
70+	16333.9	34	2.1	9	0.6	19	1.2	6	0.4
Gender									
Male	104766.8	744	7.1	147	1.4	511	4.9	86	0.8
Female	12167.8	14	1.2	3	0.2	10	0.8	1	0.1
Betel nut chewing									
Never	79041.1	265	3.4	39	0.5	203	2.6	23	0.3
Quit	23802.4	252	10.6	62	2.6	162	6.8	28	1.2
Current Cigarette	14005.4	241	17.2	49	3.5	156	11.1	36	2.6

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

smoking Never	46288.0	104	2.2	22	0.5	75	1.6	7	0.
Quit	24719.2	133	5.4	36	1.5	82	3.3	15	0.
Current	45841.5	521	11.4	92	2.0	364	7.9	65	1.
Alcohol		-		-					
drinking									
Never	53551.6	224	4.2	48	0.9	155	2.9	21	0.
Quit	6825.2	63	9.2	10	1.5	44	6.4	9	1.
Current	56474.9	471	8.3	92	1.6	322	5.7	57	1.
Education									
level									
University	13701.3	55	4.0	4	0.3	47	3.4	4	0.
Senior high school	26862.0	107	6.8	39	1.5	126	47	17	0
Junior high	26862.0	182	0.8	39	1.5	126	4.7	17	0.
school or									
lower	76022.5	519	6.8	107	1.4	347	4.6	65	0.
OSF: oral submu									

BMJ Open

Table 2 The association between N	MetS, other factors and oral potentially malignant disorders (MetS
\rightarrow OPMD)	

	RR	95%	ώCΙ	aRR	95%	ωCI
Metabolic syndrome						
Yes vs No	1.44	1.24	1.66	1.32	1.14	1.53
Gender						
Male vs Female	6.90	3.90	12.20	3.34	1.86	6.00
Age groups (vs 70+)						
30-39	3.00	1.95	4.62	2.53	1.62	3.95
40-49	3.45	2.40	4.95	2.66	1.83	3.85
50-59	3.64	2.55	5.20	3.13	2.19	4.48
60-69	2.80	1.93	4.04	2.53	1.75	3.66
Betel nut chewing (vs Never)						
Quit	3.11	2.61	3.71	2.07	1.69	2.54
Current	5.11	4.29	6.10	2.81	2.29	3.46
Cigarette smoking (vs Never)						
Quit	2.40	1.85	3.12	1.37	1.01	1.85
Current	5.09	4.10	6.31	2.65	2.06	3.42
Alcohol drinking (vs Never)						
Quit	1.94	1.65	2.28	1.21	0.90	1.64
Current	2.20	1.65	2.91	1.01	0.85	1.21
Education level (vs Junior high school or						
lower)						
Senior high school	0.99	0.83	1.17	0.94	0.78	1.12
University	0.59	0.45	0.78	0.78	0.58	1.05

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Table 3 The effect of metabolic syndrome components on oral potentially malignant disorders

		All O	PMD	
	aRR*	95%	p-value	
Component of metabolic syndrome				
Central obesity	1.24	1.06	1.45	0.0066
	1.27	1.08	1.49	0.0033
Hyper-triglyceride	1.10	0.04	1.00	0.0510
Low HDL-C	1.10	0.94	1.29	0.2512
	0.90	0.77	1.05	0.1637
Elevated blood pressure	1.23	1.05	1.44	0.0096
Hyperglycemia	1.25	1.03	1.44	0.0090
Metabolic syndrome score	1.14	1.08	1.20	<.0001

aRR: adjusted rate ratio; **CI**: confidence interval.

 * adjusted incidence rate ratio for components of metabolic syndrome and metabolic syndrome score were treated in different models with simultaneously adjusted all other confounders including age, gender, education level, betel nut chewing, cigarette smoking and alcohol drinking.

 BMJ Open

Table 4 The association between metabolic syndrome and sub-types of oral potentially malignant disorders using multivariable Poisson regression

	Leuko	plakia			SF							
aRR*	95%	бСІ	p-value	aRR*	95%	бСІ	p-value					
Metabolic syndrome												
1.36	1.14	1.62	0.0007	1.22	0.87	1.71	0.2572					
1.30	1.08	1.58	0.0059	1.06	0.74	1.52	0.746					
1.29	1.06	1.56	0.0108	1.20	0.83	1.75	0.339					
1.17	0.97	1.42	0.1083	0.95	0.65	1.38	0.775					
0.90	0.74	1.08	0.2472	0.95	0.66	1.37	0.794					
1.18	0.98	1.43	0.0848	1.41	0.98	2.03	0.062					
1.16	1.09	1.24	<.0001	1.10	0.98	1.24	0.096					
	1.36 1.30 1.29 1.17 0.90 1.18	aRR* 95% 1.36 1.14 1.30 1.08 1.29 1.06 1.17 0.97 0.90 0.74 1.18 0.98	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	aRR* 95%CI p-value 1.36 1.14 1.62 0.0007 1.30 1.08 1.58 0.0059 1.29 1.06 1.56 0.0108 1.17 0.97 1.42 0.1083 0.90 0.74 1.08 0.2472 1.18 0.98 1.43 0.0848	aRR*95%CIp-valueaRR* 1.36 1.14 1.62 0.0007 1.22 1.30 1.08 1.58 0.0059 1.06 1.29 1.06 1.56 0.0108 1.20 1.17 0.97 1.42 0.1083 0.95 0.90 0.74 1.08 0.2472 0.95 1.18 0.98 1.43 0.0848 1.41	aRR*95%CIp-valueaRR*95%1.361.141.62 0.0007 1.22 0.87 1.301.081.58 0.0059 1.06 0.74 1.291.061.56 0.0108 1.20 0.83 1.17 0.97 1.42 0.1083 0.95 0.65 0.90 0.74 1.08 0.2472 0.95 0.66 1.18 0.98 1.43 0.0848 1.41 0.98	aRR* 95%CI p-value aRR* 95%CI 1.36 1.14 1.62 0.0007 1.22 0.87 1.71 1.30 1.08 1.58 0.0059 1.06 0.74 1.52 1.29 1.06 1.56 0.0108 1.20 0.83 1.75 1.17 0.97 1.42 0.1083 0.95 0.65 1.38 0.90 0.74 1.08 0.2472 0.95 0.66 1.37 1.18 0.98 1.43 0.0848 1.41 0.98 2.03					

aRR: adjusted rate ratio; **CI**: confidence interval; **OSF**: oral submucous fibrosis

* adjusted incidence rate ratio for metabolic syndrome, components of metabolic syndrome, and metabolic syndrome score were treated in

different models with all other confounders adjusted simultaneously including age, gender, education level, betel nut chewing, cigarette smoking and alcohol drinking

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

"I *Amy Ming-Fang Yen* The Corresponding Author of this article contained within the original manuscript which includes any diagrams & photographs within and any related or stand alone film submitted (the Contribution") has the right to grant on behalf of all authors and does grant on behalf of all authors, a licence to the BMJ Publishing Group Ltd and

its licencees, to permit this Contribution (if accepted) to be published in the BMJ and any other BMJ Group products and to exploit all subsidiary rights, as set out in our licence set out at: http://www.bmj.com/about-bmj/resources-authors/forms-policies-and-checklists/copyright-openaccess-and-permission-reuse."

IF YOU ARE A NATIONAL INSTITUTE OF HEALTH ("NIH") EMPLOYEE, CONTRACTOR OR TRAINEE the following cover sheet will be accepted by the BMJ Group and NIH and incorporated into the above Licence.

Please tick one or more boxes as appropriate:

- I am the sole author of the Contribution.
- ✓ I am one author signing on behalf of all co-owners of the Contribution.
- The Contribution has been made in the course of my employment and I am signing as authorised by my employer.
- I am a US Federal Government employee acting in the course of my employment.
- I am not a US Federal Government employee, but some or all of my co-authors are.
- I am an employee of the UK Crown* acting in the course of my employment
- I am a US Federal Government employee acting in the course of my employment.
- I am not a US Federal Government employee, but some or all of my co-authors are.
- I am an employee of the UK Crown acting in the course of my employment
- □ I am not an employee of the UK Crown acting in the course of my employment but some/all of my co-authors are.*

*Such authors should consult the any guidance issued by their employer and if necessary return any completed form;

http://www.nationalarchives.gov.uk/documents/informatio n-management/articlesministers-civil-servants-annexa.pdf

Supplement table 1 The association between MetS, other factors and prevalence of oral potentially malignant disorders

	OR	95%	∕₀CI	aOR	95%	6CΙ
Metabolic syndrome						
Yes vs No	1.60	1.28	2.00	1.46	1.16	1.83
gender						
M vs F	7.65	4.87	12.04	2.71	1.64	4.48
Age groups (vs 70+)						
30-39	0.83	0.39	1.77	0.86	0.39	1.90
40-49	1.78	1.09	2.92	1.41	0.84	2.37
50-59	2.69	1.68	4.29	2.40	1.48	3.88
60-69	1.83	1.11	3.01	1.76	1.07	2.92
Betel nut chewing (vs Never)						
Quit	3.51	2.69	4.57	2.48	1.62	3.7
Current	5.69	4.34	7.47	4.65	3.23	6.68
Cigarette smoking (vs Never)						
Quit	4.61	3.17	6.70	2.40	1.85	3.12
Current	8.96	6.58	12.21	5.09	4.10	6.3
Alcohol drinking (vs Never)						
Quit	2.83	1.78	4.48	1.04	0.64	1.68
Current	2.56	2.02	3.25	1.04	0.80	1.3
Education level (vs Junior high so	chool or					
lower)						
Senior high school	1.03	0.80	1.33	1.10	0.84	1.44
University	0.57	0.38	0.85	0.87	0.57	1.31

	Item No	Recommendation	Pages
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7
		recruitment, exposure, follow-up, and data collection	
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	7
		(b) For matched studies, give matching criteria and number of exposed and unexposed	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	7
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7,8
measurement		assessment (measurement). Describe comparability of assessment methods	
		if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7,9
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	9
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	NA
		(d) If applicable, explain how loss to follow-up was addressed	NA
		(<u>e</u>) Describe any sensitivity analyses	NA
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	10
-		potentially eligible, examined for eligibility, confirmed eligible, included in	
		the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	10
			(Figure
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	10
		social) and information on exposures and potential confounders	N T A
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Report numbers of outcome events or summary measures over time	10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	10,11

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute	NA
		risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations	19	Discuss limitations of the study, taking into account sources of potential	15
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	12,1:
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	16
		and, if applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

BMJ Open

The Effect of Metabolic Syndrome on Incidence of Oral Potentially Malignant Disorder: A Prospective Cohort Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-041971.R1
Article Type:	Original research
Date Submitted by the Author:	31-Aug-2020
Complete List of Authors:	Siewchaisakul, Pallop; Taipei Medical University College of Oral Medicine, School of dentistry Wang, Sen-Te; Taipei Medical University Hospital Peng, Szu-Min; National Taiwan University, Institute of Epidemiology and Preventive Medicine, College of Public Health, Sarakarn, Pongdech; Khon Kaen University, Epidemiology and Biostatistics Department, Faculty of Public Health Chen, Li-Sheng; Taipei Medical University College of Oral Medicine, School of Oral Hygiene Chen, Tony Hsiu-Hsi; National Taiwan University, Division of Biostatistics Yeh, Yen-Po; Changhua County Public Health Bureau Yen, Amy Ming-Fang; Taipei Medical University College of Oral Medicine,
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Nutrition and metabolism, Oncology, Public health
Keywords:	ORAL MEDICINE, ONCOLOGY, Epidemiology < ONCOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
23 24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
54 55
56
57
58
59
60

 Disorder: A Prospective Cohort Study Pallop Siewchaisakul^{1,2,3#}, Sen-Te Wang^{4,5#}, Szu-Min Peng⁶, Pongdech Sarakam⁷, Chen, Li-Sheng ^{2,3}, Chen, Tony Hsiu-Hsi ⁶, Yen-Po Yeh^{6,8,*}, Amy Ming-Fang Yen^{2,3,*} *These authors contribute equally. *These authors contribute equally. ⁹ 'School of Dentistry, Taipei Medical University, Taipei, Taiwan ⁹ 'Oral Health Care Research Center, College of Oral Medicine, Taipei Medical University, Taipei ¹⁰ Abcool of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan ¹² 'Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical ¹³ University, Taipei, Taiwan ⁴³ Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan ⁵⁴ Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan ¹⁵⁶ Pinstitute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan ¹⁶⁷ Picpidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, ¹⁷⁸ Picpidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, ¹⁸⁹ Non Kaen, Thailand ¹⁹⁰ Nord counts of Abstract: 199, Manuscript: 3184 ¹⁹¹ Number of references: 45, Tables: 4, Figures: 1 ¹⁹² Picpidemiolege of Public Health Bareau ¹⁹³ Picpidemiolege of Public Health, Figures: 1 ¹⁹⁴ Picpidemiolege of Public Health, ¹⁹⁴ Picpidemiolege of Public Health, ¹⁹⁴ Picpidemiolege ¹⁹⁵ Picpidemiolege of Abstract: 199, Manuscript: 3184 ¹⁹⁶ Picpidemiolege of Picpidemise, 45, Tables: 4, Figures: 1 ¹⁹⁶ Picpidemiolege 	1	The Effect of Metabolic Syndrome on Incidence of Oral Potentially Malignant
 ^{2.3}, Chen, Tony Hsiu-Hsi ⁶, Yen-Po Yeh^{6.8,*}, Amy Ming-Fang Yen^{2,3,*} [*] These authors contribute equally. [*] These authors contribute equally. ¹ School of Dentistry, Taipei Medical University, Taipei, Taiwan ² Oral Health Care Research Center, College of Oral Medicine, Taipei Medical University, ¹⁰ Taipei ³ School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan ⁴ Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical ¹¹ University, Taipei, Taiwan ⁵ Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan ⁶ Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan ⁶ University ⁷ Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, ¹⁸ Khon Kaen, Thailand ⁹ Changhua County Public Health Bureau ¹⁰ Word counts of Abstract: 199, Manuscript: 3184 ¹¹ Number of references: 45, Tables: 4, Figures: 1 	2	Disorder: A Prospective Cohort Study
 * These authors contribute equally. * These authors contribute equally. ¹School of Dentistry, Taipei Medical University, Taipei, Taiwan ²Oral Health Care Research Center, College of Oral Medicine, Taipei Medical University, Taipei ³School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan ⁴Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ⁵Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan ⁶Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University ⁷Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand ⁸Changhua County Public Health Bureau Word counts of Abstract: 199, Manuscript: 3184 Number of references: 45, Tables: 4, Figures: 1 	3	Pallop Siewchaisakul ^{1,2,3#} , Sen-Te Wang ^{4,5#} , Szu-Min Peng ⁶ , Pongdech Sarakarn ⁷ , Chen, Li-Sheng
 [*] These authors contribute equally. [*] School of Dentistry, Taipei Medical University, Taipei, Taiwan ² Oral Health Care Research Center, College of Oral Medicine, Taipei Medical University, Taipei ³ School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan ⁴ Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ⁵ Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan ⁶ Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University ⁷ Fepidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, ⁸ Changhua County Public Health Bureau ⁹ Word counts of Abstract: 199, Manuscript: 3184 Number of references: 45, Tables: 4, Figures: 1 	4	^{2,3} , Chen, Tony Hsiu-Hsi ⁶ , Yen-Po Yeh ^{6,8,*} , Amy Ming-Fang Yen ^{2,3,*}
 ⁷ ⁸ ¹School of Dentistry, Taipei Medical University, Taipei, Taiwan ⁹ ²Oral Health Care Research Center, College of Oral Medicine, Taipei Medical University, ¹⁰ Taipei ¹¹ ³ School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan ⁴ Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical ¹³ University, Taipei, Taiwan ⁴ Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan ⁶ Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan ¹⁶ University ⁷ Fpidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, ¹⁸ Khon Kaen, Thailand ¹⁹ ⁸ Changhua County Public Health Bureau ²⁰ ²¹ Word counts of Abstract: 199, Manuscript: 3184 ²² Number of references: 45, Tables: 4, Figures: 1 	5	
 ¹School of Dentistry, Taipei Medical University, Taipei, Taiwan ²Oral Health Care Research Center, College of Oral Medicine, Taipei Medical University, Taipei ³School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan ⁴Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ⁵Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan ⁶Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University ⁷Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand ⁸Changhua County Public Health Bureau Word counts of Abstract: 199, Manuscript: 3184 Number of references: 45, Tables: 4, Figures: 1 	6	# These authors contribute equally.
 ²Oral Health Care Research Center, College of Oral Medicine, Taipei Medical University, Taipei ³School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan ⁴Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ⁵Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan ⁶Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University ⁷Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand ⁸Changhua County Public Health Bureau Word counts of Abstract: 199, Manuscript: 3184 Number of references: 45, Tables: 4, Figures: 1 	7	
 Taipei ¹¹³ School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan ⁴ Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical ⁵ Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan ⁶ Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan ⁷ Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, ⁸ Khon Kaen, Thailand ⁸ Changhua County Public Health Bureau ⁹ Word counts of Abstract: 199, Manuscript: 3184 ¹⁰ Number of references: 45, Tables: 4, Figures: 1 	8	¹ School of Dentistry, Taipei Medical University, Taipei, Taiwan
 ³School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan ⁴Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ⁵Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan ⁶Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University ⁷Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand ⁸Changhua County Public Health Bureau Word counts of Abstract: 199, Manuscript: 3184 Number of references: 45, Tables: 4, Figures: 1 	9	² Oral Health Care Research Center, College of Oral Medicine, Taipei Medical University,
 ⁴Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ⁵Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan ⁶Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University ⁷Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand ⁸Changhua County Public Health Bureau Word counts of Abstract: 199, Manuscript: 3184 Number of references: 45, Tables: 4, Figures: 1 	10	Taipei
 University, Taipei, Taiwan ⁵ Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan ⁶ Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University ⁷ Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand ⁸ Changhua County Public Health Bureau Word counts of Abstract: 199, Manuscript: 3184 Number of references: 45, Tables: 4, Figures: 1 	11	³ School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
 ⁵ Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan ⁶ Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University ⁷ Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand ⁸ Changhua County Public Health Bureau Word counts of Abstract: 199, Manuscript: 3184 Number of references: 45, Tables: 4, Figures: 1 	12	⁴ Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical
 ⁶ Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University ⁷ Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand ⁸ Changhua County Public Health Bureau Word counts of Abstract: 199, Manuscript: 3184 Number of references: 45, Tables: 4, Figures: 1 	13	University, Taipei, Taiwan
 16 University 17 ⁷ Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, 18 Khon Kaen, Thailand 19 ⁸ Changhua County Public Health Bureau 20 21 Word counts of Abstract: 199, Manuscript: 3184 22 Number of references: 45, Tables: 4, Figures: 1 	14	⁵ Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
 ⁷ Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand ⁸ Changhua County Public Health Bureau Word counts of Abstract: 199, Manuscript: 3184 Number of references: 45, Tables: 4, Figures: 1 	15	⁶ Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan
 18 Khon Kaen, Thailand 19 ⁸ Changhua County Public Health Bureau 20 21 Word counts of Abstract: 199, Manuscript: 3184 22 Number of references: 45, Tables: 4, Figures: 1 	16	University
 ⁸ Changhua County Public Health Bureau Word counts of Abstract: 199, Manuscript: 3184 Number of references: 45, Tables: 4, Figures: 1 	17	⁷ Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University,
 20 21 Word counts of Abstract: 199, Manuscript: 3184 22 Number of references: 45, Tables: 4, Figures: 1 	18	Khon Kaen, Thailand
 Word counts of Abstract: 199, Manuscript: 3184 Number of references: 45, Tables: 4, Figures: 1 	19	⁸ Changhua County Public Health Bureau
22 Number of references: 45, Tables: 4, Figures: 1	20	
	21	Word counts of Abstract: 199, Manuscript: 3184
23	22	Number of references: 45, Tables: 4, Figures: 1
	23	

1		
2 3 4	24	Running title: Metabolic Syndrome and OPMD
5 6	25	
7 8	26	* Corresponding author:
9 10 11	27	Dr. Yen-Po Yeh, Changhua County Public Health Bureau, No.162, Sec. 2, Jhongshan Rd.,
12 13	28	Changhua City, Changhua County 500, Taiwan, Telephone: +886 -4-711-5141, E-mail:
14 15	29	yeh.leego@gmail.com, and
16 17 18	30	Professor Amy Ming-Fang Yen, School of Oral Hygiene, College of Oral Medicine, Taipei
19 20	31	Medical University, 250 Wu-Hsing St. Taipei, Taiwan. Telephone: +886-2-27361661 ext 5152,
21 22	32	Fax: +886-27362295, E-mail: amyyen@tmu.edu.tw
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	33	Fax: +886-27362295, E-mail: amyyen@tmu.edu.tw
56 57 58		2
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	34	
5 6	35	Abstract
7 8	36	Objectives We aimed to assess the effect of metabolic syndrome (MetS) on incident oral
9 10 11	37	potentially malignant disorder (OPMD).
12 13	38	Design We conducted a prospective cohort study from Changhua community-based integrated
14 15	39	screening (CHCIS) program and nationwide oral cancer screening program during the period
16 17 18	40	between 2005 and 2014.
19 20	41	Setting Changhua community-based integrated screening CHCIS, Taiwan.
21 22	42	Participants We enrolled 17,590 participants aged over 30 years old.
23 24	43	Main outcomes and measures We assessed the impact of MetS on the outcome measured by
25 26 27	44	incident OPMD.
28 29 30 31	45	Results: The incidence of OPMD among subjects with and without MetS were 7.68 ‰ and 5.38
	46	‰, respectively. After adjusting for confounders, subjects with MetS showed a statistically
32 33 34	47	greater risk of developing OPMD than those who were free of MetS by 33% (aRR=1.33, 95%
35 36	48	CI: 1.14-1.55). Individual components of MetS still remained significant, including central
37 38	49	obesity (aRR=1.22, 95% CI: 1.04-1.44), hyper-triglyceride (aRR=1.26, 95% CI: 1.07-1.49), and
39 40 41	50	hyperglycemia (aRR=1.20, 95% CI: 1.02-1.41). Central obesity and hyper-triglyceride were also
42 43	51	statistically associated with a sub-type of OPMD, leukoplakia.
44 45	52	Conclusion: The temporal influence of MetS on the risk of incident OPMD was noted in our
46 47 48	53	prospective cohort study. Therefore, promoting MetS prevention and control program might
49 50	54	reduce the occurrence of OPMD and oral cancer.
51 52		
53 54		
55 56		
57 58		3

BMJ Open

1			
2 3 4	55		Strengths and limitations of this study
5 6	56	•	A large population-based prospective cohort study was conducted to examine the impact of
7 8	57		metabolic syndrome (MetS) on incident oral potentially malignant disorder (OPMD).
9 10 11	58	•	This is the first study to investigate the effect of metabolic syndrome on incidence of
12 13	59		OPMD as well as sub-types of OPMD, especially leukoplakia and oral submucous fibrosis.
14 15	60	•	Investigating other subtypes of OPMD are limited, due to sparse other OPMD cases in our
16 17 18	61		population.
19 20	62	•	The results of our study are summarized from Taiwanese aged over 30 so that external
21 22	63		generalization of our results to other regions would be limited especially on ethnic, genetic
23 24 25	64		and dietary background.
26 27			
28 29			
30 31			
32 33			
34 35 36			
37 38			
39 40			
41 42			
43 44			
45 46			
47 48			
49 50			
51 52			
53 54			
55 56			
57 58			4
59 60			For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

1 2	
3 4	
5 6 7	
7 8	
8 9 10	
11 12	
13 14	
15	
16 17 18	
19 20	
21 22	
19 20 21 22 23 24 25 26	
25 26	
27 28 29	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52 53	
54	
55 56	
57 58 59	
59 60	

65

Introduction

Oral potentially malignant disorder (OPMD) is an disorder that has potential for 66 subsequent progression to oral cancer [1]. Thus, to have a better understanding of risk factors 67 accounting for the occurrence of OPMD is an important issue for primary prevention of oral 68 cancer [2]. Evidence on tobacco use, betel quid chewing, and alcohol drinking has been well 69 70 documented as major risk factors for OPMD [3-4]. Metabolic syndrome (MetS) has been reported to be associated with the increased risk of several cancers, including oral cancer [5,6]. 71 MetS has also been noted to be associated with OPMD [7,8]. Such an association due to the 72 73 common shared underlying pathway (such as chronic inflammation) could be attributed to OPMD. Several studies have proposed the possible biological linkage between OPMD and MetS, 74 which may have pro-inflammatory markers and insulin resistance in common [9-10]. However, 75 the true biological causes accounting for such an association between MetS and OPMD are still 76 elusive. In spite of this, it is still very worthwhile to study how MetS is associated with OPMD 77 by the clarification of temporal relationship between MetS and OPMD. A prospective cohort 78 study is therefore required. 79 In the Changhua community-based integrated screening (CHCIS), a routine health check-80

In the Changhua community-based integrated screening (CHCIS), a routine health checkup that embraces biomarker tests for MetS has been conducted annually since 2005 [11]. The early detection of OPMD and oral cancer has been provided under the instruction of nationwide oral cancer screening program [12]. This screened cohort provides an opportunity to elucidate the effect of MetS on the incidence of OPMD with a normal cohort at baseline following over time until 2014.

