Supporting Information: Polymer Nanocomposite Ultrafiltration Membranes: the Influence of Polymeric Additive, Dispersion Quality and Particle Modification on the Integration of Zinc Oxide Nanoparticles into Polyvinylidene Difluoride Membranes

Thorsten van den Berg ^{1,,2}, and Mathias Ulbricht ^{1,2,*}

- ¹ Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45141 Essen, Germany; <u>thorsten.vandenberg@gmail.com</u>
- ² Center for Nanointegration Duisburg-Essen (CENIDE), 47057 Duisburg, Germany
- * Correspondence: mathias.ulbricht@uni-essen.de

Received: 28 July 2020; Accepted: 17 August 2020; Published: date

Source*	NP Type	Solvent	Additive	Dispersion method	Non-solvent	Pure water Permeability	Rejection	Macro void Formation	Hydrophilicity	Tensile Strength	Elongation at Break
Oh et al. 2009 ^[11]	TiO ₂	NMP	none	n.a.	iPrOH/ water	↓	n .a	-	Ţ	n.a	n.a
Yan et al. 2006 ^[13]	Al ₂ O ₃	DMA c	PVP	stirring	EtOH/ water	ſ	-	_	ſ	Ţ	1
Yu et al. 2009 ^[14]	TiO ₂	NMP	PVP	stirring	water	<i>7</i> ∖	_	\downarrow	\uparrow	Î	Ţ
Yari et al. 2019 ^[15]	SiO ₂	NMP	none	sonicati on NP in solvent	water	75	Ţ	75	Ţ	n.a	n.a
Sun et al. 2019 ^[16]	SiO ₂	DMA c	PVP	stirring	water	\nearrow	1	\downarrow	1	n.a	n.a
Dong et al. 2012 ^[17]	Mg(OH)2	DMA c	PEG	NP in solvent	water	75	_	ſ	↑/↓ *	n.a	n.a
Liu et al. 2011 ^[18]	Al ₂ O ₃	NMP	H2SO4	stirring	water	75	n .a	\downarrow	Ţ	Ļ	Ļ
Li et al. 2015 ^[19]	TiO ₂	DMA c	PVP	sonicati on NP in solvent	DMAc/ water	Ţ	n .a	n.a.	ţ	n.a	n.a
Moghada m et al. 2014 ^[20]	TiO ₂	DMA c	PEG	sonicati on of whole dope	water	ſ	Ţ	ţ	ţ	Ţ	ſ
Saraswat hi et al. 2018 ^[21]	MnO ₂	NMP	PEG	sonicati on of whole dope	NMP/ water	î	Ţ	ţ	Ţ	Ţ	n.a
Cao et al. 2006 ^[22]	TiO ₂	DMF	none	n.a.	water	ſ	_	_	_	n.a	n.a
Liang et al. 2012 ^[23]	ZnO	NMP	PVP, Glycer ol	sonicati on of whole dope	water	75	n .a	_	ţ	Ţ	1
Song et al. 2012 ^[24]	TiO ₂	DMA c	PEG	n.a.	water	¢	\downarrow	n.a.	¢	n.a	n.a
Yuliwati et al. 2011 ^[25]	TiO ₂	DMA c	LiCl	stirring	water	<i>₹</i> ∖	¢	Ļ	n.a.	n.a	n.a

 Table S1. Overview of cited studies on nanocomposite ultrafiltration membranes.

Wei et al. 2011 ^[26]	TiO ₂	DMA c	PVP stirring		EtOH/ water	Ţ	n .a	n.a.	n.a.	Ţ	Ļ
Zhang et al. 2017[^{27]}	TiO2	DMA c/ DMS O	PEG stirring		water	Ļ	ţ	n.a.	ţ	n.a	n.a
Yuliwati et al. 2011 ^[28]	TiO2	DMA c	LiCl	stirring	water	Ļ	Ţ	Ļ	n.a.	n.a	n.a
Legend											
1	Increase with NP conc.				_			no infl	uence		
\downarrow	Decrease with NP conc.				n.a.	information not available					
75	increases at low NP conc., decreases at higher NP conc.				*		depe	nds on	PEG c	onc.	

* for references see main paper.

Substance	Type / Quality	Supplier / Manufacturer		
1.4-dioxane	p.a.	Merck		
2-butanol	ReagentPlus®, ≥ 99%w	Sigma-Aldrich		
acetone	p.a.	Fluka		
acetonitrile	p.a.	Merck		
chloroform	p.a.	Acros		
dichloromethane	p.a.	Aldrich		
dimethyl sulfoxide	p.a.	Merck		
dimethylacetamide	>98%	Fluka		
dimethylformamide	Puris	AppliChem		
Ethanol	p.a.	VWR Chemicals		
ethyl acetate	p.a.	Fluka		
methanol	p.a.	VWR Chemicals		
methyl ethyl ketone	≥99.5%w pure	Aldrich		
n-hexane	95%	Sigma-Aldrich		
N-methyl-2-pyrrolidone	>99.5 %w pure	Merck		
polyethylene glycole	M _{w,av} ~ 35 kDa	Fluka		
polyethylene oxide	$M_{w,av} \sim 100 \text{ kDa}$	Aldrich		
polyvinylidene difluoride	Solef 6010 powder	Solvay Specialty Polymers		
polyvinylpyrrolidone	Luvitec K-30;≥95%w pure	BASF		
p-xylene	p.a.	Merck		
sodium azide	>99%w pure	Sigma-Aldrich		
sodium chloride	ACS, ISO, Reag. Ph. Eur.	Merck		
Tetrahydrofuran	p.a.	Merck		
zinc oxide nanoparticle	VP ZnO 20; ≥ 99.5%w pure	Evonik Industries AG		

Table S2. Overview on materials used in this study.

Figure S1. Effect of ZnO nanoparticle fraction onto viscosity of PVDF solutions in NMP obtained with (reference) and without sonication ("agglomerated"), measured at 15.9 s⁻¹ and 20 °C.

Figure S2. Viscosity of dope solutions (16 % PVDF in NMP) at 15.9 s⁻¹.

The ZnO particles with PVP modification lost 12.4 % of their mass during conditions simulating the dope solution preparation (cf. Figure 6 in main paper). Under the assumption that this mass consists solely of PVP the PVP concentration of the dope solutions can be calculated. The calculated PVP contents for the dope solutions shown in Figure S2 are presented in the following Table S2.

Table S3. Calculated PVP concentration in the dope solutions from Figure S2.

c(NP) [%/%(PVDF)]	c(PVP)calculated [%]
0	0
3	0.095
5	0.099
10	0.198
20	0.397
50	0.992

The viscosity increase caused by 1% PVP in the dope solution was calculated from the data (cf. Figure 1 in main paper) through linearization to be 0.44 ± 0.02 Pa s. The viscosity of the dope solution with ZnO-PVP particles was calculated by forming the product of the aforementioned viscosity increase for 1% PVP and the calculated PVP content of the dope solution (see Table S2) and then adding the viscosity of the dope solution without PVP for the adjusted ZnO content. The results are presented in Figure S3. It is apparent that the dope solutions with ZnO-PVP exhibit a lower viscosity than calculated values. Therefore, the difference in viscosity cannot be solely explained by the difference in ZnO and PVP content of the dope solutions.

Figure S3. Comparison of the viscosity effect of PVP, pristine ZnO particles and ZnO-PVP particles with calculated viscosity increase for ZnO-PVP