Using empirical data from a large population-based integrated screening program in

combination with nationwide oral cancer screening program with oral visual inspection, the

to been teriew only

major aim of this study was to assess the temporal influence of MetS on OPMD.

1 2	
	96
3 4	86
5 6	87
7	
8	88
9 10	
11	
12	
13 14	
15	
16	
17 18	
19	
20	
21 22	
23	
24	
25 26	
27	
28 29	
29 30	
31	
32 33	
33 34	
35	
36 37	
38	
39	
40 41	
42	
43 44	
44 45	
46	
47 48	
49	
50	
51 52	
53	
54	
55 56	
57	
58	

59

60

2	
3 4	89
5 6	90
7 8	91
9 10	92
11 12 12	93
13 14 15	94
16 17	95
18 19	
20 21	96
22 23	97
24 25	98
26 27	99
28 29	100
30 31	101
32 33 34	102
34 35 36	103
37 38	104
39 40	105
41 42	105
43 44	
45 46	107
47 48	108
49 50	109
51 52	110
53 54	111
55 56 57	
58	
59 60	

Materials and methods

Study design Our study design consists of two main steps, the first step is tailored for prevalence (crosssectional design), and the second step is a longitudinal follow-up for incident cases of OPMD (Figure 1). We conducted cross-sectional analysis to determine the prevalence of OPMD among MetS and MetS-free group at baseline (identified at the first screening round). This would allow

us to create a normal cohort by excluding those who has been diagnosed as OPMD or oral cancer
before or at first screen. Subjects in this normal cohort have underwent repeated screening
continuously.

To address our initial hypothesis that whether MetS plays a role as etiology for OPMD, a prospective follow-up study was adopted. We followed the OPMD-free cohort who attended subsequence screening in the nationwide oral cancer screening program to identify those with OPMD diagnosis in subsequent screening rounds. It should be noted that subjects may attend the CHCIS and nationwide oral cancer screening program at different times. We defined the status of MetS of participants by using the first screen in CHCIS, and the first diagnosis of OPMD in the nationwide oral cancer screening program.

106 Study population and data collection

CHCIS program is a population-based screening program, which followed the service model of the Keelung community-based integrated screening (KCIS) program [13]. These programs provided screening services of multiple cancers (liver cancer, breast cancer, colorectal cancer, oral cancer, and cervical cancer), chronic diseases (hyperlipidemia, hypertension, and hyperglycemia, and MetS), and anthropometric measurements [11]. The population in this study Page 9 of 50

BMJ Open

consists of dwellers aged 30 years or older that have been participated in both CHCIS and the nationwide oral cancer screening program between 2005 and 2014. Subjects who had a diagnosis of oral cancer before the first attendance to the CHCIS program were excluded.

All participants were instructed to follow an 8-hour fasting before blood drawing. Biochemical examination on fasting glucose and lipid profiles was performed. The anthropometric measures for body height, body weight, and circumferences of waist and hip were measured by either public health nurses or well-trained volunteer social workers in the community settings. All participants in the CHCIS program were interviewed to obtain information on education level, oral habits (including betel nut chewing, cigarette smoking, and alcohol drinking), dietary habits, personal disease history, and family disease history. For oral habits, we classified the habit as never-, quit-, and current use. Quitting in our study refers to that participants who had ever habitual use of chewing betel quid, smoking cigarette, or drinking alcohol; however, at the time of interview, they had no regular consumption of betel quid, cigarette, or alcohol. Dietary factors, including meat, vegetable and fruit consumption were classified as seldom (including never), infrequent, and frequent consumption. Infrequent meat consumption was defined as having 1-2 units per day, and frequent meat consumption as 3-4 units per day. Infrequent vegetable consumption was defined as having a half or 1 bowl per day, and frequent vegetable consumption was defined as 3-4 bowls per day. Infrequent fruit consumption was defined as having 1-4 times per week, and frequent-fruit consumption as more than 5 times per week.

Instruction on informed consent was first given and approved by those who expressed the willingness of participating in the study. This study was approved by the Institutional Review Board of Taipei Medical University (TMU-JIRB: N201611014)

OPMD detection

Since 2005, the oral visual inspection for all eligible participants has been performed in Changhua County. In each on-site screening center, trained dentists or physicians examined all participants. For those who were clinically diagnosed with oral leukoplakia, erythroleukoplakia, erythroplakia, oral submucous fibrosis (OSF), and verrucous hyperplasia were recorded as positive

140 for OPMD.

142 Metabolic syndrome

Metabolic syndrome (MetS) was defined according to the Epidemiology Task Force Consensus Group criteria (2005) [14] in which participants presented at least three or more of the five components including: (1) central obesity (waist circumference \geq 80 cm for female, and \geq 90 cm for male), (2) hyper-triglyceride (\geq 150 mg/dl), (3) low level of high-density lipoprotein cholesterol (HDL-C) (<50 mg/dl for female and <40 mg/dl for male), (4) elevated blood pressure (systolic blood pressure \geq 130 mm Hg or diastolic blood pressure \geq 85 mm Hg), and (5) hyperglycemia (fasting glucose \geq 100 mg/dl).

Patient and Public Involvement

Participants in our study were recruited through the CHCIS programme. Participants did not involve in designing or conducting the study. Staff in the Changhua County Public Health Bureau and local health centers were responsible for preparation and implementation of the screening service in the community.

156 The results of our study will be disseminated to the public in community through the
 157 Changhua County Public Health Bureau.

1 2		
2 3 4	158	
5 6	159	
7 8 9	160	Statistical analysis
9 10 11	161	Prevalence of OPMD was presented as cases per 100 persons. Incidence rate of OPMD
12 13	162	was presented as cases per 1,000 person-years. The univariate Poisson regression model was first
14 15 16	163	used to estimate the rate ratio (RR) for MetS and factors in association with the risk for developing
17 18	164	OPMD. The adjusted rate ratio (aRR) was further estimated using the multi-variable Poisson
19 20	165	regression model when significant confounding factors from the univariate analyses and other
21 22	166	factors reported of having significant association with OPMD in previous studies were retained in
23 24 25	167	the model. In addition to the dichotomous variable for whether to have MetS or not, we also
26 27	168	examined the effect of each individual component of MetS and also MetS's score in separate
28 29	169	models with both univariate and multivariate analyses. The magnitude of the effect between MetS
30 31 32	170	and sub-types of OPMD was estimated in separate multi-variable Poisson regression models.
33 34	171	Statistical significance was set when p<0.05. All analyses were conducted with SAS version 9.4
35 36	172	(SAS Institute Inc., Cary, NC).
37 38		
39 40		
41		
42 43		
44 45		
45 46		
47		
48 49		
50		
51		
52 53		
54		
55		
56 57		
58		10
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Results

A total of 35,411 subjects aged 30-years or older were included in this study from 2005 to 2014 in Changhua. The prevalence of OPMD was 0.87% (=306/35,411). The prevalence of MetS was 31% (=10,974/35,411) (Figure 1). Subjects with MetS had a statistically significantly 1.44 times (95% CI: 1.14-1.82) likely to develop the risk for OPMD compared with those without MetS (see Supplementary Table 1).

The incidence of OPMD is shown to vary by demographic and life style factors (Table 1). The incidence of OPMD in subjects with MetS (7.68 per 1000 person-years) was higher than those who were free of MetS (5.38 per 1000 person-years). Male, subjects aged between 40-59 years, higher body mass index (BMI), higher blood pressure, and elevated lip profiles tended to show a higher risk of OPMD compared with their complementary groups. Ever having habit of betel quid chewing, smoking, and alcohol drinking were associated with higher incidence of OPMD. High consumption of meat and lower consumption of vegetables and fruit were also related to higher risk of OPMD.

Table 2 shows the effect of MetS on the risk of OPMD. In the univariate analysis, participants with MetS had a 42% greater risk of developing OPMD than those who were MetS-free (RR=1.42, 95% CI: 1.22-1.66). Other factors also showed increased risks of developing OPMD, including male, age less than 70, betel nut chewing, cigarette smoking, alcohol drinking, meat consumption, and lower education level. In multivariable analysis, after adjusting for potential confounding factors including age, sex, education level, betel nut chewing, cigarette smoking, meat consumption, vegetable consumption, the intake of fruit, and alcohol drinking, MetS leading to the elevated risk of OPMD still remained significant (aRR=1.33, 95% CI: 1.14-1.55).

Page 13 of 50

BMJ Open

In addition to focusing only on MetS outcome, we also investigated the effects of individual components of MetS (Table 3). The results showed that central obesity (aRR=1.22, 95% CI: 1.04-1.44), hyper-triglyceride (aRR=1.26, 95% CI: 1.07-1.49) and hyperglycemia (aRR=1.20, 95% CI: 1.02-1.41) led to a statistically significant increased risk of OPMD. However, the effects of MetS's components were different with respect to the subtypes of OPMD (Table 4). For leukoplakia, only central obesity (aRR=1.30, 95% CI: 1.07-1.57) and hyper-triglyceride (aRR=1.29, 95% CI: 1.06-1.57) remained significant. Only hyperglycemia (aRR=1.43, 95% CI: 0.99-2.05) showed a borderline association with an increased risk for OSF. MetS led to an elevated risk of vertucous hyperplasia by 33%, but it was not statistically significant due to the small number (aRR=1.33, 95% CI: 0.51-3.46). Same phenomenon was noted for erythroplakia and erythroleukoplakia (aRR=1.59, 95% CI: 0.67-3.75). We also provide the detailed results on the effects of dichotomous MetS, individual components of MetS and MetS score for all OPMD (Supplementary Tables 2-3), leukoplakia (Supplementary Tables 4-6), OSF (Supplementary Tables 7-9), vertucous hyperplasia (Supplementary Tables 10-12), and erythroplakia and erythroleukoplakia (Supplementary Tables 13-15).

1 2					
3 4	211	Discussion			
5 6 7 8 9 10 11 12 13 14 15	212	In contrast to previous studies that put emphasis on the association between MetS and			
	213	OPMD, the main objective of the present study, in addition to corroborating the association			
	214	studies, was to investigate a temporal sequence pertaining to the effect of MetS on incident			
	215	OPMD based on a longitudinal cohort study. The statistically significant impact of MetS on			
	216	incident OPMD was observed. We used the longitudinal follow-up study design to cope with the			
16 17 18	217	limitation of the cross-sectional study design that cannot elucidate the temporal relationship			
19 20	218	between MetS and OPMD.			
21 22	219	The association between MetS and OPMD has been elucidated in several previous cross-			
23 24 25	220	sectional studies, conducted in Keelung community-based integrated screening program (KCIS)			
25 26 27	221	and in Yunlin county, in that MetS was found to elevate the risk of OPMD by 68% and 39%,			
28 29 30 31 32 33 34 35 36 37 38 39 40 41	222	respectively [7,8], which has been also confirmed in our current study. We also found that MetS			
	223	led to a 44% increased risk associated with MetS for the presence of OPMD.			
	224	Furthermore, given a prospective cohort study design, our study further demonstrated the			
	225	temporal effect of MetS and individual components on incident OPMD. Such a causal			
	226	relationship between MetS and the risk for OPMD is independent of two well-established risk			
	227	factors for oral pre-malignant lesions, smoking and betel quid chewing [3], [15], [16]. Applying			
42 43	228	such information to oral cancer screening would provide additional value for identifying high-			
44 45	229	risk category of OPMD.			
46 47 48	230	Regarding an independent contributory cause of MetS accounting for OPMD, the link			
48 49 50 51 52	231	between MetS and tumor progression in OPMD and oral cancer might be attributable to the			
	232	common underlying mechanism, an inflammatory process or immune response for both			
53 54 55	233	outcomes. To our knowledge, the exact pathway linking MetS and OPMD is still unclear.			
55 56 57					
58		13			
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

Page 15 of 50

BMJ Open

However, cytokine is often secreted by immune cells in response to inflammation. This would lead to the greater amount of C-Reactive Protein (CRP) [17]. CRP is known as a biomarker for cardiovascular disease. Recently, it was found to increase oxygen radical as well [18]. These inflammatory factors can activate oncogenes and inactivate tumor suppressor genes, and can potentially induce cell proliferation and prolong cell survival, which may result in genetic instability with an increased risk of cancer [19]. Previous studies proposed common shared mechanisms between MetS and OPMD, including pro-inflammatory markers (TNF-alpha and CRP, IL-6), and insulin resistance [9,10,20]. Therefore, MetS may affect cancer tumor cells through an increasing proliferation, angiogenesis and damage to the DNA molecule under chronic hyperglycemia, insulin resistance and hyperinsulinemia [21-22]. In addition, MetS particularly with insulin resistance can overstimulate insulin growth factor-1 (IGF-1) and insulin receptor. An increasing and changing of IGF-1 signaling pathway and insulin receptor expression might lead to an increased risk of cancer as well [17]. In present study, we found that central obesity, hyperglycemia, and hypertriglyceridemia were significant individual components of MetS responsible for the development of OPMD. Previous studies revealed that the central obesity can stimulate insulin resistance, dyslipidemia and systematic inflammation. In turn, the individual components were considered to play a vital role in the pathogenesis of certain type of cancers [23,24]. Moreover, the insulin resistance was also associated with an increase in the production of glucose and triglyceride. Both were highly associated with the risk of developing OPMD in our analysis.

Betel quid's substances (nitrosated and arecal alkaloid derivatives) have been confirmed to increase the risk of oral cancer and OPMD. This effect was not restricted to their direct contact tissue. Lee et al, found that betel quid chewing and components of MetS have a positive

1 2		
2 3 4	257	correlation explained by oxidative stress and inflammation [25]. An increase in the risk of oral
5 6	258	cancer or OPMD by consuming betel quid and also cigarette smoking or alcohol drinking were
7 8 9	259	noted in our study even those patients who had quitted these habits because they have had
10 11	260	exposed to those carcinogenesis components for a sufficient period. Our results were consistent
12 13	261	with previous studies, demonstrated that former or ex- consuming of these oral habits still had
14 15	262	higher risk of oral cancer, leukoplakia and OSF compared with non-users[26, 27].
16 17 18	263	Aside from betel quid, foods were also of concern. Numbers of studies unveiled that
19 20	264	potential diet such as red meat was associated with increased IL-6 [28], and vegetable and fruit
21 22	265	could lowered CRP [29]. In our study, we found that only fruit with high consumption was
23 24	266	shown to be a protective factor of OPMD. Our findings were consistent with Fann et al, and
25 26 27	267	Maserejian et al., who found that fruit decreased the risk of periodontal disease and OPMD,
28 29	268	respectively [30,31]. Interestingly, fruit could reduce the risk of MetS as well [32]. Therefore,
30 31	269	these findings support our hypothesis that inflammatory is one of the potential mechanisms
32 33 34	270	underlying between MetS and OPMD.
35 36	271	We examined the effect of MetS on subtypes of OPMD, and found that MetS was
37 38	272	associated with an increased risk of leukoplakia, but not in other sub-types, including OSF,
39 40 41	273	verrucous hyperplasia, and erythleukoplakia due to small number of cases. For leukoplakia,
41 42 43	274	among MetS's components, only central obesity and hyper-triglyceride significantly elevated the
44 45	275	risk of leukoplakia. These results were inconsistent with the previous study that found only
46 47	276	hyper-triglyceride and hyperglycemia significantly increased risk of leukoplakia [8]. Considering
48 49 50	277	of hyper-triglyceride in leukoplakia, previous study reported significantly higher triglyceride
51 52	278	level in leukoplakia than healthy people [33]. An increasing triglyceride was possibly due to the
53 54	279	excessive release of free fatty acids, which resulted from insulin resistance. Moreover, insulin
55 56		
57 58 59		15

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 50

1

BMJ Open

2		
3		
4		
5		
6		
7		
8		
9		
	0	
1	1	
1		
1		
	4	
	5	
	6	
	7	
1	8	
1	9 0	
2	0	
2 2 2	1	
2	2	
2	3	
	4	
	5	
	6	
	7	
	8	
2	9	
2 3	0	
3	1	
3	2	
3	3	
	4	
3	5	
3	6	
3	7	
3	8	
3	9	
4	0	
4	1	
4	2	
4	3	
4	4	
4	5	
4	6	
4	7	
4		
	9	
	0	
5		
5	2	
5		
	4	
5		
5		
5	7	
5		
5		

60

resistance can be stimulated by central obesity. In addition, Meisel et al, reported that visceral
obesity was more likely to be found in people with leukoplakia than those of non-leukoplakia
[34]. The aforementioned studies support our findings that two of MetS's components, central
obesity and hyper-triglyceride, associated with leukoplakia. However, the mechanism to explain
this is still unclear.

Even though our study demonstrated that hyperglycemia did not significantly increase the risk of OSF, the aRR showed the largest increased risk magnitude in OSF. Regarding OSF, it has been recognized that the development of fibrosis is the pathologically responsible for tissue injury caused by chronic hyperglycemia. The development of fibrosis was driven by the accumulation of extracellular matrix (ECM) [35].

One of the unique characteristics of OSF is the symptom of mouth opening restriction [36], 290 [37,38]. A possible causation for restricted mouth opening might be because of dynamics of ECM 291 deposited around muscle fibers in different stages of OSF, and these lead to the consequence of 292 loss of variety of ECM molecules including elastin into the uniform of collagen type I replacing 293 muscle fibers [39]. Notably, it has been shown that hyperglycemia can alter the collagenolysis [40] 294 and also ECM's components interaction through advanced glycation end products (AGEs) 295 modification [41-42]. These reasons mentioned above may support the borderline impact of 296 hyperglycemia on OSF and its symptom. 297

Another possibility of the discordance between these findings might be due to the difference of study approaches and community which dietary habits differed from each other. However, both studies pointed out that the hyper-triglyceride and hyperglycemia were related to OPMD. Exceptionally to those biological aspects, these results are supported by strong

epidemiological study design in which we followed up the study population from being OPMD-free until occurrence of OPMD.

In the view of oral cancer control, primary prevention aims to reduce the exposure to risk factors. In Taiwan, several cessation campaigns have been launched but most of these efforts were considered just for conventional risk factors including cigarette smoking and betel nut chewing. Our study result showed that MetS was one of risk factor for OPMD. In addition, a recent study also revealed that sweet beverage consumption elevated risk of overall cancer and breast cancer [43]. Promoting MetS prevention program after controlling for sugar-sweetened beverage or diet might reduce OPMD and oral cancer incidence in the future.

Several limitations existed in our study. First, several confounding factors that may link MetS and oral cancer, such as family history of oral cancer and history of chronic diseases other than MetS, were not considered. Second, the results of our study were derived from Taiwanese aged over 30, so that external generalization of our results to other regions would be limited especially on ethnic genetic and dietary background. Third, the association between MetS and verrucous hyperplasia, erythroplakia, and erythroleukoplakia should be interpreted with great caution, due to scanty of cases in our population. Fourth, there exits possible information bias for self-reported variables, especially oral habits. Betel nut chewing, smoking, and alcohol drinking are behaviors that are deviant from social norms and regulations, and can be possibly under-reported. Evidence on this phenomena has been shown in reporting smoking behavior [44, 45]. This might explain the 38 subjects of OSF who had reported never betel quid chewing, which contradicts the well-known association between OSF and betel quid chewing.

1	
2 3 4 5	323
4 5	324
6 7	524
8 9	325
10 11	
12 13	
14 15	
16 17	
17 18 19	
20	
21 22 23 24 25 26 27 28 29	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
40 41 42	
43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
57 58	

59

60

In conclusion, our prospective cohort study design affirmed the direction that MetS elevated risk of OPMD. This epidemiological evidence would lead new insight for policy makers to promote MetS prevention in order to reduce OPMD and oral cancer in the future.

to peer teriew only

1	
2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 7\end{array}$	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
50 57	
57 58	
58 59	
60	

326	Acknowledgements: We would like to thank the Taiwan Cancer registry and Changhua Health
327	bureau for information on screening and cancer registry data.
328	Contributors: P Siewchaisakul, ST-W, YP-Y, and AMF-Y conceived conceptualization, and
329	methodology. SM-P and YP-Y contributed to data curation, investigation. P Siewchaisakul, CLS,
330	and AMF-Y carried out statistical analysis. P Siewchaisakul and ST-W wrote original draft. This
331	study was supervised by YP-Y and AMF-Y. CTH-H and P Sarakarn participated in editing
332	manuscript. All authors have reviewed and approved the final manuscript
333	Funding: This work was supported by Ministry of Science and Technology, Taiwan (MOST 108-
334	2118-M-038 -001 -MY3 and MOST 108-2118-M-038 -002 -MY3)
335	Conflicts of interest: None
336	Ethics approval: This study was approved by the Institutional Review Board of Taipei Medical
337	University (TMU-JIRB: N201611014).
338	Provenance and peer review Not commissioned; externally peer reviewed.
339	Data sharing statement: No additional data are available.
340	Patient consent for publication: Not required.

References

- Warnakulasuriya S. Clinical features and presentation of oral potentially malignant disorders. *Oral Surg Oral Med Oral Pathol Oral Radiol*. 2018;125(6):582-590. doi:10.1016/j.oooo.2018.03.011
- 2. Sankaranarayanan R, Ramadas K, Amarasinghe H, Subramanian S, Johnson N. Oral Cancer: Prevention, Early Detection, and Treatment. In: Gelband H, Jha P, Sankaranarayanan R, Horton S, eds. *Cancer: Disease Control Priorities, Third Edition (Volume 3)*. The International Bank for Reconstruction and Development / The World Bank; 2015. Accessed October 13, 2019. http://www.ncbi.nlm.nih.gov/books/NBK343649/
- 3. Axell T, Holmstrup P, Kramer IRH, Pindborg JJ, Shear M. International seminar on oral leukoplakia and associated lesions related to tobacco habits. *Community Dent Oral Epidemiol*. 1984;12(3):145-154. doi:10.1111/j.1600-0528.1984.tb01428.x
- 4. Juntanong N, Siewchaisakul P, Bradshaw P, et al. Prevalence and Factors Associated with Oral Pre-malignant Lesions in Northeast Thailand. *Asian Pac J Cancer Prev.* 2016;17(8):4175-4179.
- 5. Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D. Metabolic Syndrome and Risk of Cancer. *Diabetes Care*. 2012;35(11):2402-2411. doi:10.2337/dc12-0336
- 6. Stocks T, Bjørge T, Ulmer H, et al. Metabolic risk score and cancer risk: pooled analysis of seven cohorts. *Int J Epidemiol*. 2015;44(4):1353-1363. doi:10.1093/ije/dyv001
- Chang C-C, Lin M-S, Chen Y-T, Tu L-T, Jane S-W, Chen M-Y. Metabolic syndrome and health-related behaviours associated with pre-oral cancerous lesions among adults aged 20–80 years in Yunlin County, Taiwan: a cross-sectional study. *BMJ Open*. 2015;5(12). doi:10.1136/bmjopen-2015-008788
- 8. Yen AM-F, Chen SL-S, Chiu SY-H, Chen H-H. Association between metabolic syndrome and oral pre-malignancy: A community- and population-based study (KCIS No. 28). *Oral Oncol.* 2011;47(7):625-630. doi:10.1016/j.oraloncology.2011.04.011
- 9. Chiang CP, Wu HY, Liu BY, Wang JT, Kuo MYP. Quantitative analysis of immunocompetent cells in oral submucous fibrosis in Taiwan. *Oral Oncol.* 2002;38(1):56-63.
- Ujpál M, Matos O, Bíbok G, Somogyi A, Szabó G, Suba Z. Diabetes and oral tumors in Hungary: epidemiological correlations. *Diabetes Care*. 2004;27(3):770-774. doi:10.2337/diacare.27.3.770
- Yeh Y-P, Hu T-H, Cho P-Y, et al. Evaluation of Abdominal Ultrasonography Mass Screening for Hepatocellular Carcinoma in Taiwan. *Hepatol Baltim Md*. 2014;59(5):1840-1849. doi:10.1002/hep.26703
- 12. Chuang S-L, Su WW-Y, Chen SL-S, et al. Population-based screening program for reducing oral cancer mortality in 2,334,299 Taiwanese cigarette smokers and/or betel quid chewers. *Cancer*. 2017;123(9):1597-1609. doi:10.1002/cncr.30517
- Chen TH-H, Chiu Y-H, Luh D-L, et al. Community-based multiple screening model: design, implementation, and analysis of 42,387 participants. *Cancer*. 2004;100(8):1734-1743. doi:10.1002/cncr.20171

- Alberti KGMM, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group. The metabolic syndrome--a new worldwide definition. *Lancet Lond Engl.* 2005;366(9491):1059-1062. doi:10.1016/S0140-6736(05)67402-8
 - 15. Shiu M-N, Chen T-H. Impact of betel quid, tobacco and alcohol on three-stage disease natural history of oral leukoplakia and cancer: implication for prevention of oral cancer. *Eur J Cancer Prev.* 2004;13(1):39-45.
 - 16. Yen AM-F, Chen S-C, Chen TH-H. Dose-response relationships of oral habits associated with the risk of oral pre-malignant lesions among men who chew betel quid. *Oral Oncol.* 2007;43(7):634-638. doi:10.1016/j.oraloncology.2006.05.001
- 17. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. *Nat Rev Immunol.* 2011;11(2):85-97. doi:10.1038/nri2921
- Prasad K. C-Reactive Protein Increases Oxygen Radical Generation by Neutrophils: J Cardiovasc Pharmacol Ther. Published online June 29, 2016. doi:10.1177/107424840400900308
- 19. Feller L, Altini M, Lemmer J. Inflammation in the context of oral cancer. *Oral Oncol.* 2013;49(9):887-892. doi:10.1016/j.oraloncology.2013.07.003
- 20. Hsu H-J, Yang Y-H, Shieh T-Y, et al. Role of cytokine gene (interferon- γ , transforming growth factor- β 1, tumor necrosis factor- α , interleukin-6, and interleukin-10) polymorphisms in the risk of oral precancerous lesions in Taiwanese. *Kaohsiung J Med Sci.* 2014;30(11):551-558. doi:10.1016/j.kjms.2014.09.003
- 21. Bellastella G, Scappaticcio L, Esposito K, Giugliano D, Maiorino MI. Metabolic syndrome and cancer: "The common soil hypothesis." *Diabetes Res Clin Pract*. 2018;143:389-397. doi:10.1016/j.diabres.2018.05.024
- 22. Yunusova NV, Spirina LV, Frolova AE, Afanas'ev SG, Kolegova ES, Kondakova IV. Association of IGFBP-6 Expression with Metabolic Syndrome and Adiponectin and IGF-IR Receptor Levels in Colorectal Cancer. *Asian Pac J Cancer Prev APJCP*. 2016;17(8):3963-3969.
- 23. Zhang Cuilin, Rexrode Kathryn M., van Dam Rob M., Li Tricia Y., Hu Frank B. Abdominal Obesity and the Risk of All-Cause, Cardiovascular, and Cancer Mortality. *Circulation*. 2008;117(13):1658-1667. doi:10.1161/CIRCULATIONAHA.107.739714
- 24. Owolabi EO, Ter Goon D, Adeniyi OV. Central obesity and normal-weight central obesity among adults attending healthcare facilities in Buffalo City Metropolitan Municipality, South Africa: a cross-sectional study. *J Health Popul Nutr*. 2017;36(1):54. doi:10.1186/s41043-017-0133-x
- 25. Lee B-J, Chan M-Y, Hsiao H-Y, Chang C-H, Hsu L-P, Lin P-T. Relationship of Oxidative Stress, Inflammation, and the Risk of Metabolic Syndrome in Patients with Oral Cancer. *Oxid Med Cell Longev*. 2018;2018. doi:10.1155/2018/9303094
- 26. Chen P-H, Mahmood Q, Mariottini GL, Chiang T-A, Lee K-W. Adverse Health Effects of Betel Quid and the Risk of Oral and Pharyngeal Cancers. BioMed Research International. doi:10.1155/2017/3904098
- 27. Lee C-H, Ko Y-C, Huang H-L, et al. The precancer risk of betel quid chewing, tobacco use and alcohol consumption in oral leukoplakia and oral submucous fibrosis in southern Taiwan. *Br J Cancer*. 2003;88(3):366-372. doi:10.1038/sj.bjc.6600727

28.	Ozawa M, Shipley M, Kivimaki M, Singh-Manoux A, Brunner EJ. Dietary pattern, inflammation and cognitive decline: The Whitehall II prospective cohort study. <i>Clin Nutr Edu Scotl</i> . 2017;36(2):506-512. doi:10.1016/j.clnu.2016.01.013
29.	Silveira BKS, Oliveira TMS, Andrade PA, Hermsdorff HHM, Rosa C de OB, Franceschini S CC. Dietary Pattern and Macronutrients Profile on the Variation of Inflammatory Biomarkers Scientific Update. <i>Cardiol Res Pract</i> . 2018;2018. doi:10.1155/2018/4762575
30.	Fann JC-Y, Lai H, Chiu SY-H, Yen AM-F, Chen SL-S, Chen H-H. A population-based study the association between the intake of soft drinks and periodontal disease in Taiwanese adults aged 35-44 years (KCIS no. 33). <i>Public Health Nutr</i> . 2016;19(8):1471-1478. doi:10.1017/S1368980015002608
31.	Maserejian NN, Giovannucci E, Rosner B, Zavras A, Joshipura K. Prospective Study of Fruit and Vegetables and Risk of Oral Premalignant Lesions in Men. <i>Am J Epidemiol</i> . 2006;164(6):556-566. doi:10.1093/aje/kwj233
32.	Lee M, Lim M, Kim J. Fruit and vegetable consumption and the metabolic syndrome: a systematic review and dose-response meta-analysis. <i>Br J Nutr</i> . 2019;122(7):723-733. doi:10.1017/S000711451900165X
33.	Granero Fernandez M, Lopez-Jornet P. Association between smoking, glycaemia, blood lipoproteins and risk of oral leukoplakia. <i>Aust Dent J</i> . 2017;62(1):47-51. doi:10.1111/adj.124
34.	Meisel P, Dau M, Sümnig W, et al. Association between glycemia, serum lipoproteins, and the risk of oral leukoplakia: the population-based Study of Health in Pomerania (SHIP). <i>Diabete. Care</i> . 2010;33(6):1230-1232. doi:10.2337/dc09-1262
35.	Ban CR, Twigg SM. Fibrosis in diabetes complications: Pathogenic mechanisms and circulat and urinary markers. <i>Vasc Health Risk Manag.</i> 2008;4(3):575-596.
36.	Angadi PV, Rekha KP. Oral submucous fibrosis: a clinicopathologic review of 205 cases in Indians. <i>Oral Maxillofac Surg.</i> 2011;15(1):15-19. doi:10.1007/s10006-010-0225-x
37.	Shih Y-H, Wang T-H, Shieh T-M, Tseng Y-H. Oral Submucous Fibrosis: A Review on Etiopathogenesis, Diagnosis, and Therapy. <i>Int J Mol Sci.</i> 2019;20(12):2940. doi:10.3390/ijms20122940
38.	Fang C-Y, Hsia S-M, Hsieh P-L, et al. Slug mediates myofibroblastic differentiation to prom fibrogenesis in buccal mucosa. <i>J Cell Physiol</i> . 2019;234(5):6721-6730. doi:10.1002/jcp.2741
39.	Utsunomiya H, Tilakaratne WM, Oshiro K, et al. Extracellular matrix remodeling in oral submucous fibrosis: its stage-specific modes revealed by immunohistochemistry and in situ hybridization. <i>J Oral Pathol Med Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol.</i> 2005;34(8):498-507. doi:10.1111/j.1600-0714.2005.00339.x
40.	Stultz CM, Edelman ER. A Structural Model that Explains the Effects of Hyperglycemia on Collagenolysis. <i>Biophys J.</i> 2003;85(4):2198-2204.
41.	Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. <i>Korean J Physiol Pharmacol Off J Korean Physiol Soc Korean Soc Pharmacol</i> 2014;18(1):1-14. doi:10.4196/kjpp.2014.18.1.1

- 42. Pastino AK, Greco TM, Mathias RA, Cristea IM, Schwarzbauer JE. Stimulatory effects of advanced glycation endproducts (AGEs) on fibronectin matrix assembly. *Matrix Biol J Int Soc Matrix Biol*. 2017;59:39-53. doi:10.1016/j.matbio.2016.07.003
- 43. Chazelas E, Srour B, Desmetz E, et al. Sugary drink consumption and risk of cancer: results from NutriNet-Santé prospective cohort. *BMJ*. 2019;366. doi:10.1136/bmj.l2408
- 44. Gnambs T, Kaspar K. Disclosure of sensitive behaviors across self-administered survey modes: a meta-analysis. *Behav Res Methods*. 2015;47(4):1237-1259. doi:10.3758/s13428-014-0533-4
- 45. Gorber SC, Schofield-Hurwitz S, Hardt J, Levasseur G, Tremblay M. The accuracy of self-reported smoking: A systematic review of the relationship between self-reported and cotinine-assessed smoking status. *Nicotine Tob Res.* 2009;11(1):12-24. doi:10.1093/ntr/ntn010

to per eview only

Figure 1 The flow chart for prospective normal cohort study design

For peer terien only

1 2	
2	
4	
5	
6	
7	
8	
9	
10	
11 12	
12 13	
14	
15	
16	
17	
18	
19	
20 21	
22	
23	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36	
37 38	
30 39	
40	
41	
42	
43	
44	
45	
46	

			OP	MD	0	SF	lauko	plakia		ucous		oplakia+ leukoplakia
	Ν	Person years	OPMD No. ‰		<u>No.</u>	<u>%</u>	No.	<u>%</u>	hyperplasia No. %		No.	<u>w</u>
Overall	17,590	116732.06	716	6.13	149	1.28	521	4.46	20	0.17	26	0.22
Metabolic Syndrome												
Yes	5,789	38416.38	295	7.68	58	1.51	219	5.70	7	0.18	11	0.29
No	11,801	78315.68	421	5.38	91	1.16	302	3.86	13	0.17	15	0.19
Age												
30-39	1,178	8296.07	47	5.67	13	1.57	28	3.38	1	0.12	5	0.60
40-49	4,359	29193.98	210	7.19	42	1.44	154	5.28	8	0.27	6	0.21
50-59	5,538	35137.59	267	7.60	48	1.37	205	5.83	6	0.17	8	0.23
60-69	4,176	27778.33	160	5.76	37	1.33	115	4.14	4	0.14	4	0.14
70+	2,339	16326.09	32	1.96	9	0.55	19	1.16	1	0.06	3	0.18
Sex												
Male	15,619	104569.65	703	6.72	146	1.40	511	4.89	20	0.19	26	0.25
Female	1,971	12162.41	13	1.07	3	0.25	10	0.82	0	0.00	0	0.00
Education												
University	2140	13691.15	53	3.87	4	0.29	47	3.43	1	0.07	1	0.07
Senior high school	4173	26814.93	174	6.49	39	1.45	126	4.70	3	0.11	6	0.22
Junior high school or lower	11228	75877.21	487	6.42	106	1.40	347	4.57	16	0.21	18	0.24
Betel quid chewing												
Never	11,925	79006.46	256	3.24	38	0.48	203	2.57	10	0.13	5	0.06
Quit*	3,544	23719.97	236	9.95	62	2.61	162	6.83	6	0.25	6	0.25
Current	2,110	13920.02	224	16.09	49	3.52	156	11.21	4	0.29	15	1.08
Smoking												
Never	6,976	46286.91	101	2.18	21	0.45	75	1.62	1	0.02	4	0.09
Quit*	3,656	24678.95	126	5.11	36	1.46	82	3.32	3	0.12	5	0.20
Current	6,947	45680.37	489	10.70	92	2.01	364	7.97	16	0.35	17	0.37

Table 1 The incidence (per 1,000) of oral potentially malignant disorders by demographic features, status of metabolic syndrome and other associated risk factors

BMJ Open

1													
2													
3													
4													
5	Alcohol drinking												
6 7	Never	8,041	53484.46	212	3.96	48	0.90	155	2.90	4	0.07	5	0.09
8	Quit*	1,009	6798.76	58	8.53	10	1.47	44	6.47	2	0.29	2	0.29
)	Current	8,529	56365.96	446	7.91	91	1.61	322	5.71	14	0.25	19	0.34
0	BMI (kg/m2)	·											
1	<18.5	422	2852.29	9	3.16	5	1.75	3	1.05	0	0.00	1	0.35
2	18.5-24.9	8,844	58824.11	313	5.32	66	1.12	221	3.76	13	0.22	13	0.22
3	>25	8,324	55055.66	394	7.16	78	1.42	297	5.39	7	0.13	12	0.22
4	Triglyceride (mg/dl)	·											
5	<150	12,178	81399.38	405	4.98	87	1.07	289	3.55	14	0.17	15	0.18
6 7	≥150	5,412	35332.68	311	8.80	62	1.75	232	6.57	6	0.17	11	0.31
/ 8	HDL-C (mg/dl) **	,											
9	Abnormal	5,684	37372.54	268	7.17	50	1.34	204	5.46	5	0.13	9	0.24
)	Normal	11,781	78407.84	441	5.62	98	1.25	312	3.98	14	0.18	17	0.22
	Blood pressure												
2	(mm/Hg)***												
3	Normal	10,869	71713.89	440	6.14	94	1.31	321	4.48	12	0.17	13	0.18
1	Elevated risk	2,858	19152.31	127	6.63	23	1.20	91	4.75	7	0.37	6	0.31
	Hypertension	3,863	25865.86	149	5.76	32	1.24	109	4.21	1	0.04	7	0.27
5	Glucose (mg/dl)												
7	<100	11.074	79755 06	454	570	00	1 1 4	222	~1.00	12	0.17	10	0.24
3	<100 100-125	11,974	78755.06	454	5.76	90 27	1.14	332	4.22	13	0.17 0.19	19	0.24
)		3,907	26462.49	165	6.24	37	1.40	120 69	4.53	5		3	0.11
)	>125	1,709	11514.51	97	8.42	22	1.91	69	5.99	2	0.17	4	0.35
1	Meat	4.000	21004 20	171	5 2 5	20	1 10	107	2.07	2	0.00	2	0.00
2	Seldom	4,820	31984.38	171	5.35	38	1.19	127	3.97	3	0.09	3	0.09
3 4	Infrequent	11,904	78845.33	488	6.19	94 17	1.19	360	4.57	13	0.16	21	0.27
4 5	Frequent	829	5625.25	56	9.96	17	3.02	33	5.87	4	0.71	2	0.36
5 6	Vegetable Seldom	2 670	24216 52	170	7 10	40	1.73	124	5 1 2	1	0.04	5	0.21
7		3,679	24216.53 89529.87	172 527	7.10	42	1.73	124 384	5.12 4.29	1	0.04 0.21	5 19	0.21 0.21
, 8	Infrequent	13,469		527 6	5.89	105 0		384 6		19 0			0.21
.e 89	Frequent	308	2045.50	0	2.93	U	0.00	0	2.93	U	0.00	0	0.00

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1,608	10685.41	102	9.55	20	1.87	75	7.02	2	0.19	5	0.47
7,190	47575.85	333	7.00	74	1.56	233	4.90	10	0.21	16	0.34
8,773	58318.08	280	4.80	55	0.94	212	3.64	0	0.14	~	0.09
	· · · · · · · · · · · · · · · · · · ·	7,190 47575.85	7,190 47575.85 333	7,190 47575.85 333 7.00	7,190 47575.85 333 7.00 74	7,190 47575.85 333 7.00 74 1.56	7,190 47575.85 333 7.00 74 1.56 233	7,190 47575.85 333 7.00 74 1.56 233 4.90	7,190 47575.85 333 7.00 74 1.56 233 4.90 10	7,190 47575.85 333 7.00 74 1.56 233 4.90 10 0.21	7,190 47575.85 333 7.00 74 1.56 233 4.90 10 0.21 16

OSF: oral submucosa fibrosis; ***Quit**: Quit betel quid chewing, quit smoking or quit alcohol drinking defined as who had ever these oral habits; however no longer have these habit at the day of interview.

**HDL-C: Abnormal defined as (Male with 0<HDL<40) or (Female with 0<HDL<50), Normal defined as (Male with 40<=HDL) or (Female with50<=HDL)

***Hypertension: Normal defined as systolic blood pressure (sbp)<130 or diastolic blood pressure (dbp)<85, Elevated risk defined as 130<=sbp<140 or 85<=dbp<90, Hypertension defined as sbp≥140 or dbp≥90

Table 2 The association between MetS, other factors and oral potentially malignant

1	
2	
3 4	
5	
6 7	
8	
9	
10 11	
12	
13 14	
15	
16 17	
18	
19 20	
20 21	
22	
23 24	
25	
26 27	
28	
29 30	
31	
32	
33 34	
35	
36 37	
38	
39 40	
40 41	
42 43	
43 44	
45	
46 47	
48	
49 50	
51	
52 53	
54	
55	
56 57	
58	
59 60	

60

	RR	959	% CI	aRR	95% CI		
Metabolic syndrome							
Yes vs No	1.42	1.22	1.66	1.33	1.14	1.55	
Sex							
Male vs Female	7.14	3.94	12.94	3.49	1.89	6.44	
Age groups (vs 70+)							
30-39	2.89	1.85	4.52	2.17	1.35	3.47	
40-49	3.53	2.43	5.12	2.63	1.79	3.85	
50-59	3.63	2.52	5.24	3.10	2.14	4.49	
60-69	2.85	1.95	4.16	2.53	1.73	3.71	
Betel nut chewing (vs Never)							
Quit*	3.03	2.54	3.63	2.00	1.62	2.47	
Current	4.92	4.10	5.89	2.68	2.16	3.33	
Cigarette smoking (vs Never)							
Quit*	2.32	1.78	3.03	1.31	0.96	1.78	
Current	4.90	3.94	6.09	2.47	1.90	3.20	
Alcohol drinking (vs Never) 🌔							
Quit*	2.18	1.62	2.92	1.23	0.90	1.68	
Current	1.95	1.65	2.30	1.03	0.86	1.23	
Meat (vs Seldom)							
Infrequent	1.13	0.95	1.35	0.95	0.79	1.13	
Frequent	1.77	1.30	2.41	1.23	0.90	1.68	
Vegetable (vs Seldom)							
Infrequent	0.83	0.70	0.99	0.92	0.77	1.1(
Frequent	0.36	0.15	0.87	0.46	0.19	1.11	
Fruit (vs Seldom)							
Infrequent	0.74	0.59	0.93	0.91	0.72	1.15	
Frequent	0.51	0.40	0.64	0.79	0.62	1.00	
Education level (vs Junior							
high school or lower)							
Senior high school	1.00	0.84	1.19	0.97	0.80	1.17	
University	0.60	0.45	0.81	0.84	0.62	1.14	

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit:** quit betel quid chewing, quit smoking or quit alcohol drinking defined as who had ever these oral habits; however no longer have these habits at the day of interview.

All OPMD							
aRR*	95%	p-value					
1.22	1.04	1.44	0.0162				
1.26	1.07	1.49	0.0066				
1.12	0.95	1.32	0.1851				
0.93	0.79	1.09	0.3586				
1.20	1.02	1.41	0.0297				
1.14	1.08	1.20	<.0001				
-	1.22 1.26 1.12 0.93 1.20	aRR* 95% 1.22 1.04 1.26 1.07 1.12 0.95 0.93 0.79 1.20 1.02	aRR* 95% CI 1.22 1.04 1.44 1.26 1.07 1.49 1.12 0.95 1.32 0.93 0.79 1.09 1.20 1.02 1.41				

Table 3 The effect of metabolic syndrome components on oral potentially malignant disorders

aRR: adjusted rate ratio; **CI**: confidence interval.

* adjusted rate ratio for components of metabolic syndrome and metabolic syndrome score were treated in different models with adjustment of age, sex, education level, betel nut chewing, cigarette smoking, alcohol drinking, meat, vegetable and fruit consumption.

1	
2 3	
4	
5	
6 7	
8	
9	
10 11	
12	
13	
14 15	
16	
17	
18 19	
20	
21 22	
22	
24	
25 26	
20 27	
28	
29	
30 31 32	
32	
33 24	
34 35	
36	
37 38	
30 39	
40	
41 42	
42 43	
44	
45	
46	

Table 4 The association between metabolic syndrome and sub-types of oral potentially malignant disorders using multi-variable
Poisson regression

	Leukoplakia		OSF		Verrucous hyperplasia			Erythroplakia + Erythroleukoplakia				
	aRR*	95%	6 CI	aRR**	95%	6 CI	aRR***	95%	6 CI	aRR***	95%	6 CI
Metabolic syndrome				6								
Yes vs No	1.37	1.14	1.64	1.22	0.87	1.71	1.33	0.51	3.46	1.59	0.67	3.75
Component of metabolic syndrome												
Central obesity	1.30	1.07	1.57	1.06	0.74	1.52	1.17	0.47	2.89	0.94	0.37	2.36
Hyper-triglyceride	1.29	1.06	1.57	1.21	0.83	1.76	0.98	0.40	2.40	1.39	0.54	3.58
Low HDL-C	1.17	0.97	1.42	0.94	0.64	1.38	0.79	0.31	1.99	1.18	0.47	2.97
Elevated blood pressure	0.90	0.75	1.09	0.95	0.66	1.37	1.34	0.46	3.85	1.22	0.50	3.00
Hyperglycemia	1.16	0.96	1.41	1.43	0.99	2.05	1.28	0.52	3.19	0.99	0.37	2.64
Metabolic syndrome score	1.16	1.09	1.24	1.10	0.98	1.24	1.02	0.68	1.54	1.13	0.83	1.55

aRR: adjusted rate ratio; **CI**: confidence interval; **OSF**: oral submucous fibrosis

* adjusted rate ratio for metabolic syndrome, components of metabolic syndrome, and metabolic syndrome score were treated in different models with adjustment of age, sex, education level, betel nut chewing, cigarette smoking, alcohol drinking, meat, vegetable and fruit consumption.

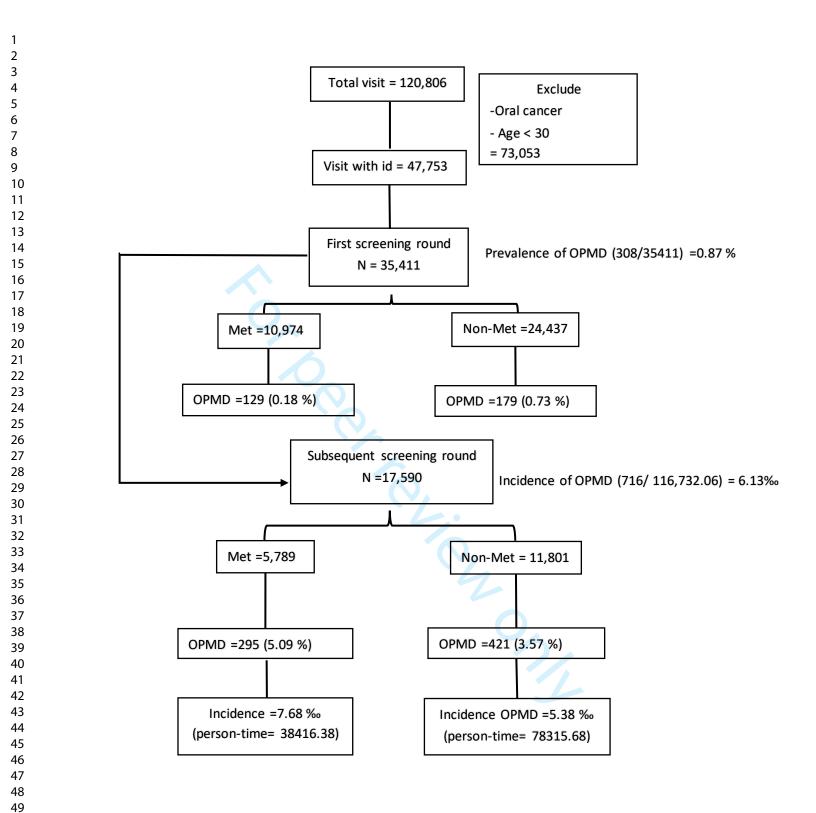
 ** adjusted rate ratio for metabolic syndrome, components of metabolic syndrome, and metabolic syndrome score were treated in different models with adjustment of age, sex, education level, betel nut chewing, cigarette smoking, alcohol drinking, meat, and fruit consumption.

*** adjusted rate ratio for metabolic syndrome, components of metabolic syndrome, and metabolic syndrome score were treated in different models with adjustment of betel nut chewing and eigarette smoking.

"I *Amy Ming-Fang Yen* The Corresponding Author of this article contained within the original manuscript which includes any diagrams & photographs within and any related or stand alone film submitted (the Contribution") has the right to grant on behalf of all authors and does grant on behalf of all authors, a licence to the BMJ Publishing Group Ltd and

its licencees, to permit this Contribution (if accepted) to be published in the BMJ and any other BMJ Group products and to exploit all subsidiary rights, as set out in our licence set out at: http://www.bmj.com/about-bmj/resources-authors/forms-policies-and-checklists/copyright-open-access-and-permission-reuse."

IF YOU ARE A NATIONAL INSTITUTE OF HEALTH ("NIH") EMPLOYEE, CONTRACTOR OR


<u>TRAINEE</u> the following cover sheet will be accepted by the BMJ Group and NIH and incorporated into the above Licence.

Please tick **one or more** boxes as appropriate:

- I am the sole author of the Contribution.
- ✓ I am one author signing on behalf of all co-owners of the Contribution.
- The Contribution has been made in the course of my employment and I am signing as authorised by my employer.
- I am a US Federal Government employee acting in the course of my employment.
- I am not a US Federal Government employee, but some or all of my co-authors are.
- I am an employee of the UK Crown* acting in the course of my employment
- I am a US Federal Government employee acting in the course of my employment.
- I am not a US Federal Government employee, but some or all of my co-authors are.
- I am an employee of the UK Crown acting in the course of my employment
- □ I am not an employee of the UK Crown acting in the course of my employment but some/all of my co-authors are.*

*Such authors should consult the any guidance issued by their employer and if necessary return any completed form;

http://www.nationalarchives.gov.uk/documents/informatio n-management/articlesministers-civil-servants-annexa.pdf

	OR	95%CI		aOR	95%CI		
Metabolic syndrome							
Yen vs No	1.61	1.28	2.02	1.44	1.14	1.82	
Sex							
Male vs Female	7.32	4.65	11.53	2.50	1.50	4.16	
Age groups (vs 70+)							
30-39	0.83	0.39	1.77	0.87	0.39	1.92	
40-49	1.69	1.02	2.77	1.33	0.79	2.25	
50-59	2.52	1.58	4.04	2.23	1.38	3.62	
60-69	1.83	1.11	3.01	1.73	1.04	2.86	
Betel nut chewing (vs Never)							
Quit*	3.33	2.53	4.37	1.40	1.04	1.90	
Current	5.71	4.34	7.52	2.00	1.47	2.74	
Cigarette smoking (vs Never)							
Quit*	4.72	3.23	6.91	2.66	1.72	4.12	
Current	8.89	6.48	12.19	4.74	3.25	6.92	
Alcohol drinking (vs Never)							
Quit*	2.49	1.95	3.16	0.98	0.59	1.63	
Current	2.62	1.62	4.24	1.01	0.77	1.32	
Meat (vs Seldom)							
Infrequent	1.28	0.98	1.67	1.00	0.76	1.32	
Frequent	2.85	1.83	4.45	1.67	1.06	2.63	
Vegetable (vs Seldom)							
Infrequent	0.82	0.63	1.07	0.88	0.68	1.16	
Frequent	0.48	0.15	1.52	0.53	0.17	1.71	
Fruit (vs Seldom)							
Infrequent	0.71	0.49	1.02	1.00	0.68	1.46	
Frequent	0.54	0.38	0.78	1.02	0.69	1.50	
Education level (vs Junior high so	chool or	lower)					
Senior high school	1.00	0.77	1.29	1.06	0.80	1.41	
University	0.54	0.36	0.82	0.84	0.55	1.30	

Supplement Table 1 The association between MetS, other factors and prevalence

aOR: adjusted odds ratio; **CI**: confidence interval; ***Quit**: Quit betel quid chewing, quit smoking or quit alcohol drinking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

	RR	95% CI		aRR	95% CI	
Component of metabolic syndrome						
Central obesity	1.36	1.17	1.58	1.22	1.04	1.44
Hyper-triglyceride	1.78	1.53	2.07	1.26	1.07	1.49
Low HDL-C	1.26	1.08	1.47	1.12	0.95	1.32
Elevated blood pressure	1.00	0.86	1.17	0.93	0.79	1.09
Hyperglycemia	1.21	1.04	1.42	1.20	1.02	1.41
Sex						
Male vs Female	7.14	3.94	12.94	3.57	1.94	6.59
Age groups (vs 70+)						
30-39	2.89	1.85	4.52	2.19	1.34	3.56
40-49	3.53	2.43	5.12	2.65	1.78	3.94
50-59	3.63	2.52	5.24	3.12	2.13	4.58
60-69	2.85	1.95	4.16	2.56	1.73	3.79
Betel nut chewing (vs Never)						
Quit*	3.03	2.54	3.63	1.94	1.57	2.40
Current	4.92	4.10	5.89	2.59	2.08	3.22
Cigarette smoking (vs Never)						
Quit*	2.32	1.78	3.03	1.32	0.96	1.79
Current	4.90	3.94	6.09	2.42	1.86	3.14
Alcohol drinking (vs Never)						
Quit*	2.18	1.62	2.92	1.24	0.90	1.70
Current	1.95	1.65	2.30	1.03	0.86	1.24
Meat (vs Seldom)						
Infrequent	1.13	0.95	1.35	0.94	0.79	1.13
Frequent	1.77	1.30	2.41	1.22	0.90	1.67
Vegetable (vs Seldom)						
Infrequent	0.83	0.70	0.99	0.93	0.78	1.12
Frequent	0.36	0.15	0.87	0.48	0.20	1.14
Fruit (vs Seldom)						
Infrequent	0.74	0.59	0.93	0.91	0.72	1.15
Frequent	0.51	0.40	0.64	0.77	0.60	0.98
Education level (vs Junior high school	or lower	;)				
Senior high school	1.00	0.84	1.19	0.98	0.81	1.19
University	0.60	0.45	0.81	0.84	0.62	1.14

Supplement Table 2 The association between Component of MetS, other factors and oral potentially malignant disorders (MetS \rightarrow OPMD)

 aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: Quit betel quid chewing, quit smoking or quit alcohol drinking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

	RR	95%CI		aRR	95%CI	
Metabolic syndrome						
Score	1.18	1.12	1.24	1.14	1.08	1.20
Sex						
Male vs Female	7.14	3.94	12.94	3.51	1.90	6.47
Age groups (vs 70+)						
30-39	2.89	1.85	4.52	2.18	1.36	3.50
40-49	3.53	2.43	5.12	2.64	1.80	3.87
50-59	3.63	2.52	5.24	3.09	2.13	4.48
60-69	2.85	1.95	4.16	2.53	1.73	3.70
Betel nut chewing (vs Never)						
Quit*	3.03	2.54	3.63	1.98	1.61	2.44
Current	4.92	4.10	5.89	2.63	2.12	3.27
Cigarette smoking (vs Never)						
Quit*	2.32	1.78	3.03	1.31	0.96	1.79
Current	4.90	3.94	6.09	2.48	1.91	3.22
Alcohol drinking (vs Never)						
Quit*	2.18	1.62	2.92	1.23	0.90	1.68
Current	1.95	1.65	2.30	1.03	0.86	1.23
Meat (vs Seldom)						
Infrequent	1.13	0.95	1.35	0.95	0.79	1.14
Frequent	1.77	1.30	2.41	1.23	0.90	1.68
Vegetable (vs Seldom)						
Infrequent	0.83	0.70	0.99	0.92	0.77	1.10
Frequent	0.36	0.15	0.87	0.46	0.19	1.11
Fruit (vs Seldom)						
Infrequent	0.74	0.59	0.93	0.92	0.73	1.15
Frequent	0.51	0.40	0.64	0.79	0.62	1.01
Education level (vs Junior high school or lower)						
Senior high school	1.00	0.84	1.19	0.97	0.81	1.17
University	0.60	0.45	0.81	0.84	0.62	1.14

Supplement Table 3 The association between MetS score, other factors and oral

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: Quit betel quid chewing, quit smoking or quit alcohol drinking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

	RR	95%CI		aRR	95%CI	
Metabolic syndrome						
Yen vs No	1.35	0.96	1.90	1.22	0.87	1.71
Sex						
Male vs Female	8.16	2.02	32.94	3.34	0.78	14.2
Age groups (vs 70+)						
30-39	2.88	1.23	6.73	2.61	1.04	6.54
40-49	2.60	1.26	5.34	2.08	0.97	4.47
50-59	2.22	1.08	4.56	1.99	0.96	4.13
60-69	2.25	1.08	4.69	2.07	0.99	4.33
Betel nut chewing (vs Never)						
Quit*	5.31	3.49	8.06	3.71	2.23	6.16
Current	7.82	5.07	12.05	4.77	2.87	7.92
Cigarette smoking (vs Never)						
Quit*	3.58	2.03	6.34	1.60	0.77	3.32
Current	5.10	3.07	8.47	1.96	1.04	3.66
Alcohol drinking (vs Never)						
Quit*	1.78	0.90	3.53	0.72	0.35	1.47
Current	1.80	1.25	2.59	0.83	0.56	1.23
Meat (vs Seldom)						
Infrequent	1.03	0.69	1.52	0.84	0.56	1.24
Frequent	2.65	1.47	4.77	1.71	0.94	3.11
Fruit (vs Seldom)						
Infrequent	0.92	0.54	1.56	1.11	0.65	1.91
Frequent	0.55	0.32	0.95	0.87	0.50	1.51
Education level (vs Junior high school or lower)						
Senior high school	1.11	0.76	1.61	1.07	0.70	1.62
University	0.23	0.08	0.62	0.33	0.12	0.94

Supplement Table 4 The association between MetS, other factors and oral submucous fibrosis (MetS \rightarrow OSF)

aRR: adjusted rate ratio; **CI**: confidence interval ***Quit**: Quit betel quid chewing, quit smoking or quit alcohol drinking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

	RR	959	%CI	aRR	95 9	%CI
Component of metabolic syndrome						
Central obesity	1.21	0.87	1.70	1.06	0.74	1.52
Hyper-triglyceride	1.67	1.19	2.34	1.21	0.83	1.7
Low HDL-C	1.06	0.74	1.50	0.94	0.64	1.3
Elevated blood pressure	1.04	0.74	1.47	0.95	0.66	1.3
Hyperglycemia	1.37	0.97	1.92	1.43	0.99	2.0
Sex						
Male vs Female	8.16	2.02	32.94	3.27	0.77	13.9
Age groups (vs 70+)						
30-39	2.88	1.23	6.73	2.60	1.02	6.6
40-49	2.60	1.26	5.34	2.05	0.95	4.4
50-59	2.22	1.08	4.56	1.89	0.91	3.9
60-69	2.25	1.08	4.69	2.03	0.97	4.2
Betel nut chewing (vs Never)						
Quit*	5.31	3.49	8.06	3.77	2.26	6.3
Current	7.82	5.07	12.05	4.88	2.92	8.1
Cigarette smoking (vs Never)						
Quit*	3.58	2.03	6.34	1.59	0.77	3.2
Current	5.10	3.07	8.47	1.91	1.02	3.5
Alcohol drinking (vs Never)						
Quit*	1.78	0.90	3.53	0.73	0.36	1.5
Current	1.80	1.25	2.59	0.84	0.56	1.2
Meat (vs Seldom)						
Infrequent	1.03	0.69	1.52	0.82	0.55	1.2
Frequent	2.65	1.47	4.77	1.67	0.91	3.0
Fruit (vs Seldom)						
Infrequent	0.92	0.54	1.56	1.12	0.65	1.9
Frequent	0.55	0.32	0.95	0.85	0.49	1.4
Education level (vs Junior high school or lower)						
Senior high school	1.11	0.76	1.61	1.09	0.71	1.6
University	0.23	0.08	0.62	0.34	0.12	0.9

aRR: adjusted rate ratio; CI: confidence interval; *Quit: Quit betel quid chewing, quit smoking or quit alcohol drinking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

	RR	95 9	%CI	aRR	95 %	%CI
Metabolic syndrome						
Score	1.15	1.03	1.30	1.10	0.98	1.24
Sex						
Male vs Female	8.16	2.02	32.94	3.37	0.79	14.3
Age groups (vs 70+)						
30-39	2.88	1.23	6.73	2.63	1.05	6.62
40-49	2.60	1.26	5.34	2.10	0.98	4.50
50-59	2.22	1.08	4.56	1.99	0.96	4.12
60-69	2.25	1.08	4.69	2.07	0.99	4.33
Betel nut chewing (vs Never)						
Quit*	5.31	3.49	8.06	3.68	2.21	6.1
Current	7.82	5.07	12.05	4.70	2.83	7.8
Cigarette smoking (vs Never)						
Quit*	3.58	2.03	6.34	1.60	0.77	3.3
Current	5.10	3.07	8.47	1.96	1.05	3.6
Alcohol drinking (vs Never)						
Quit*	1.78	0.90	3.53	0.72	0.35	1.4
Current	1.80	1.25	2.59	0.83	0.56	1.2
Meat (vs Seldom)						
Infrequent	1.03	0.69	1.52	0.84	0.57	1.24
Frequent	2.65	1.47	4.77	1.71	0.94	3.1
Fruit (vs Seldom)						
Infrequent	0.92	0.54	1.56	1.12	0.65	1.92
Frequent	0.55	0.32	0.95	0.87	0.50	1.5
Education level (vs Junior high school or lower)						
Senior high school	1.11	0.76	1.61	1.07	0.70	1.63
University	0.23	0.08	0.62	0.33	0.12	0.94

Supplement Table 6 The association between MetS score, other factors and oral submucous fibrosis (MetS \rightarrow OSF)

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: Quit betel quid chewing, quit smoking or quit alcohol drinking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

	RR	959	%CI	aRR	95%	%CI
Metabolic syndrome						
Yen vs No	1.45	1.22	1.73	1.37	1.14	1.6
Sex						
Male vs Female	6.48	3.36	12.52	3.29	1.67	6.4
Age groups (vs 70+)						
30-39	2.92	1.63	5.22	2.08	1.13	3.8
40-49	4.38	2.72	7.05	3.20	1.97	5.1
50-59	4.86	3.04	7.78	4.09	2.55	6.5
60-69	3.51	2.16	5.71	3.13	1.92	5.0
Betel nut chewing (vs Never)						
Quit*	2.70	2.20	3.33	1.81	1.42	2.3
Current	4.45	3.61	5.49	2.42	1.88	3.1
Cigarette smoking (vs Never)						
Quit*	2.04	1.49	2.80	1.22	0.86	1.7
Current	4.88	3.80	6.27	2.66	1.98	3.5
Alcohol drinking (vs Never)						
Quit*	2.29	1.63	3.20	1.36	0.95	1.9
Current	1.95	1.61	2.36	1.06	0.86	1.3
Meat (vs Seldom)						
Infrequent	1.12	0.91	1.37	0.93	0.76	1.1
Frequent	1.47	1.00	2.16	1.01	0.68	1.5
Vegetable (vs Seldom)						
Infrequent	0.84	0.69	1.03	0.93	0.75	1.1
Frequent	0.49	0.20	1.19	0.60	0.25	1.4
Fruit (vs Seldom)						
Infrequent	0.68	0.53	0.89	0.85	0.65	1.1
Frequent	0.51	0.39	0.66	0.78	0.59	1.0
Education level (vs Junior high school or lower)						
Senior high school	0.99	0.80	1.22	0.98	0.78	1.2
University	0.74	0.55	1.01	1.03	0.74	1.4

Supplement Table 7 The association between MetS, other factors and Leukoplakia

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: Quit betel quid chewing, quit smoking or quit alcohol drinking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

	RR	95 9	%CI	aRR	95%C	
Component of metabolic syndrome						
Central obesity	1.43	1.20	1.70	1.30	1.07	1.5
Hyper-triglyceride	1.85	1.56	2.21	1.29	1.06	1.5
Low HDL-C	1.34	1.12	1.60	1.17	0.97	1.4
Elevated blood pressure	0.99	0.83	1.18	0.90	0.75	1.0
Hyperglycemia	1.20	1.00	1.44	1.16	0.96	1.4
Sex						
Male vs Female	6.48	3.36	12.52	3.43	1.74	6.7
Age groups (vs 70+)						
30-39	2.92	1.63	5.22	2.15	1.14	4.0
40-49	4.38	2.72	7.05	3.34	2.00	5.5
50-59	4.86	3.04	7.78	4.30	2.61	7.0
60-69	3.51	2.16	5.71	3.29	1.97	5.4
Betel nut chewing (vs Never)						
Quit*	2.70	2.20	3.33	1.73	1.36	2.2
Current	4.45	3.61	5.49	2.31	1.79	2.9
Cigarette smoking (vs Never)						
Quit*	2.04	1.49	2.80	1.23	0.86	1.7
Current	4.88	3.80	6.27	2.60	1.93	3.5
Alcohol drinking (vs Never)						
Quit*	2.29	1.63	3.20	1.37	0.95	1.9
Current	1.95	1.61	2.36	1.06	0.86	1.3
Meat (vs Seldom)						
Infrequent	1.12	0.91	1.37	0.94	0.76	1.1
Frequent	1.47	1.00	2.16	1.02	0.68	1.5
Vegetable (vs Seldom)						
Infrequent	0.84	0.69	1.03	0.92	0.75	1.1
Frequent	0.49	0.20	1.19	0.60	0.25	1.4
Fruit (vs Seldom)						
Infrequent	0.68	0.53	0.89	0.85	0.65	1.1
Frequent	0.51	0.39	0.66	0.78	0.59	1.0
Education level (vs Junior high school or lower)						
Senior high school	0.99	0.80	1.22	0.98	0.78	1.2
University	0.74	0.55	1.01	1.04	0.75	1.4

Supplement Table 8 The association between Component of MetS, other factors and Leukoplakia (MetS \rightarrow Leukoplakia)

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: Quit betel quid chewing, quit smoking or quit alcohol drinking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

Leukoplakia (MetS \rightarrow Leukoplakia)	
Supplement Table 9 The association between MetS score, other factors and	

	RR	95 9	%CI	aRR	95%CI	
Metabolic syndrome						
Score	1.20	1.13	1.27	1.16	1.09	1.24
Sex						
Male vs Female	6.48	3.36	12.52	3.31	1.68	6.51
Age groups (vs 70+)						
30-39	2.92	1.63	5.22	2.09	1.14	3.84
40-49	4.38	2.72	7.05	3.22	1.99	5.22
50-59	4.86	3.04	7.78	4.08	2.54	6.54
60-69	3.51	2.16	5.71	3.12	1.92	5.08
Betel nut chewing (vs Never)						
Quit*	2.70	2.20	3.33	1.79	1.40	2.27
Current	4.45	3.61	5.49	2.37	1.84	3.05
Cigarette smoking (vs Never)						
Quit*	2.04	1.49	2.80	1.22	0.86	1.74
Current	4.88	3.80	6.27	2.68	1.99	3.60
Alcohol drinking (vs Never)						
Quit*	2.29	1.63	3.20	1.37	0.95	1.97
Current	1.95	1.61	2.36	1.05	0.85	1.30
Meat (vs Seldom)						
Infrequent	1.12	0.91	1.37	0.94	0.76	1.16
Frequent	1.47	1.00	2.16	1.02	0.68	1.51
Vegetable (vs Seldom)						
Infrequent	0.84	0.69	1.03	0.92	0.75	1.14
Frequent	0.49	0.20	1.19	0.60	0.25	1.45
Fruit (vs Seldom)						
Infrequent	0.68	0.53	0.89	0.85	0.65	1.11
Frequent	0.51	0.39	0.66	0.78	0.59	1.03
Education level (vs Junior high school of	or lower)					
Senior high school	0.99	0.80	1.22	0.98	0.78	1.22
University	0.74	0.55	1.01	1.04	0.75	1.44

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: Quit betel quid chewing, quit smoking or quit alcohol drinking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

	RR	95	%CI	aRR	95%CI	
Metabolic syndrome						
Yen vs No	1.32	0.51	3.40	1.33	0.51	3.46
Betel nut chewing (vs Never)						
Quit*	1.92	0.64	5.71	1.24	0.40	3.82
Current	2.71	0.84	8.81	1.13	0.34	3.74
Cigarette smoking (vs Never)						
Quit*	1.91	0.12	30.49	1.72	0.09	31.37
Current	17.03	2.26	128.38	15.80	2.04	122.28

Supplement Table 10 The association between MetS, other factors and Verrucous hyperplasia (MetS \rightarrow Verrucous hyperplasia)

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: Quit betel quid chewing or quit smoking drinking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

	RR	95	%CI	aRR	95	%CI
Component of metabolic syndrome						
Central obesity	1.05	0.41	2.71	1.17	0.47	2.89
Hyper-triglyceride	1.26	0.47	3.42	0.98	0.40	2.40
Low HDL-C	0.88	0.31	2.50	0.79	0.31	1.99
Elevated blood pressure	1.04	0.40	2.69	1.34	0.46	3.85
Hyperglycemia	1.13	0.42	3.05	1.28	0.52	3.19
Betel nut chewing (vs Never)						
Quit*	1.92	0.64	5.71	1.22	0.39	3.80
Current	2.71	0.84	8.81	0.84	0.23	3.13
Cigarette smoking (vs Never)						
Quit*	1.91	0.12	30.49	1.72	0.09	31.2
Current	17.03	2.26	128.38	16.34	2.00	133.7

Supplement Table 11 The association between Component of MetS, other factors and Verrucous hyperplasia (MetS \rightarrow Verrucous hyperplasia)

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: Quit betel quid chewing or quit smoking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

	RR	95	%CI	aRR	95	%CI
Metabolic syndrome						
Score	1.01	0.67	1.54	1.02	0.68	1.54
Betel nut chewing (vs Never)						
Quit*	1.92	0.64	5.71	1.24	0.40	3.85
Current	2.71	0.84	8.81	1.15	0.34	3.91
Cigarette smoking (vs Never)						
Quit*	1.91	0.12	30.49	1.73	0.09	31.58
Current	17.03	2.26	128.38	15.73	2.01	122.98

Supplement Table 12 The association between MetS score, other factors and Verrucous hyperplasia (MetS → Verrucous hyperplasia)

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: Quit betel quid chewing or quit smoking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

$\label{eq:supplement} \begin{array}{l} \textbf{Supplement Table 13 The association between MetS, other factors and} \\ \textbf{Erythroplaklia} + \textbf{Erythroleukoplakia} (\textbf{MetS} \rightarrow \textbf{Erythroplakia} + \end{array}$

Erythroleukoplakia)

	RR	95%CI		aRR	95	%CI
Metabolic syndrome						
Yen vs No	1.88	0.80	4.43	1.59	0.67	3.75
Betel nut chewing (vs Never)						
Quit*	4.31	1.16	16.03	4.47	0.93	21.46
Current	18.24	5.88	56.54	17.81	4.95	64.12
Cigarette smoking (vs Never)						
Quit*	1.91	0.48	7.62	0.84	0.15	4.60
Current	3.46	1.13	10.61	0.96	0.26	3.49

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: Quit betel quid chewing or quit smoking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplement Table 14 The association between Component of MetS, other factors and Erythroplaklia + Erythroleukoplakia (MetS → Erythroplakia + Erythroleukoplakia)

	RR	95%CI		aRR	8 95%C	
Component of metabolic syndrome						
Central obesity	1.24	0.52	2.94	0.94	0.37	2.36
Hyper-triglyceride	2.10	0.89	4.95	1.39	0.54	3.58
Low HDL-C	1.30	0.54	3.13	1.18	0.47	2.97
Elevated blood pressure	1.33	0.54	3.29	1.22	0.50	3.00
Hyperglycemia	1.03	0.42	2.56	0.99	0.37	2.64
Betel nut chewing (vs Never)						
Quit*	4.31	1.16	16.03	4.49	0.94	21.55
Current	18.24	5.88	56.54	17.86	5.10	62.54
Cigarette smoking (vs Never)						
Quit*	1.91	0.48	7.62	0.85	0.15	4.65
Current	3.46	1.13	10.61	0.91	0.24	3.50

aRR: adjusted rate ratio; CI: confidence interval; *Quit: Quit betel quid chewing or quit smoking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

Supplement Table 15 The association between MetS score, other factors and Erythroplaklia + Erythroleukoplakia (MetS → Erythroplakia + Erythroleukoplakia)

	RR	95%CI		aRR	95	%CI	
Metabolic syndrome							
Score	1.22	0.89	1.68	1.13	0.83	1.55	
Betel nut chewing (vs Never)							
Quit*	4.31	1.16	16.03	4.49	0.94	21.54	
Current	18.24	5.88	56.54	17.92	4.96	64.68	
Cigarette smoking (vs Never)							
Quit*	1.91	0.48	7.62	0.84	0.15	4.60	
Current	3.46	1.13	10.61	0.95	0.26	3.49	

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: Quit betel quid chewing or quit smoking defined as who had ever have these oral habits; however no longer have these habits at the day of interview.

	Item No	Recommendation	Pages
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5,6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7,8
-		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7,8
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	NA
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	7
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7,8
measurement		assessment (measurement). Describe comparability of assessment methods	
		if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8,10
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	10
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	NA
		(d) If applicable, explain how loss to follow-up was addressed	NA
		(e) Describe any sensitivity analyses	NA
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	11
i unioipunto	15	potentially eligible, examined for eligibility, confirmed eligible, included in	11
		the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	11
		(c) consider use of a now diagram	(Figure
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	11 11
Descriptive data	14.	social) and information on exposures and potential confounders	11
		(b) Indicate number of participants with missing data for each variable of	NA
		interest	11/1
		(c) Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Report numbers of outcome events or summary measures over time	11
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	11,12

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute	NA
		risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Nz
Discussion			
Key results	18	Summarise key results with reference to study objectives	13
Limitations	19	Discuss limitations of the study, taking into account sources of potential	17
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	17
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	17
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	19
		and, if applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

The Effect of Metabolic Syndrome on Incidence of Oral Potentially Malignant Disorder: A Prospective Cohort Study in Taiwan

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-041971.R2
Article Type:	Original research
Date Submitted by the Author:	17-Sep-2020
Complete List of Authors:	Siewchaisakul, Pallop; Taipei Medical University College of Oral Medicine, School of dentistry Wang, Sen-Te ; Taipei Medical University Hospital Peng, Szu-Min ; National Taiwan University, Institute of Epidemiology and Preventive Medicine, College of Public Health, Sarakarn, Pongdech; Khon Kaen University, Epidemiology and Biostatistics Department, Faculty of Public Health Chen, Li-Sheng; Taipei Medical University College of Oral Medicine, School of Oral Hygiene Chen, Tony Hsiu-Hsi; National Taiwan University, Division of Biostatistics Yeh, Yen-Po; Changhua County Public Health Bureau Yen, Amy Ming-Fang; Taipei Medical University College of Oral Medicine,
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Nutrition and metabolism, Oncology, Public health
Keywords:	ORAL MEDICINE, ONCOLOGY, Epidemiology < ONCOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	The Effect of Metabolic Syndrome on Incidence of Oral Potentially Malignant
2	Disorder: A Prospective Cohort Study in Taiwan
3	Pallop Siewchaisakul ^{1,2,3#} , Sen-Te Wang ^{4,5#} , Szu-Min Peng ⁶ , Pongdech Sarakarn ⁷ , Li-Sheng
4	Chen ^{2,3} , Tony Hsiu-Hsi Chen ⁶ , Yen-Po Yeh ^{6,8,*} , Amy Ming-Fang Yen ^{2,3,*}
5	
6	[#] These authors contribute equally.
7	
8	¹ School of Dentistry, Taipei Medical University, Taipei, Taiwan
9	² Oral Health Care Research Center, College of Oral Medicine, Taipei Medical University,
10	Taipei
11	³ School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
12	⁴ Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical
13	University, Taipei, Taiwan
14	⁵ Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
15	⁶ Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan
16	University
17	⁷ Epidemiology and Biostatistics Department, Faculty of Public Health, Khon Kaen University,
18	Khon Kaen, Thailand
19	⁸ Changhua County Public Health Bureau
20	
21	Word counts of Abstract: 203, Manuscript: 3153
22	Number of references: 45, Tables: 4, Figures: 1
23	

1		
2 3 4	24	Running title: Metabolic Syndrome and OPMD
5 6	25	
7 8	26	* Corresponding author:
9 10 11	27	Dr. Yen-Po Yeh, Changhua County Public Health Bureau, No.162, Sec. 2, Jhongshan Rd.,
12 13	28	Changhua City, Changhua County 500, Taiwan, Telephone: +886 -4-711-5141, E-mail:
14 15	29	yeh.leego@gmail.com, and
16 17 18	30	Professor Amy Ming-Fang Yen, School of Oral Hygiene, College of Oral Medicine, Taipei
19 20	31	Medical University, 250 Wu-Hsing St. Taipei, Taiwan. Telephone: +886-2-27361661 ext 5152,
21 22	32	Fax: +886-27362295, E-mail: amyyen@tmu.edu.tw
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	33	Fax: +886-27362295, E-mail: amyyen@tmu.edu.tw
56 57 58		2
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
ر م	
4 5 7 8 9 10	
7	
8	
Ō	
10	
10	
11	
12	
12	
13	
12 13 14 15 16 17	
15	
16	
17	
17	
18	
19	
20	
21	
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	
22	
23	
24	
25	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
22	
34	
35	
36	
27	
57	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

34 Abstract

Objectives We aimed to assess the effect of metabolic syndrome (MetS) on incident oral

36 potentially malignant disorder (OPMD).

37 **Design** We conducted a prospective cohort study of the Changhua community-based integrated

38 screening (CHCIS) programme and nationwide oral cancer screening programme during the

39 period between 2005 and 2014.

40 Setting Changhua community-based integrated screening CHCIS, Taiwan.

41 **Participants** We enrolled 17,590 participants aged 30 years and older.

42 Main outcomes and measures We assessed the impact of MetS on the outcome measured by43 incident OPMD.

44 **Results:** The incidences of OPMD among subjects with and without MetS were 7.68 ‰ and 5.38

45 %, respectively. After adjusting for confounders, subjects with MetS exhibited a statistically

46 greater risk of developing OPMD compared with those who were free of MetS by 33%

47 (aRR=1.33, 95% CI: 1.14-1.55). Individual components of MetS still remained significant,

48 including central obesity (aRR=1.22, 95% CI: 1.04-1.44), hypertriglyceridaemia (aRR=1.26,

49 95% CI: 1.07-1.49), and hyperglycaemia (aRR=1.20, 95% CI: 1.02-1.41). Central obesity and

50 hypertriglyceridaemia were also statistically associated with a sub-type of OPMD, namely,

51 leukoplakia.

52 Conclusion: The temporal influence of MetS on the risk of incident OPMD was noted in our
 53 prospective cohort study. Therefore, promoting a MetS prevention and control programme might
 54 reduce the occurrence of OPMD and oral cancer.

BMJ Open

1 2			
3 4	55		Strengths and limitations of this study
5 6	56	•	A large population-based prospective cohort study was conducted to examine the impact of
7 8 9	57		metabolic syndrome (MetS) on incident oral potentially malignant disorder (OPMD).
9 10 11	58	•	This is the first study to investigate the effect of metabolic syndrome on incidence of
12 13	59		OPMD as well as sub-types of OPMD, especially leukoplakia and oral submucous fibrosis.
14 15 16	60	•	Investigations into other subtypes of OPMD are limited due to the rarity of other OPMD
17 18	61		cases in our population.
19 20	62	•	The results of our study are based on a Taiwanese population 30 years and older, so the
21 22 23	63		generalization of our results to other regions would be limited especially given ethnic,
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 9 40 41 42 43 44 50 51 52 53 54 55 56	64		genetic and dietary features.

2		
3 4	65	Introduction
5 6	66	Oral potentially malignant disorder (OPMD) is an disorder that has potential for
7 8 9	67	subsequent progression to oral cancer [1]. Thus, a better understanding of the risk factors for the
9 10 11	68	occurrence of OPMD is important for the primary prevention of oral cancer [2]. Evidence on
12 13	69	tobacco use, betel quid chewing, and alcohol drinking has well documented these major risk
14 15	70	factors for OPMD [3-4]. Metabolic syndrome (MetS) is associated with the increased risk of
16 17 18	71	several cancers, including oral cancer [5,6]. MetS is also associated with OPMD [7,8]. Such an
19 20	72	association due to common shared underlying pathways (such as chronic inflammation) could be
21 22	73	attributed to OPMD. Several studies have proposed the possible biological linkage between
23 24	74	OPMD and MetS, which may have pro-inflammatory markers and insulin resistance in common
25 26 27	75	[9-10]. However, the true biological causes accounting for such an association between MetS
28 29	76	and OPMD remain elusive. In spite of this, it is still very worthwhile to study how MetS is
30 31	77	associated with OPMD by clarifying the temporal relationship between MetS and OPMD. A
32 33 34	78	prospective cohort study is therefore required.
35 36	79	In the Changhua community-based integrated screening (CHCIS) programme, a routine
37 38	80	health check-up that embraces biomarker tests for MetS has been conducted annually since 2005
39 40 41	81	[11]. The early detection of OPMD and oral cancer has been provided under the instruction of
42 43	82	nationwide oral cancer screening programme [12]. This screened cohort provides an opportunity
44 45	83	to elucidate the effect of MetS on the incidence of OPMD with a normal cohort at baseline and
46 47	84	followed over time until 2014.
48 49 50	85	Using empirical data from a large population-based integrated screening programme in
51 52	86	combination with a nationwide oral cancer screening programme with oral visual inspection, the
53 54	87	major aim of this study was to assess the temporal influence of MetS on OPMD.
55 56		
57 58		-

1 2		
2 3 4	88	Materials and methods
5 6	89	Study design
7 8	90	Our study design consists of two main steps. The first step is tailored for prevalence (cross-
9 10	91	sectional design), and the second step is a longitudinal follow-up for incident cases of OPMD
11 12 13	92	(Figure 1). We conducted cross-sectional analysis to determine the prevalence of OPMD among
14 15	93	the MetS and MetS-free groups at baseline (identified at the first screening round) to create a
16 17	94	normal cohort by excluding those who were diagnosed with OPMD or oral cancer before or at the
18 19	95	first screening. Subjects in the normal cohort have undergone repeated screening continuously.
20 21 22	96	To address our initial hypothesis that MetS plays a role in the aetiology of OPMD, a
23 24	97	prospective follow-up study was adopted. We followed the OPMD-free cohort who attended
25 26	98	subsequent screenings in the nationwide oral cancer screening programme to identify those with
27 28	99	an OPMD diagnosis in subsequent screening rounds. It should be noted that subjects may attend
29 30		
31 32 33	100	the CHCIS and nationwide oral cancer screening programme at different times. We defined the
33 34 35	101	status of MetS of participants using the first screen in CHCIS and the first diagnosis of OPMD in
36 37	102	the nationwide oral cancer screening programme.
38 39	103	
40 41	104	Study population and data collection
42 43	105	The CHCIS programme is a population-based screening programme that followed the
44 45	106	service model of the Keelung community-based integrated screening (KCIS) programme [13].
46 47 48	107	These programmes provided screening services of multiple cancers (liver cancer, breast cancer,
49 50	108	colorectal cancer, oral cancer, and cervical cancer), chronic diseases (hyperlipidaemia,
51 52	109	hypertension, and hyperglycaemia, and MetS), and anthropometric measurements [11]. The
53 54 55	110	population in this study consists of dwellers aged 30 years or older that have been participated in
56 57		
58		c

both CHCIS and the nationwide oral cancer screening programme between 2005 and 2014. Subjects who had a diagnosis of oral cancer before the first attendance to the CHCIS programme were excluded.

All participants were instructed to follow an 8-hour fasting before blood draw. Biochemical examination of fasting glucose and lipid profiles was performed. The anthropometric measures for body height, body weight, and circumferences of waist and hip were measured by either public health nurses or well-trained volunteer social workers in the community settings. All participants in the CHCIS programme were interviewed to obtain information on education level, oral habits (including betel nut chewing, cigarette smoking, and alcohol drinking), dietary habits, personal disease history, and family disease history. For oral habits, we classified the habit as never, guit, or current user. Quitting in our study refers to participants who reported habitual use of chewing betel quid, smoking cigarettes, or drinking alcohol; however, at the time of interview, they reported no regular consumption of betel quid, cigarettes, or alcohol. Dietary factors, including meat, vegetable and fruit consumption, were classified as seldom (including never), infrequent, and frequent. Infrequent meat consumption was defined as having 1-2 units per day, and frequent meat consumption was defined as 3-4 units per day. Infrequent vegetable consumption was defined as having a half or 1 bowl per day, and frequent vegetable consumption was defined as 3-4 bowls per day. Infrequent fruit consumption was defined as 1-4 times per week, and frequent fruit consumption was defined as more than 5 times per week.

Instruction on informed consent was first given and approved by those who expressed the willingness of participating in the study. This study was approved by the Institutional Review Board of Taipei Medical University (TMU-JIRB: N201611014)

BMJ Open

2	
3	
4	
5	
6	
7	
, 0	
8	
9	
10	
11	
12	
13	
14	
15	
13 14 15 16 17	
17	
18	
19	
20	
21 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	

60

149

140

134 **OPMD detection**

Since 2005, the oral visual inspection for all eligible participants was performed in Changhua County. In each on-site screening centre, trained dentists or physicians examined all participants. For those who were clinically diagnosed with oral leukoplakia, erythroleukoplakia, erythroplakia, oral submucous fibrosis (OSF), and verrucous hyperplasia were recorded as positive for OPMD.

141 Metabolic syndrome

Metabolic syndrome (MetS) was defined according to the Epidemiology Task Force Consensus Group criteria (2005) [14] in which participants presented at least three or more of the five components including: (1) central obesity (waist circumference \geq 80 cm for females and \geq 90 cm for males), (2) hypertriglyceridaemia (\geq 150 mg/dl), (3) low level of high-density lipoprotein cholesterol (HDL-C) (<50 mg/dl for females and <40 mg/dl for males), (4) elevated blood pressure (systolic blood pressure \geq 130 mm Hg or diastolic blood pressure \geq 85 mm Hg), and (5) hyperglycaemia (fasting glucose \geq 100 mg/dl).

¹⁵⁰ 150 **Patient and Public Involvement**

Participants in our study were recruited through the CHCIS programme. Participants were not involved in the design and conduct of the study. Staff in the Changhua County Public Health Bureau and local health centres were responsible for preparation and implementation of the screening service in the community.

155 The results of our study will be disseminated to the public through the Changhua County
 4 156 Public Health Bureau.

1 2		
2 3 4	157	
5 6	158	
7 8 9	159	Statistical analysis
10 11	160	Prevalence of OPMD was presented as cases per 100 persons. The OPMD incidence rate
12 13	161	was presented as cases per 1,000 person-years. The univariate Poisson regression model was first
14 15 16	162	used to estimate the rate ratio (RR) for MetS and factors in association with the risk for developing
17 18	163	OPMD. The adjusted rate ratio (aRR) was further estimated using the multi-variable Poisson
19 20	164	regression model when significant confounding factors from the univariate analyses and other
21 22	165	factors reported of having significant association with OPMD in previous studies were retained in
23 24 25	166	the model. In addition to the dichotomous variable of MetS or not, we also examined the effect of
26 27	167	each individual component of MetS and also the MetS score in separate models with both
28 29	168	univariate and multivariate analyses. The magnitude of the effect between MetS and sub-types of
30 31 32	169	OPMD was estimated in separate multi-variable Poisson regression models. Statistical
33 34	170	significance was defined as p<0.05. All analyses were conducted with SAS version 9.4 (SAS
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	171	Institute Inc., Cary, NC).
57 58		9
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	
3 4	172
5 6	173
7 8 9	174
10 11	175
12 13 14	176
14 15 16	177
17 18	178
19 20	179
21 22 23	180
23 24 25	181
26 27	182
28 29	183
30 31 32	184
33 34	185
35 36	186
37 38 39	187
40 41	188
42 43	189
44 45	190
46 47 48	191
49 50	192
51 52	193
53 54	194
55 56	
57 58	
59 60	

Results

A total of 35,411 subjects aged 30 years or older were included in this study from 2005 to 2014 in Changhua. The prevalence of OPMD was 0.87% (=306/35,411). The prevalence of MetS was 31% (=10,974/35,411) (Figure 1). Subjects with MetS had a statistically significantly 1.44fold (95% CI: 1.14-1.82) increased risk to develop the risk for OPMD compared with those without MetS (see Supplementary Table 1).

The incidence of OPMD varies based on demographic and lifestyle factors (Table 1). The 78 incidence of OPMD in subjects with MetS (7.68 per 1000 person-years) was increased compared 79 with those who were free of MetS (5.38 per 1000 person-years). Male subjects aged between 40-80 59 years and those with increased body mass index (BMI), increased blood pressure, and elevated 81 lipid profiles tended to exhibit an increased risk of OPMD compared with their complementary 82 groups. A previous habit of betel quid chewing, smoking, and alcohol drinking were associated 83 with an increased incidence of OPMD. High consumption of meat and lower consumption of 84 85 vegetables and fruit were also related to higher risk of OPMD.

Table 2 shows the effect of MetS on the risk of OPMD. In univariate analysis, participants 86 with MetS had a 42% increased risk of developing OPMD compared with those who were MetS 87 88 free (RR=1.42, 95% CI: 1.22-1.66). Other factors were also associated with increased risks of developing OPMD, including male, age less than 70, betel nut chewing, cigarette smoking, alcohol 89 90 drinking, meat consumption, and lower education level. In multivariable analysis, after adjusting 91 for potential confounding factors, including age, sex, education level, betel nut chewing, cigarette smoking, meat consumption, vegetable consumption, the intake of fruit, and alcohol drinking, the 92 93 association of MetS with an elevated risk of OPMD remained significant (aRR=1.33, 95% CI: 94 1.14-1.55).

In addition to exclusively focusing on MetS outcome, we also investigated the effects of individual components of MetS (Table 3). The results show that central obesity (aRR=1.22, 95% CI: 1.04-1.44), hypertriglyceridaemia (aRR=1.26, 95% CI: 1.07-1.49) and hyperglycaemia (aRR=1.20, 95% CI: 1.02-1.41) led to a statistically significant increased risk of OPMD. However, the effects of MetS components were different with respect to OPMD subtypes (Table 4). For leukoplakia, only central obesity (aRR=1.30, 95% CI: 1.07-1.57) and hypertriglyceridaemia (aRR=1.29, 95% CI: 1.06-1.57) remained significant. Only hyperglycaemia (aRR=1.43, 95% CI: 0.99-2.05) exhibited a borderline association with an increased risk for OSF. MetS led to a 33% elevated risk of vertucous hyperplasia, but it was not statistically significant due to the small number (aRR=1.33, 95% CI: 0.51-3.46). Same phenomenon was noted for erythroplakia and erythroleukoplakia (aRR=1.59, 95% CI: 0.67-3.75). We also provide detailed results on the effects of dichotomous MetS, individual components of MetS and MetS score for all OPMD cases (Supplementary Tables 2-3), leukoplakia (Supplementary Tables 4-6), OSF (Supplementary Tables 7-9), vertucous hyperplasia (Supplementary Tables 10-12), and erythroplakia and erythroleukoplakia (Supplementary Tables 13-15).

BMJ Open

2 3 4	210	Discussion
5 6 7 8 9 10 11	211	In contrast to previous studies that place emphasis on the association between MetS and
	212	OPMD, the main objective of the present study, in addition to corroborating the association
	213	studies, was to investigate a temporal sequence pertaining to the effect of MetS on incident
12 13	214	OPMD based on a longitudinal cohort study. A statistically significant impact of MetS on
14 15 16	215	incident OPMD was observed. We used a longitudinal follow-up study design to address the
17 18	216	limitation of the cross-sectional study design given that it cannot elucidate the temporal
19 20	217	relationship between MetS and OPMD.
21 22 23	218	The association between MetS and OPMD has been elucidated in several previous cross-
23 24 25	219	sectional studies conducted in Keelung community-based integrated screening programme
26 27	220	(KCIS) and in Yunlin county, and MetS increased the risk of OPMD by 68% and 39%,
28 29 30	221	respectively [7,8], which has been also confirmed in our current study. We also found that MetS
31 32	222	led to a 44% increased risk associated with MetS for the presence of OPMD.
33 34	223	Furthermore, given its prospective cohort study design, our study further demonstrated
35 36 27	224	the temporal effect of MetS and individual components on incident OPMD. Such a causal
37 38 39	225	relationship between MetS and the risk for OPMD is independent of two well-established risk
40 41	226	factors for oral pre-malignant lesions, namely smoking and betel quid chewing [3], [15], [16].
42 43	227	Applying such information to oral cancer screening would provide additional value for
44 45 46	228	identifying a high-risk category of OPMD.
47 48	229	Regarding an independent contributory cause of MetS accounting for OPMD, the
49 50	230	association between MetS and tumour progression in OPMD and oral cancer might be
51 52 53	231	attributable to the common underlying mechanism, an inflammatory process or immune response
53 54 55	232	for both outcomes. To our knowledge, the exact pathway linking MetS and OPMD remains
56 57		
58 59		12
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

unclear. However, cytokines are often secreted by immune cells in response to inflammation. This process would lead an increased amount of C-reactive protein (CRP) [17]. CRP is known as a biomarker for cardiovascular disease. Recently, CRP was found to increase oxygen radicals [18]. These inflammatory factors can activate oncogenes and inactivate tumour suppressor genes and can potentially induce cell proliferation and prolong cell survival, which may result in genetic instability with an increased risk of cancer [19]. Previous studies proposed common shared mechanisms between MetS and OPMD, including pro-inflammatory markers (TNF-alpha, CRP, IL-6) and insulin resistance [9,10,20]. Therefore, MetS may affect cancer tumour cells through increased proliferation, angiogenesis and damage to the DNA molecule under chronic hyperglycaemia, insulin resistance and hyperinsulinemia [21-22]. In addition, MetS particularly with insulin resistance can overstimulate insulin growth factor-1 (IGF-1) and insulin receptor. An increasing and changing of IGF-1 signalling pathway and insulin receptor expression might also lead to an increased risk of cancer [17]. In the present study, we found that central obesity, hyperglycaemia, and hypertriglyceridemia were significant individual components of MetS responsible for the development of OPMD. Previous studies revealed that central obesity can stimulate insulin resistance, dyslipidaemia and systematic inflammation. The individual components were considered to play a vital role in the pathogenesis of certain type of cancers [23,24]. Moreover, insulin resistance was also associated with an increase in glucose and triglyceride production. Both were highly associated with the risk of developing OPMD in our analysis.

Betel quid's substances (nitrosated and arecal alkaloid derivatives) increase the risk of
oral cancer and OPMD. This effect was not restricted to their direct contact tissue. Lee et al,
found that betel quid chewing and components of MetS exhibit a positive correlation explained

Page 15 of 50

BMJ Open

1		
2 3		
4	256	by oxidative stress and inflammation [25]. An increase in the risk of oral cancer or OPMD by
5 6	257	consuming betel quid and also cigarette smoking or alcohol drinking were noted in our study,
7 8 9	258	even in patients who had quit these habits because they were exposed to these carcinogenesis
10 11	259	components for a sufficient period. Our results were consistent with previous studies, which
12 13	260	demonstrated that former or ex- consuming of these oral habits still had higher risk of oral
14 15 16	261	cancer, leukoplakia and OSF compared with non-users[26, 27].
17 18	262	In addition to betel quid, foods were also of concern. Numerous studies unveiled that
19 20 21	263	potential foods, such as red meat, were associated with increased IL-6 [28], and vegetable and
21 22 23	264	fruit could lowered CRP [29]. In our study, we found that only high consumption of fruit was a
24 25	265	protective factor of OPMD. Our findings were consistent with Fann et al, and Maserejian et al.,
26 27	266	who found that fruit decreased the risk of periodontal disease and OPMD, respectively [30,31].
28 29 30	267	Interestingly, fruit also reduced the risk of MetS [32]. Therefore, these findings support our
31 32	268	hypothesis that inflammation is one of the potential mechanisms underlying the relationship
33 34	269	between MetS and OPMD.
35 36 37	270	We examined the effect of MetS on OPMD subtypes and found that MetS was associated
38 39	271	with an increased risk of leukoplakia but not other sub-types, including OSF, verrucous
40 41	272	hyperplasia, and erythleukoplakia, due to the limited number of cases. Regarding leukoplakia,
42 43 44	273	among the components of MetS, only central obesity and hypertriglyceridaemia significantly
45 46	274	elevated the risk of leukoplakia. These results were inconsistent with the previous study that
47 48	275	found that only hypertriglyceridaemia and hyperglycaemia significantly increased the risk of
49 50 51	276	leukoplakia [8]. Regarding hypertriglyceridaemia in leukoplakia, a previous study reported
51 52 53	277	significantly higher triglyceride levels in individuals with leukoplakia compared with healthy
54 55 56 57	278	people [33]. Increasing triglyceride levels were possibly due to the excessive release of free fatty

acids, which resulted from insulin resistance. Moreover, insulin resistance can be stimulated by
central obesity. In addition, Meisel et al, reported that visceral obesity was more likely to be
found in people with leukoplakia compared with those without [34]. The aforementioned studies
support our findings that two MetS components, including central obesity and
hypertriglyceridaemia, are associated with leukoplakia. However, the mechanism remains
unclear.

Although our study demonstrated that hyperglycaemia did not significantly increase the risk of OSF, the aRR exhibited the largest increased risk magnitude in OSF. Regarding OSF, it has been recognized that the development of fibrosis is pathologically responsible for tissue injury caused by chronic hyperglycaemia. The development of fibrosis was driven by the accumulation of extracellular matrix (ECM) [35].

One of the unique characteristics of OSF is the symptom of mouth opening restriction [36], [37,38]. A possible causation for restricted mouth opening might involve the dynamics of ECM deposited around muscle fibres in different stages of OSF, and these dynamics lead to the consequence of the loss of variety of ECM molecules, including elastin, and replacement with collagen type I muscle fibres [39]. Notably, it has been shown that hyperglycaemia can alter the collagenolysis [40] and also ECM's components interaction through advanced glycation end products (AGEs) modification [41-42]. These reasons mentioned above may support the borderline impact of hyperglycaemia on OSF and its symptom.

Another possibility of the discordance between these findings might be due to the differences in study approaches and communities with different dietary habits. However, both studies noted that hypertriglyceridaemia and hyperglycaemia were related to OPMD. In addition Page 17 of 50

BMJ Open

1		
2 3 4	301	to these biological aspects, these results are supported by the strong epidemiological study design
5 6	302	in which we followed up the OPMD-free study population until the occurrence of OPMD.
7 8	303	In the view of oral cancer control, primary prevention aims to reduce the exposure to risk
9 10 11	304	factors. In Taiwan, several cessation campaigns have been launched, but most of these efforts only
12 13	305	considered conventional risk factors, including cigarette smoking and betel nut chewing. Our study
14 15	306	result showed that MetS was a risk factor for OPMD. In addition, a recent study also revealed that
16 17 18	307	sweet beverage consumption elevated risk of overall cancer and breast cancer [43]. The promotion
19 20	308	of a MetS prevention programme after controlling for sugar-sweetened beverage or diet might
21 22	309	reduce OPMD and oral cancer incidence in the future.
23 24 25	310	Several limitations existed in our study. First, several confounding factors that may link
26 27	311	MetS and oral cancer, such as family history of oral cancer and history of chronic diseases other
28 29	312	than MetS, were not considered. Second, the results of our study were derived from Taiwanese
30 31 32	313	individuals older than 30 years, so external generalization of our results to other regions would be
32 33 34	314	limited especially on the grounds of ethnic, genetic and dietary backgrounds. Third, the association
35 36	315	between MetS and verrucous hyperplasia, erythroplakia, and erythroleukoplakia should be
37 38	316	interpreted with great caution given the limited number of cases in our population. Fourth, possible
39 40 41	317	information bias exists for self-reported variables, especially oral habits. Betel nut chewing,
42 43	318	smoking, and alcohol drinking are behaviours that are deviant from social norms and regulations
44 45	319	and can be possibly under-reported. Evidence on this phenomena has been demonstrated for
46 47 48	320	reporting smoking behaviour [44, 45]. This notion might explain the 38 OSF subjects who reported
49 50	321	never betel quid chewing, which contradicts the well-known association between OSF and betel
51 52	322	quid chewing.
53 54		

In conclusion, our prospective cohort study design affirmed the notion that MetS elevated the risk of OPMD. This epidemiological evidence provides new insight for health policy makers to promote MetS prevention to reduce OPMD and oral cancer in the future.

totoeeteriewony

1	
2	
3 4	
5	
6	
5 6 7 8 9 10	
/	
8	
9	
10	
11	
12	
13	
12 13 14	
14 15	
16	
10	
17	
18	
15 16 17 18 19	
20 21 22 23 24 25 26 27 28	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32 33 34 35 36 37	
33	
34	
35	
36	
20	
37 38	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
58	

Acknowledgements: We are grateful to Taiwan Cancer registry for information on cancer registry
data, Changhua County Public Health Bureau for screening activities, and Health and Welfare
Data Science Center, Ministry of Health and Welfare for providing administrative and technical
support.

330 Contributors: P Siewchaisakul, ST-W, YP-Y, and AMF-Y were responsible for
331 conceptualization and methodology. SM-P and YP-Y contributed to data curation and
332 investigation. P Siewchaisakul, CLS, and AMF-Y performed statistical analysis. P Siewchaisakul
333 and ST-W wrote the original draft. This study was supervised by YP-Y and AMF-Y. CTH-H and
334 P Sarakarn participated in editing manuscript. All authors have reviewed and approved the final
335 manuscript.

Funding: This work was supported by Ministry of Science and Technology, Taiwan (MOST 108-2118-M-038-001-MY3 and MOST 108-2118-M-038-002-MY3).

338 **Conflicts of interest:** None

³ 339 **Ethics approval:** This study was approved by the Institutional Review Board of Taipei Medical

² 340 University (TMU-JIRB: N201611014).

341 **Provenance and peer review** Not commissioned; externally peer reviewed.

Data sharing statement: No additional data are available.

343 **Patient consent for publication:** Not required.

References

- Warnakulasuriya S. Clinical features and presentation of oral potentially malignant disorders. *Oral Surg Oral Med Oral Pathol Oral Radiol.* 2018;125(6):582-590. doi:10.1016/j.oooo.2018.03.011
- Sankaranarayanan R, Ramadas K, Amarasinghe H, Subramanian S, Johnson N. Oral Cancer: Prevention, Early Detection, and Treatment. In: Gelband H, Jha P, Sankaranarayanan R, Horton S, eds. *Cancer: Disease Control Priorities, Third Edition* (Volume 3). The International Bank for Reconstruction and Development / The World Bank; 2015. Accessed October 13, 2019. http://www.ncbi.nlm.nih.gov/books/NBK343649/
- Axell T, Holmstrup P, Kramer IRH, Pindborg JJ, Shear M. International seminar on oral leukoplakia and associated lesions related to tobacco habits. *Community Dent Oral Epidemiol.* 1984;12(3):145-154. doi:10.1111/j.1600-0528.1984.tb01428.x
- Juntanong N, Siewchaisakul P, Bradshaw P, et al. Prevalence and Factors Associated with Oral Pre-malignant Lesions in Northeast Thailand. *Asian Pac J Cancer Prev*. 2016;17(8):4175-4179.
- Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D. Metabolic Syndrome and Risk of Cancer. *Diabetes Care*. 2012;35(11):2402-2411. doi:10.2337/dc12-0336
- Stocks T, Bjørge T, Ulmer H, et al. Metabolic risk score and cancer risk: pooled analysis of seven cohorts. *Int J Epidemiol*. 2015;44(4):1353-1363. doi:10.1093/ije/dyv001
- Chang C-C, Lin M-S, Chen Y-T, Tu L-T, Jane S-W, Chen M-Y. Metabolic syndrome and health-related behaviours associated with pre-oral cancerous lesions among adults aged 20–80 years in Yunlin County, Taiwan: a cross-sectional study. *BMJ Open*. 2015;5(12). doi:10.1136/bmjopen-2015-008788
- Yen AM-F, Chen SL-S, Chiu SY-H, Chen H-H. Association between metabolic syndrome and oral pre-malignancy: A community- and population-based study (KCIS No. 28). *Oral Oncol.* 2011;47(7):625-630. doi:10.1016/j.oraloncology.2011.04.011

Page 21 of 50

2	
3	9. Chiang CP, Wu HY, Liu BY, Wang JT, Kuo MYP. Quantitative analysis of
4 5	immunocompetent cells in oral submucous fibrosis in Taiwan. Oral Oncol.
6	-
7	2002;38(1):56-63.
8	
9	10. Ujpál M, Matos O, Bíbok G, Somogyi A, Szabó G, Suba Z. Diabetes and oral tumors ir
10	Hungary: epidemiological correlations. <i>Diabetes Care</i> . 2004;27(3):770-774.
11	
12	doi:10.2337/diacare.27.3.770
13	
14 15	11. Yeh Y-P, Hu T-H, Cho P-Y, et al. Evaluation of Abdominal Ultrasonography Mass
16	Screening for Hepatocellular Carcinoma in Taiwan. Hepatol Baltim Md.
17	
18	2014;59(5):1840-1849. doi:10.1002/hep.26703
19	
20	12. Chuang S-L, Su WW-Y, Chen SL-S, et al. Population-based screening program for
21	reducing oral cancer mortality in 2,334,299 Taiwanese cigarette smokers and/or betel
22	
23	quid chewers. Cancer. 2017;123(9):1597-1609. doi:10.1002/cncr.30517
24 25	
25 26	13. Chen TH-H, Chiu Y-H, Luh D-L, et al. Community-based multiple screening model:
27	design, implementation, and analysis of 42,387 participants. Cancer. 2004;100(8):1734
28	
29	1743. doi:10.1002/cncr.20171
30	
31	14. Alberti KGMM, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group.
32	The metabolic syndromea new worldwide definition. Lancet Lond Engl.
33	
34 35	2005;366(9491):1059-1062. doi:10.1016/S0140-6736(05)67402-8
36	
37	15. Shiu M-N, Chen T-H. Impact of betel quid, tobacco and alcohol on three-stage disease
38	natural history of oral leukoplakia and cancer: implication for prevention of oral cancer
39	<i>Eur J Cancer Prev.</i> 2004;13(1):39-45.
40	Eur 5 Cuncer 1 rev. 2004,15(1).57-45.
41	
42	16. Yen AM-F, Chen S-C, Chen TH-H. Dose-response relationships of oral habits
43	associated with the risk of oral pre-malignant lesions among men who chew betel quid.
44 45	Oral Oncol. 2007;43(7):634-638. doi:10.1016/j.oraloncology.2006.05.001
46	<i>Oral Oncol</i> : 2007,45(7):054-058: doi:10.1010/j.oraloiicology.2000.05.001
47	
48	17. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic
49	disease. Nat Rev Immunol. 2011;11(2):85-97. doi:10.1038/nri2921
50	
51	18. Prasad K. C-Reactive Protein Increases Oxygen Radical Generation by Neutrophils: J
52	
53	Cardiovasc Pharmacol Ther. Published online June 29, 2016.
54 55	doi:10.1177/107424840400900308
56	
57	19. Feller L, Altini M, Lemmer J. Inflammation in the context of oral cancer. Oral Oncol.
58	
59	2013;49(9):887-892. doi:10.1016/j.oraloncology.2013.07.003
60	
	20
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- Hsu H-J, Yang Y-H, Shieh T-Y, et al. Role of cytokine gene (interferon-γ, transforming growth factor-β1, tumor necrosis factor-α, interleukin-6, and interleukin-10) polymorphisms in the risk of oral precancerous lesions in Taiwanese. *Kaohsiung J Med Sci.* 2014;30(11):551-558. doi:10.1016/j.kjms.2014.09.003
- Bellastella G, Scappaticcio L, Esposito K, Giugliano D, Maiorino MI. Metabolic syndrome and cancer: "The common soil hypothesis." *Diabetes Res Clin Pract*. 2018;143:389-397. doi:10.1016/j.diabres.2018.05.024
- Yunusova NV, Spirina LV, Frolova AE, Afanas'ev SG, Kolegova ES, Kondakova IV. Association of IGFBP-6 Expression with Metabolic Syndrome and Adiponectin and IGF-IR Receptor Levels in Colorectal Cancer. *Asian Pac J Cancer Prev APJCP*. 2016;17(8):3963-3969.
- Zhang Cuilin, Rexrode Kathryn M., van Dam Rob M., Li Tricia Y., Hu Frank B. Abdominal Obesity and the Risk of All-Cause, Cardiovascular, and Cancer Mortality. *Circulation*. 2008;117(13):1658-1667. doi:10.1161/CIRCULATIONAHA.107.739714
- Owolabi EO, Ter Goon D, Adeniyi OV. Central obesity and normal-weight central obesity among adults attending healthcare facilities in Buffalo City Metropolitan Municipality, South Africa: a cross-sectional study. *J Health Popul Nutr*. 2017;36(1):54. doi:10.1186/s41043-017-0133-x
- Lee B-J, Chan M-Y, Hsiao H-Y, Chang C-H, Hsu L-P, Lin P-T. Relationship of Oxidative Stress, Inflammation, and the Risk of Metabolic Syndrome in Patients with Oral Cancer. *Oxid Med Cell Longev.* 2018;2018. doi:10.1155/2018/9303094
- Chen P-H, Mahmood Q, Mariottini GL, Chiang T-A, Lee K-W. Adverse Health Effects of Betel Quid and the Risk of Oral and Pharyngeal Cancers. BioMed Research International. doi:10.1155/2017/3904098
- Lee C-H, Ko Y-C, Huang H-L, et al. The precancer risk of betel quid chewing, tobacco use and alcohol consumption in oral leukoplakia and oral submucous fibrosis in southern Taiwan. *Br J Cancer*. 2003;88(3):366-372. doi:10.1038/sj.bjc.6600727
- Ozawa M, Shipley M, Kivimaki M, Singh-Manoux A, Brunner EJ. Dietary pattern, inflammation and cognitive decline: The Whitehall II prospective cohort study. *Clin Nutr Edinb Scotl.* 2017;36(2):506-512. doi:10.1016/j.clnu.2016.01.013
- 29. Silveira BKS, Oliveira TMS, Andrade PA, Hermsdorff HHM, Rosa C de OB, Franceschini S do CC. Dietary Pattern and Macronutrients Profile on the Variation of

BMJ Open

	Inflammatory Biomarkers: Scientific Update. <i>Cardiol Res Pract.</i> 2018;2018. doi:10.1155/2018/4762575
30.	Fann JC-Y, Lai H, Chiu SY-H, Yen AM-F, Chen SL-S, Chen H-H. A population-based study on the association between the intake of soft drinks and periodontal disease in Taiwanese adults aged 35-44 years (KCIS no. 33). <i>Public Health Nutr</i> . 2016;19(8):1471-1478. doi:10.1017/S1368980015002608
31.	Maserejian NN, Giovannucci E, Rosner B, Zavras A, Joshipura K. Prospective Study of Fruits and Vegetables and Risk of Oral Premalignant Lesions in Men. <i>Am J Epidemiol</i> . 2006;164(6):556-566. doi:10.1093/aje/kwj233
32.	Lee M, Lim M, Kim J. Fruit and vegetable consumption and the metabolic syndrome: a systematic review and dose-response meta-analysis. <i>Br J Nutr</i> . 2019;122(7):723-733. doi:10.1017/S000711451900165X
33.	Granero Fernandez M, Lopez-Jornet P. Association between smoking, glycaemia, blood lipoproteins and risk of oral leukoplakia. <i>Aust Dent J</i> . 2017;62(1):47-51. doi:10.1111/adj.12431
34.	Meisel P, Dau M, Sümnig W, et al. Association between glycemia, serum lipoproteins, and the risk of oral leukoplakia: the population-based Study of Health in Pomerania (SHIP). <i>Diabetes Care</i> . 2010;33(6):1230-1232. doi:10.2337/dc09-1262
35.	Ban CR, Twigg SM. Fibrosis in diabetes complications: Pathogenic mechanisms and circulating and urinary markers. <i>Vasc Health Risk Manag.</i> 2008;4(3):575-596.
36.	Angadi PV, Rekha KP. Oral submucous fibrosis: a clinicopathologic review of 205 cases in Indians. <i>Oral Maxillofac Surg</i> . 2011;15(1):15-19. doi:10.1007/s10006-010-0225-x
37.	Shih Y-H, Wang T-H, Shieh T-M, Tseng Y-H. Oral Submucous Fibrosis: A Review on Etiopathogenesis, Diagnosis, and Therapy. <i>Int J Mol Sci.</i> 2019;20(12):2940. doi:10.3390/ijms20122940
38.	Fang C-Y, Hsia S-M, Hsieh P-L, et al. Slug mediates myofibroblastic differentiation to promote fibrogenesis in buccal mucosa. <i>J Cell Physiol</i> . 2019;234(5):6721-6730. doi:10.1002/jcp.27418
39.	Utsunomiya H, Tilakaratne WM, Oshiro K, et al. Extracellular matrix remodeling in oral submucous fibrosis: its stage-specific modes revealed by immunohistochemistry
	22

and in situ hybridization. *J Oral Pathol Med Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol*. 2005;34(8):498-507. doi:10.1111/j.1600-0714.2005.00339.x

- 40. Stultz CM, Edelman ER. A Structural Model that Explains the Effects of Hyperglycemia on Collagenolysis. *Biophys J.* 2003;85(4):2198-2204.
- Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. *Korean J Physiol Pharmacol Off J Korean Physiol Soc Korean Soc Pharmacol.* 2014;18(1):1-14. doi:10.4196/kjpp.2014.18.1.1
- Pastino AK, Greco TM, Mathias RA, Cristea IM, Schwarzbauer JE. Stimulatory effects of advanced glycation endproducts (AGEs) on fibronectin matrix assembly. *Matrix Biol J Int Soc Matrix Biol.* 2017;59:39-53. doi:10.1016/j.matbio.2016.07.003
- 43. Chazelas E, Srour B, Desmetz E, et al. Sugary drink consumption and risk of cancer: results from NutriNet-Santé prospective cohort. *BMJ*. 2019;366. doi:10.1136/bmj.l2408
- 44. Gnambs T, Kaspar K. Disclosure of sensitive behaviors across self-administered survey modes: a meta-analysis. *Behav Res Methods*. 2015;47(4):1237-1259. doi:10.3758/s13428-014-0533-4
- 45. Gorber SC, Schofield-Hurwitz S, Hardt J, Levasseur G, Tremblay M. The accuracy of self-reported smoking: A systematic review of the relationship between self-reported and cotinine-assessed smoking status. *Nicotine Tob Res.* 2009;11(1):12-24. doi:10.1093/ntr/ntn010

Figure 1 Flow chart for prospective normal cohort study design

tor perterien only

1 2	
2	
4	
5	
6	
7	
8	
9	
10	
11 12	
12 13	
14	
15	
16	
17	
18	
19	
20 21	
22	
23	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36	
37 38	
30 39	
40	
41	
42	
43	
44	
45	
46	

			OP	MD	0	SF	Louk	plakia		ucous		roplakia+ leukoplakia
	Ν	Person years	No.	<u>wiD</u> %	<u>No.</u>	<u>3r</u> ‰	No.	<u>%</u>	No.	plasia ‰	No.	<u>1eukopiakia</u> ‰
Overall	17,590	116732.06	716	6.13	149	1.28	521	4.46	20	0.17	26	0.22
Metabolic Syndrome	17,000	110752.00	/10	0.15	117	1.20	521	1.10	20	0.17	20	0.22
Yes	5,789	38416.38	295	7.68	58	1.51	219	5.70	7	0.18	11	0.29
No	11,801	78315.68	421	5.38	91	1.16	302	3.86	13	0.17	15	0.19
Age	,											
30-39	1,178	8296.07	47	5.67	13	1.57	28	3.38	1	0.12	5	0.60
40-49	4,359	29193.98	210	7.19	42	1.44	154	5.28	8	0.27	6	0.21
50-59	5,538	35137.59	267	7.60	48	1.37	205	5.83	6	0.17	8	0.23
60-69	4,176	27778.33	160	5.76	37	1.33	115	4.14	4	0.14	4	0.14
70+	2,339	16326.09	32	1.96	9	0.55	19	1.16	1	0.06	3	0.18
Sex												
Male	15,619	104569.65	703	6.72	146	1.40	511	4.89	20	0.19	26	0.25
Female	1,971	12162.41	13	1.07	3	0.25	10	0.82	0	0.00	0	0.00
Education												
University	2140	13691.15	53	3.87	4	0.29	47	3.43	1	0.07	1	0.07
Senior high school	4173	26814.93	174	6.49	39	1.45	126	4.70	3	0.11	6	0.22
Junior high school or lower	11228	75877.21	487	6.42	106	1.40	347	4.57	16	0.21	18	0.24
Betel quid chewing												
Never	11,925	79006.46	256	3.24	38	0.48	203	2.57	10	0.13	5	0.06
Quit*	3,544	23719.97	236	9.95	62	2.61	162	6.83	6	0.25	6	0.25
Current	2,110	13920.02	224	16.09	49	3.52	156	11.21	4	0.29	15	1.08
Smoking												
Never	6,976	46286.91	101	2.18	21	0.45	75	1.62	1	0.02	4	0.09
Quit*	3,656	24678.95	126	5.11	36	1.46	82	3.32	3	0.12	5	0.20
Current	6,947	45680.37	489	10.70	92	2.01	364	7.97	16	0.35	17	0.37

Table 1 The incidence (per 1,000) of oral potentially malignant disorders by demographic features, status of metabolic syndrome and other associated risk factors

25

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1													
2													
3													
4													
5	Alcohol drinking												
6 7	Never	8,041	53484.46	212	3.96	48	0.90	155	2.90	4	0.07	5	0.09
8	Quit*	1,009	6798.76	58	8.53	10	1.47	44	6.47	2	0.29	2	0.29
Э	Current	8,529	56365.96	446	7.91	91	1.61	322	5.71	14	0.25	19	0.34
0	BMI (kg/m ²)												
1	<18.5	422	2852.29	9	3.16	5	1.75	3	1.05	0	0.00	1	0.35
2	18.5-24.9	8,844	58824.11	313	5.32	66	1.12	221	3.76	13	0.22	13	0.22
3	>25	8,324	55055.66	394	7.16	78	1.42	297	5.39	7	0.13	12	0.22
4	Triglyceride (mg/dl)												
5	<150	12,178	81399.38	405	4.98	87	1.07	289	3.55	14	0.17	15	0.18
6 7	≥150	5,412	35332.68	311	8.80	62	1.75	232	6.57	6	0.17	11	0.31
7 8	HDL-C (mg/dl) **	,											
9	Abnormal	5,684	37372.54	268	7.17	50	1.34	204	5.46	5	0.13	9	0.24
0	Normal	11,781	78407.84	441	5.62	98	1.25	312	3.98	14	0.18	17	0.22
1	Blood pressure												
22	(mm/Hg)***												
3	Normal	10,869	71713.89	440	6.14	94	1.31	321	4.48	12	0.17	13	0.18
4	Elevated risk	2,858	19152.31	127	6.63	23	1.20	91	4.75	7	0.37	6	0.31
5	Hypertension	3,863	25865.86	149	5.76	32	1.24	109	4.21	1	0.04	7	0.27
6	Glucose (mg/dl)												
7	-100	11.074	70755.06	454	- - -	0.0	1.1.4	222	1.00	10	0.17	10	0.04
8	<100	11,974	78755.06	454	5.76	90 27	1.14	332	4.22	13	0.17	19	0.24
9	100-125	3,907	26462.49	165	6.24	37	1.40	120	4.53	5	0.19	3	0.11
0	>125	1,709	11514.51	97	8.42	22	1.91	69 🧹	5.99	2	0.17	4	0.35
1	Meat	4.000	21004.20	171	5.25	20	1 10	107	2.07	2	0.00	2	0.00
2	Seldom	4,820	31984.38	171	5.35	38	1.19	127	3.97	3	0.09	3	0.09
3	Infrequent	11,904	78845.33	488	6.19	94	1.19	360	4.57	13	0.16	21	0.27
4 5	Frequent	829	5625.25	56	9.96	17	3.02	33	5.87	4	0.71	2	0.36
6	Vegetable	2 (70	24216 52	170	7 10	40	1 72	104	C 10	1	0.04	_	0.21
7	Seldom	3,679	24216.53	172	7.10	42	1.73	124	5.12	1	0.04	5	0.21
8	Infrequent	13,469	89529.87	527	5.89	105	1.17	384	4.29	19	0.21	19	0.21
39	Frequent	308	2045.50	6	2.93	0	0.00	6	2.93	0	0.00	0	0.00

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Fruit												
Seldom	1,608	10685.41	102	9.55	20	1.87	75	7.02	2	0.19	5	0.47
Infrequent	7,190	47575.85	333	7.00	74	1.56	233	4.90	10	0.21	16	0.34
Frequent	8,773	58318.08	280	4.80	55	0.94	212	3.64	8	0.14	5	0.09

OSF: oral submucosa fibrosis; ***Quit**: Quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habit on the day of interview.

**HDL-C: Abnormal defined as (male with $0 \le HDL \le 40$) or (female with $0 \le HDL \le 50$). Normal defined as (male with $40 \le HDL$) or (female with $50 \le HDL$)

***Hypertension: Normal defined as systolic blood pressure (sbp)<130 or diastolic blood pressure (dbp)<85. Elevated risk defined as $130 \le sbp<140$ or $85 \le dbp<90$. Hypertension defined as sbp≥140 or dbp≥90.

disorders (MetS \rightarrow OPMD)	DD	050		aDD	050	
	RR	95%	% CI	aRR	95%	6 CI
Metabolic syndrome						
Yes vs No	1.42	1.22	1.66	1.33	1.14	1.55
Sex						
Male vs Female	7.14	3.94	12.94	3.49	1.89	6.44
Age groups (vs 70+)						
30-39	2.89	1.85	4.52	2.17	1.35	3.47
40-49	3.53	2.43	5.12	2.63	1.79	3.85
50-59	3.63	2.52	5.24	3.10	2.14	4.49
60-69	2.85	1.95	4.16	2.53	1.73	3.71
Betel nut chewing (vs Never)						
Quit*	3.03	2.54	3.63	2.00	1.62	2.47
Current	4.92	4.10	5.89	2.68	2.16	3.33
Cigarette smoking (vs Never)						
Quit*	2.32	1.78	3.03	1.31	0.96	1.78
Current	4.90	3.94	6.09	2.47	1.90	3.20
Alcohol drinking (vs Never) 🌔						
Quit*	2.18	1.62	2.92	1.23	0.90	1.68
Current	1.95	1.65	2.30	1.03	0.86	1.23
Meat (vs Seldom)						
Infrequent	1.13	0.95	1.35	0.95	0.79	1.13
Frequent	1.77	1.30	2.41	1.23	0.90	1.68
Vegetable (vs Seldom)						
Infrequent	0.83	0.70	0.99	0.92	0.77	1.10
Frequent	0.36	0.15	0.87	0.46	0.19	1.11
Fruit (vs Seldom)						
Infrequent	0.74	0.59	0.93	0.91	0.72	1.15
Frequent	0.51	0.40	0.64	0.79	0.62	1.00
Education level (vs Junior						
high school or lower)						
Senior high school	1.00	0.84	1.19	0.97	0.80	1.17
University	0.60	0.45	0.81	0.84	0.62	1.14

Table 2 The association between MetS, other factors and oral potentially malignant disorders (MetS \rightarrow OPMD)

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit:** quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

	All OPMD							
	aRR*	95%	p-value					
Component of metabolic syndrome Central obesity	1.22	1.04	1.44	0.0162				
Hypertriglyceridaemia	1.26	1.07	1.49	0.0066				
Low HDL-C	1.12	0.95	1.32	0.1851				
Elevated blood pressure	0.93	0.79	1.09	0.3586				
Hyperglycaemia	1.20	1.02	1.41	0.0297				
Metabolic syndrome score	1.14	1.08	1.20	< 0.0001				

Table 3 The effect of metabolic syndrome components on oral potentially malignant disorders

aRR: adjusted rate ratio; **CI**: confidence interval.

* Adjusted rate ratio for components of metabolic syndrome and metabolic syndrome score were treated in different models with adjustment of age, sex, education level, betel nut chewing, cigarette smoking, alcohol drinking, meat, vegetable and fruit consumption.

BMJ Open

1	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 4\\ 35\\ 36\\ 37\\ \end{array}$	
3	
4	
5	
6 7	
/ 8	
9	
10	
11	
12	
13	
14	
15	
10	
18	
19	
20	
21	
22	
23	
24	
25	
20	
28	
29	
30	
31	
32	
33	
34	
36	
37	
38	
39	
40	
41	
42	
43 44	
44 45	
45 46	
υr	

Table 4 The association between metabolic syndrome and sub-types of oral potentially malignant disorders using multi-variablePoisson regression

	Le	ukoplal	kia		OSF		Verrucou	ıs hype	rplasia		ythroplaki hroleukop	
	aRR*	95%	6 CI	aRR**	95%	6 CI	aRR***	95%	6 CI	aRR***	95%	6 CI
Metabolic syndrome				6								
Yes vs No	1.37	1.14	1.64	1.22	0.87	1.71	1.33	0.51	3.46	1.59	0.67	3.75
Component of metabolic syndrome												
Central obesity	1.30	1.07	1.57	1.06	0.74	1.52	1.17	0.47	2.89	0.94	0.37	2.36
Hypertriglyceridaemia	1.29	1.06	1.57	1.21	0.83	1.76	0.98	0.40	2.40	1.39	0.54	3.58
Low HDL-C	1.17	0.97	1.42	0.94	0.64	1.38	0.79	0.31	1.99	1.18	0.47	2.97
Elevated blood pressure	0.90	0.75	1.09	0.95	0.66	1.37	1.34	0.46	3.85	1.22	0.50	3.00
Hyperglycaemia	1.16	0.96	1.41	1.43	0.99	2.05	1.28	0.52	3.19	0.99	0.37	2.64
Metabolic syndrome score	1.16	1.09	1.24	1.10	0.98	1.24	1.02	0.68	1.54	1.13	0.83	1.55

aRR: adjusted rate ratio; CI: confidence interval; OSF: oral submucous fibrosis

30

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

* Adjusted rate ratio for metabolic syndrome, components of metabolic syndrome, and metabolic syndrome score were treated in different models with adjustment of age, sex, education level, betel nut chewing, cigarette smoking, alcohol drinking, meat, vegetable and fruit consumption.

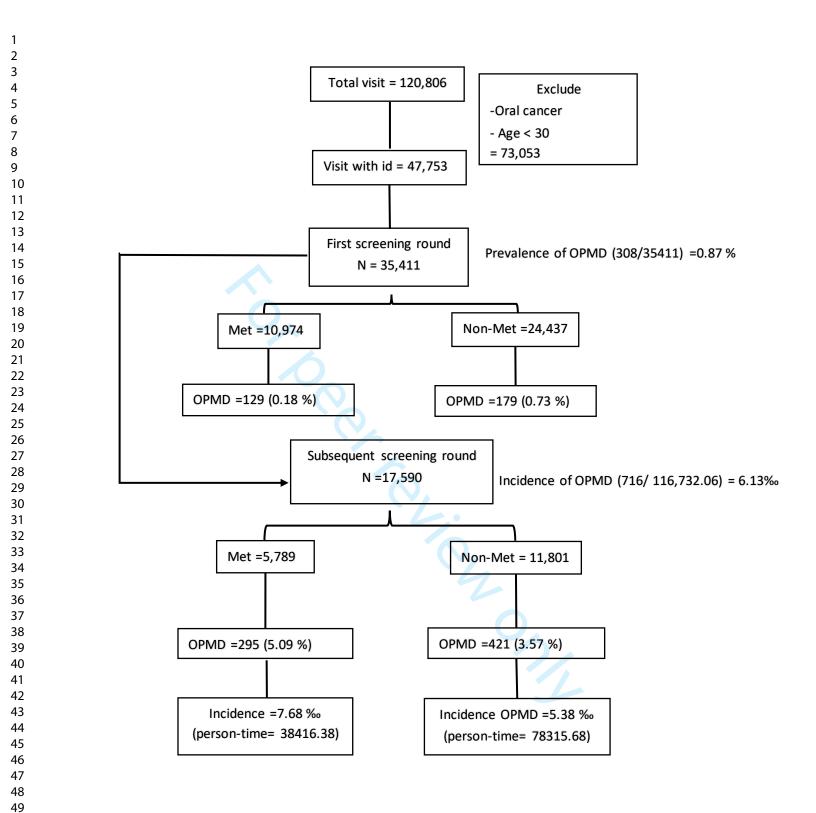
 ** Adjusted rate ratio for metabolic syndrome, components of metabolic syndrome, and metabolic syndrome score were treated in different models with adjustment of age, sex, education level, betel nut chewing, cigarette smoking, alcohol drinking, meat, and fruit consumption.

*** Adjusted rate ratio for metabolic syndrome, components of metabolic syndrome, and metabolic syndrome score were treated in different models with adjustment of betel nut chewing and cigarette smoking.

"I *Amy Ming-Fang Yen* The Corresponding Author of this article contained within the original manuscript which includes any diagrams & photographs within and any related or stand alone film submitted (the Contribution") has the right to grant on behalf of all authors and does grant on behalf of all authors, a licence to the BMJ Publishing Group Ltd and

its licencees, to permit this Contribution (if accepted) to be published in the BMJ and any other BMJ Group products and to exploit all subsidiary rights, as set out in our licence set out at: http://www.bmj.com/about-bmj/resources-authors/forms-policies-and-checklists/copyright-open-access-and-permission-reuse."

IF YOU ARE A NATIONAL INSTITUTE OF HEALTH ("NIH") EMPLOYEE, CONTRACTOR OR


<u>TRAINEE</u> the following cover sheet will be accepted by the BMJ Group and NIH and incorporated into the above Licence.

Please tick **one or more** boxes as appropriate:

- I am the sole author of the Contribution.
- ✓ I am one author signing on behalf of all co-owners of the Contribution.
- The Contribution has been made in the course of my employment and I am signing as authorised by my employer.
- I am a US Federal Government employee acting in the course of my employment.
- I am not a US Federal Government employee, but some or all of my co-authors are.
- I am an employee of the UK Crown* acting in the course of my employment
- I am a US Federal Government employee acting in the course of my employment.
- I am not a US Federal Government employee, but some or all of my co-authors are.
- I am an employee of the UK Crown acting in the course of my employment
- □ I am not an employee of the UK Crown acting in the course of my employment but some/all of my co-authors are.*

*Such authors should consult the any guidance issued by their employer and if necessary return any completed form;

http://www.nationalarchives.gov.uk/documents/informatio n-management/articlesministers-civil-servants-annexa.pdf

	OR	959	%CI	aOR	95%CI		
Metabolic syndrome							
Yen vs No	1.61	1.28	2.02	1.44	1.14	1.82	
Sex							
Male vs Female	7.32	4.65	11.53	2.50	1.50	4.16	
Age groups (vs 70+)							
30-39	0.83	0.39	1.77	0.87	0.39	1.92	
40-49	1.69	1.02	2.77	1.33	0.79	2.25	
50-59	2.52	1.58	4.04	2.23	1.38	3.62	
60-69	1.83	1.11	3.01	1.73	1.04	2.86	
Betel nut chewing (vs Never)							
Quit*	3.33	2.53	4.37	1.40	1.04	1.90	
Current	5.71	4.34	7.52	2.00	1.47	2.74	
Cigarette smoking (vs Never)							
Quit*	4.72	3.23	6.91	2.66	1.72	4.12	
Current	8.89	6.48	12.19	4.74	3.25	6.92	
Alcohol drinking (vs Never)							
Quit*	2.49	1.95	3.16	0.98	0.59	1.63	
Current	2.62	1.62	4.24	1.01	0.77	1.32	
Meat (vs Seldom)							
Infrequent	1.28	0.98	1.67	1.00	0.76	1.32	
Frequent	2.85	1.83	4.45	1.67	1.06	2.63	
Vegetable (vs Seldom)							
Infrequent	0.82	0.63	1.07	0.88	0.68	1.16	
Frequent	0.48	0.15	1.52	0.53	0.17	1.71	
Fruit (vs Seldom)							
Infrequent	0.71	0.49	1.02	1.00	0.68	1.46	
Frequent	0.54	0.38	0.78	1.02	0.69	1.50	
Education level (vs Junior high se	chool or	lower)					
Senior high school	1.00	0.77	1.29	1.06	0.80	1.41	
University	0.54	0.36	0.82	0.84	0.55	1.30	

Supplement Table 1 The association between MetS, other factors and prevalence

aOR: adjusted odds ratio; **CI**: confidence interval; ***Quit:** quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

	RR	959	% CI	aRR	95%	∕₀ CI
Component of metabolic syndrome						
Central obesity	1.36	1.17	1.58	1.22	1.04	1.44
Hypertriglyceridaemia	1.78	1.53	2.07	1.26	1.07	1.49
Low HDL-C	1.26	1.08	1.47	1.12	0.95	1.32
Elevated blood pressure	1.00	0.86	1.17	0.93	0.79	1.09
Hyperglycaemia	1.21	1.04	1.42	1.20	1.02	1.4
Sex						
Male vs Female	7.14	3.94	12.94	3.57	1.94	6.59
Age groups (vs 70+)						
30-39	2.89	1.85	4.52	2.19	1.34	3.50
40-49	3.53	2.43	5.12	2.65	1.78	3.94
50-59	3.63	2.52	5.24	3.12	2.13	4.58
60-69	2.85	1.95	4.16	2.56	1.73	3.79
Betel nut chewing (vs Never)						
Quit*	3.03	2.54	3.63	1.94	1.57	2.40
Current	4.92	4.10	5.89	2.59	2.08	3.2
Cigarette smoking (vs Never)						
Quit*	2.32	1.78	3.03	1.32	0.96	1.79
Current	4.90	3.94	6.09	2.42	1.86	3.14
Alcohol drinking (vs Never)						
Quit*	2.18	1.62	2.92	1.24	0.90	1.70
Current	1.95	1.65	2.30	1.03	0.86	1.24
Meat (vs Seldom)						
Infrequent	1.13	0.95	1.35	0.94	0.79	1.13
Frequent	1.77	1.30	2.41	1.22	0.90	1.67
Vegetable (vs Seldom)						
Infrequent	0.83	0.70	0.99	0.93	0.78	1.12
Frequent	0.36	0.15	0.87	0.48	0.20	1.14
Fruit (vs Seldom)						
Infrequent	0.74	0.59	0.93	0.91	0.72	1.15
Frequent	0.51	0.40	0.64	0.77	0.60	0.98
Education level (vs Junior high school	or lower	:)				
Senior high school	1.00	0.84	1.19	0.98	0.81	1.19
University	0.60	0.45	0.81	0.84	0.62	1.14

Supplement Table 2 The association between Component of MetS, other factors and oral potentially malignant disorders (MetS \rightarrow OPMD)

 aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

	RR	95°	%CI	aRR	95%	6CI
Metabolic syndrome						
Score	1.18	1.12	1.24	1.14	1.08	1.20
Sex						
Male vs Female	7.14	3.94	12.94	3.51	1.90	6.47
Age groups (vs 70+)						
30-39	2.89	1.85	4.52	2.18	1.36	3.50
40-49	3.53	2.43	5.12	2.64	1.80	3.87
50-59	3.63	2.52	5.24	3.09	2.13	4.48
60-69	2.85	1.95	4.16	2.53	1.73	3.70
Betel nut chewing (vs Never)						
Quit*	3.03	2.54	3.63	1.98	1.61	2.44
Current	4.92	4.10	5.89	2.63	2.12	3.27
Cigarette smoking (vs Never)						
Quit*	2.32	1.78	3.03	1.31	0.96	1.79
Current	4.90	3.94	6.09	2.48	1.91	3.22
Alcohol drinking (vs Never)						
Quit*	2.18	1.62	2.92	1.23	0.90	1.68
Current	1.95	1.65	2.30	1.03	0.86	1.23
Meat (vs Seldom)						
Infrequent	1.13	0.95	1.35	0.95	0.79	1.14
Frequent	1.77	1.30	2.41	1.23	0.90	1.68
Vegetable (vs Seldom)						
Infrequent	0.83	0.70	0.99	0.92	0.77	1.10
Frequent	0.36	0.15	0.87	0.46	0.19	1.11
Fruit (vs Seldom)						
Infrequent	0.74	0.59	0.93	0.92	0.73	1.15
Frequent	0.51	0.40	0.64	0.79	0.62	1.01
Education level (vs Junior high school or lower)						
Senior high school	1.00	0.84	1.19	0.97	0.81	1.17
University	0.60	0.45	0.81	0.84	0.62	1.14

Supplement Table 3 The association between MetS score, other factors and oral

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

	RR	95 9	%CI	aRR	95 %	%CI
Metabolic syndrome						
Yen vs No	1.35	0.96	1.90	1.22	0.87	1.71
Sex						
Male vs Female	8.16	2.02	32.94	3.34	0.78	14.2
Age groups (vs 70+)						
30-39	2.88	1.23	6.73	2.61	1.04	6.54
40-49	2.60	1.26	5.34	2.08	0.97	4.47
50-59	2.22	1.08	4.56	1.99	0.96	4.13
60-69	2.25	1.08	4.69	2.07	0.99	4.33
Betel nut chewing (vs Never)						
Quit*	5.31	3.49	8.06	3.71	2.23	6.16
Current	7.82	5.07	12.05	4.77	2.87	7.92
Cigarette smoking (vs Never)						
Quit*	3.58	2.03	6.34	1.60	0.77	3.32
Current	5.10	3.07	8.47	1.96	1.04	3.66
Alcohol drinking (vs Never)						
Quit*	1.78	0.90	3.53	0.72	0.35	1.47
Current	1.80	1.25	2.59	0.83	0.56	1.23
Meat (vs Seldom)						
Infrequent	1.03	0.69	1.52	0.84	0.56	1.24
Frequent	2.65	1.47	4.77	1.71	0.94	3.11
Fruit (vs Seldom)						
Infrequent	0.92	0.54	1.56	1.11	0.65	1.91
Frequent	0.55	0.32	0.95	0.87	0.50	1.51
Education level (vs Junior high school or lower)						
Senior high school	1.11	0.76	1.61	1.07	0.70	1.62
University	0.23	0.08	0.62	0.33	0.12	0.94

Supplement Table 4 The association between MetS, other factors and oral submucous fibrosis (MetS \rightarrow OSF)

aRR: adjusted rate ratio; **CI**: confidence interval ***Quit**: quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

	RR	95°	%CI	aRR	95 9	%CI
Component of metabolic syndrome						
Central obesity	1.21	0.87	1.70	1.06	0.74	1.52
Hypertriglyceridaemia	1.67	1.19	2.34	1.21	0.83	1.76
Low HDL-C	1.06	0.74	1.50	0.94	0.64	1.38
Elevated blood pressure	1.04	0.74	1.47	0.95	0.66	1.37
Hyperglycaemia	1.37	0.97	1.92	1.43	0.99	2.05
Sex						
Male vs Female	8.16	2.02	32.94	3.27	0.77	13.93
Age groups (vs 70+)						
30-39	2.88	1.23	6.73	2.60	1.02	6.63
40-49	2.60	1.26	5.34	2.05	0.95	4.43
50-59	2.22	1.08	4.56	1.89	0.91	3.91
60-69	2.25	1.08	4.69	2.03	0.97	4.26
Betel nut chewing (vs Never)						
Quit*	5.31	3.49	8.06	3.77	2.26	6.31
Current	7.82	5.07	12.05	4.88	2.92	8.14
Cigarette smoking (vs Never)						
Quit*	3.58	2.03	6.34	1.59	0.77	3.29
Current	5.10	3.07	8.47	1.91	1.02	3.59
Alcohol drinking (vs Never)						
Quit*	1.78	0.90	3.53	0.73	0.36	1.50
Current	1.80	1.25	2.59	0.84	0.56	1.25
Meat (vs Seldom)						
Infrequent	1.03	0.69	1.52	0.82	0.55	1.21
Frequent	2.65	1.47	4.77	1.67	0.91	3.09
Fruit (vs Seldom)						
Infrequent	0.92	0.54	1.56	1.12	0.65	1.92
Frequent	0.55	0.32	0.95	0.85	0.49	1.48
Education level (vs Junior high school or lo	ower)					
Senior high school	1.11	0.76	1.61	1.09	0.71	1.66
University	0.23	0.08	0.62	0.34	0.12	0.95

aRR: adjusted rate ratio; CI: confidence interval; *Quit: quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

	RR	95 9	%CI	aRR	95 9	%CI
Metabolic syndrome						
Score	1.15	1.03	1.30	1.10	0.98	1.24
Sex						
Male vs Female	8.16	2.02	32.94	3.37	0.79	14.38
Age groups (vs 70+)						
30-39	2.88	1.23	6.73	2.63	1.05	6.62
40-49	2.60	1.26	5.34	2.10	0.98	4.50
50-59	2.22	1.08	4.56	1.99	0.96	4.12
60-69	2.25	1.08	4.69	2.07	0.99	4.33
Betel nut chewing (vs Never)						
Quit*	5.31	3.49	8.06	3.68	2.21	6.11
Current	7.82	5.07	12.05	4.70	2.83	7.80
Cigarette smoking (vs Never)						
Quit*	3.58	2.03	6.34	1.60	0.77	3.33
Current	5.10	3.07	8.47	1.96	1.05	3.67
Alcohol drinking (vs Never)						
Quit*	1.78	0.90	3.53	0.72	0.35	1.47
Current	1.80	1.25	2.59	0.83	0.56	1.23
Meat (vs Seldom)						
Infrequent	1.03	0.69	1.52	0.84	0.57	1.24
Frequent	2.65	1.47	4.77	1.71	0.94	3.11
Fruit (vs Seldom)						
Infrequent	0.92	0.54	1.56	1.12	0.65	1.92
Frequent	0.55	0.32	0.95	0.87	0.50	1.51
Education level (vs Junior high school or lower)						
Senior high school	1.11	0.76	1.61	1.07	0.70	1.63
University	0.23	0.08	0.62	0.33	0.12	0.94

Supplement Table 6 The association between MetS score, other factors and oral submucous fibrosis (MetS \rightarrow OSF)

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

	RR	959	%CI	aRR	95%C	
Metabolic syndrome						
Yen vs No	1.45	1.22	1.73	1.37	1.14	1.64
Sex						
Male vs Female	6.48	3.36	12.52	3.29	1.67	6.4
Age groups (vs 70+)						
30-39	2.92	1.63	5.22	2.08	1.13	3.8
40-49	4.38	2.72	7.05	3.20	1.97	5.1
50-59	4.86	3.04	7.78	4.09	2.55	6.5
60-69	3.51	2.16	5.71	3.13	1.92	5.0
Betel nut chewing (vs Never)						
Quit*	2.70	2.20	3.33	1.81	1.42	2.3
Current	4.45	3.61	5.49	2.42	1.88	3.1
Cigarette smoking (vs Never)						
Quit*	2.04	1.49	2.80	1.22	0.86	1.7
Current	4.88	3.80	6.27	2.66	1.98	3.5
Alcohol drinking (vs Never)						
Quit*	2.29	1.63	3.20	1.36	0.95	1.9
Current	1.95	1.61	2.36	1.06	0.86	1.3
Meat (vs Seldom)						
Infrequent	1.12	0.91	1.37	0.93	0.76	1.1
Frequent	1.47	1.00	2.16	1.01	0.68	1.5
Vegetable (vs Seldom)						
Infrequent	0.84	0.69	1.03	0.93	0.75	1.1
Frequent	0.49	0.20	1.19	0.60	0.25	1.4
Fruit (vs Seldom)						
Infrequent	0.68	0.53	0.89	0.85	0.65	1.1
Frequent	0.51	0.39	0.66	0.78	0.59	1.0
Education level (vs Junior high school or lower)						
Senior high school	0.99	0.80	1.22	0.98	0.78	1.2
University	0.74	0.55	1.01	1.03	0.74	1.4

Supplement Table 7 The association between MetS, other factors and Leukoplakia

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

RR 95%CI 95%CI aRR **Component of metabolic syndrome** 1.70 1.30 Central obesity 1.43 1.20 1.07 1.57 2.21 1.29 Hypertriglyceridaemia 1.85 1.56 1.06 1.57 0.97 Low HDL-C 1.34 1.12 1.60 1.17 1.42 Elevated blood pressure 0.99 0.83 1.18 0.90 0.75 1.09 1.20 1.00 1.44 1.16 0.96 1.41 Hyperglycaemia Sex Male vs Female 6.48 3.36 12.52 3.43 1.74 6.75 Age groups (vs 70+) 30-39 2.92 1.63 5.22 2.15 4.06 1.14 40-49 4.38 2.72 7.05 3.34 2.00 5.57 50-59 4.86 3.04 7.78 4.30 2.61 7.08 60-69 3.51 2.16 5.71 3.29 1.97 5.49 **Betel nut chewing (vs Never)** Ouit* 2.702.20 3.33 1.73 1.36 2.205.49 2.31 1.79 Current 4.45 3.61 2.98 **Cigarette smoking (vs Never)** Ouit* 2.04 1.49 2.801.23 0.86 1.75 Current 4.88 3.80 6.27 2.60 1.93 3.50 Alcohol drinking (vs Never) Ouit* 2.29 3.20 1.37 0.95 1.98 1.63 Current 1.95 1.61 2.36 1.06 0.86 1.32 Meat (vs Seldom) Infrequent 1.12 0.91 1.37 0.94 0.76 1.16 Frequent 1.47 1.002.16 1.02 0.68 1.51 Vegetable (vs Seldom) Infrequent 0.84 0.69 1.03 0.92 0.75 1.14 0.49 0.20 1.19 0.60 0.25 Frequent 1.45 Fruit (vs Seldom) 0.85 0.65 Infrequent 0.68 0.53 0.89 1.11 0.51 0.39 0.78 0.59 1.03 Frequent 0.66 **Education level (vs Junior high school or lower)** 0.99 0.80 1.22 0.98 0.78 1.22 Senior high school 0.74 0.55 1.01 1.04 0.75 University 1.44

Supplement Table 8 The association between Component of MetS, other factors and Leukoplakia (MetS \rightarrow Leukoplakia)

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

Supplement Table 9 The association between MetS score, other factors and
Leukoplakia (MetS → Leukoplakia)

	RR	95 9	95%CI		8 95%CI	
Metabolic syndrome						
Score	1.20	1.13	1.27	1.16	1.09	1.24
Sex						
Male vs Female	6.48	3.36	12.52	3.31	1.68	6.51
Age groups (vs 70+)						
30-39	2.92	1.63	5.22	2.09	1.14	3.84
40-49	4.38	2.72	7.05	3.22	1.99	5.22
50-59	4.86	3.04	7.78	4.08	2.54	6.54
60-69	3.51	2.16	5.71	3.12	1.92	5.08
Betel nut chewing (vs Never)						
Quit*	2.70	2.20	3.33	1.79	1.40	2.27
Current	4.45	3.61	5.49	2.37	1.84	3.05
Cigarette smoking (vs Never)						
Quit*	2.04	1.49	2.80	1.22	0.86	1.74
Current	4.88	3.80	6.27	2.68	1.99	3.60
Alcohol drinking (vs Never)						
Quit*	2.29	1.63	3.20	1.37	0.95	1.97
Current	1.95	1.61	2.36	1.05	0.85	1.30
Meat (vs Seldom)						
Infrequent	1.12	0.91	1.37	0.94	0.76	1.16
Frequent	1.47	1.00	2.16	1.02	0.68	1.51
Vegetable (vs Seldom)						
Infrequent	0.84	0.69	1.03	0.92	0.75	1.14
Frequent	0.49	0.20	1.19	0.60	0.25	1.45
Fruit (vs Seldom)						
Infrequent	0.68	0.53	0.89	0.85	0.65	1.11
Frequent	0.51	0.39	0.66	0.78	0.59	1.03
Education level (vs Junior high school or l	ower)					
Senior high school	0.99	0.80	1.22	0.98	0.78	1.22
University	0.74	0.55	1.01	1.04	0.75	1.44

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

	RR	95	95%CI		95%CI	
Metabolic syndrome						
Yen vs No	1.32	0.51	3.40	1.33	0.51	3.46
Betel nut chewing (vs Never)						
Quit*	1.92	0.64	5.71	1.24	0.40	3.82
Current	2.71	0.84	8.81	1.13	0.34	3.74
Cigarette smoking (vs Never)						
Quit*	1.91	0.12	30.49	1.72	0.09	31.37
Current	17.03	2.26	128.38	15.80	2.04	122.28

Supplement Table 10 The association between MetS, other factors and Verrucous hyperplasia (MetS \rightarrow Verrucous hyperplasia)

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

	RR	95	95%CI		RR 95%	
Component of metabolic syndrome						
Central obesity	1.05	0.41	2.71	1.17	0.47	2.89
Hypertriglyceridaemia	1.26	0.47	3.42	0.98	0.40	2.40
Low HDL-C	0.88	0.31	2.50	0.79	0.31	1.99
Elevated blood pressure	1.04	0.40	2.69	1.34	0.46	3.85
Hyperglycaemia	1.13	0.42	3.05	1.28	0.52	3.19
Betel nut chewing (vs Never)						
Quit*	1.92	0.64	5.71	1.22	0.39	3.80
Current	2.71	0.84	8.81	0.84	0.23	3.13
Cigarette smoking (vs Never)						
Quit*	1.91	0.12	30.49	1.72	0.09	31.29
Current	17.03	2.26	128.38	16.34	2.00	133.78

Supplement Table 11 The association between Component of MetS, other factors and Verrucous hyperplasia (MetS \rightarrow Verrucous hyperplasia)

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

	RR	95	%CI	aRR	95	%CI
Metabolic syndrome						
Score	1.01	0.67	1.54	1.02	0.68	1.54
Betel nut chewing (vs Never)						
Quit*	1.92	0.64	5.71	1.24	0.40	3.85
Current	2.71	0.84	8.81	1.15	0.34	3.91
Cigarette smoking (vs Never)						
Quit*	1.91	0.12	30.49	1.73	0.09	31.58
Current	17.03	2.26	128.38	15.73	2.01	122.98

Supplement Table 12 The association between MetS score, other factors and Verrucous hyperplasia (MetS → Verrucous hyperplasia)

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

Supplement Table 13 The association between MetS, other factors and Erythroplakia + Erythroleukoplakia (MetS \rightarrow Erythroplakia +

Erythroleukoplakia)

	RR	95%CI		aRR	RR 95%C	
Metabolic syndrome						
Yen vs No	1.88	0.80	4.43	1.59	0.67	3.75
Betel nut chewing (vs Never)						
Quit*	4.31	1.16	16.03	4.47	0.93	21.46
Current	18.24	5.88	56.54	17.81	4.95	64.12
Cigarette smoking (vs Never)						
Quit*	1.91	0.48	7.62	0.84	0.15	4.60
Current	3.46	1.13	10.61	0.96	0.26	3.49

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

Supplement Table 14 The association between Component of MetS, other factors and Erythroplakia + Erythroleukoplakia (MetS → Erythroplakia + Erythroleukoplakia)

	RR	95%CI		aRR	aRR 95%	
Component of metabolic syndrome						
Central obesity	1.24	0.52	2.94	0.94	0.37	2.36
Hypertriglyceridaemia	2.10	0.89	4.95	1.39	0.54	3.58
Low HDL-C	1.30	0.54	3.13	1.18	0.47	2.97
Elevated blood pressure	1.33	0.54	3.29	1.22	0.50	3.00
Hyperglycaemia	1.03	0.42	2.56	0.99	0.37	2.64
Betel nut chewing (vs Never)						
Quit*	4.31	1.16	16.03	4.49	0.94	21.55
Current	18.24	5.88	56.54	17.86	5.10	62.54
Cigarette smoking (vs Never)						
Quit*	1.91	0.48	7.62	0.85	0.15	4.65
Current	3.46	1.13	10.61	0.91	0.24	3.50

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplement Table 15 The association between MetS score, other factors and Erythroplakia + Erythroleukoplakia (MetS → Erythroplakia +

Erythroleukoplakia)

	RR	95%CI		aRR	95%CI	
Metabolic syndrome						
Score	1.22	0.89	1.68	1.13	0.83	1.55
Betel nut chewing (vs Never)						
Quit*	4.31	1.16	16.03	4.49	0.94	21.54
Current	18.24	5.88	56.54	17.92	4.96	64.68
Cigarette smoking (vs Never)						
Quit*	1.91	0.48	7.62	0.84	0.15	4.60
Current	3.46	1.13	10.61	0.95	0.26	3.49

aRR: adjusted rate ratio; **CI**: confidence interval; ***Quit**: quit betel quid chewing, quit smoking or quit alcohol drinking defined as those who once participated in these oral habits but no longer participate in these habits on the day of interview.

participate in ...

	Item No	Recommendation	Pages		
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1		
			3		
		was done and what was found			
Introduction					
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5		
Objectives	3	State specific objectives, including any prespecified hypotheses	5		
Methods					
Study design	4	 i) Indicate the study's design with a commonly used term in the title or the ostract ii) Provide in the abstract an informative and balanced summary of what as done and what was found iii) Provide in the abstract an informative and balanced summary of what as done and what was found iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii			
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6,7		
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	6,7		
		(b) For matched studies, give matching criteria and number of exposed and unexposed	NA		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,			
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6,7		
Bias	9		NA		
Study size	10	Explain how the study size was arrived at	6		
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7,9		
Statistical methods	12	applicable, describe which groupings were chosen and why(a) Describe all statistical methods, including those used to control for confounding	9		
		(b) Describe any methods used to examine subgroups and interactions	NA		
			NA		
			NA		
		(e) Describe any sensitivity analyses	NA		
Results					
	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	10		
		(b) Give reasons for non-participation at each stage	NA		
		(c) Consider use of a flow diagram	10 (Figure		
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	10		
		(b) Indicate number of participants with missing data for each variable of interest	NA		
		(c) Summarise follow-up time (eg, average and total amount)	NA		
Outcome data	15*	Report numbers of outcome events or summary measures over time	10		
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	10,11		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute	NA
		risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations	19	Discuss limitations of the study, taking into account sources of potential	16
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	16
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	16
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	18
		and, if applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.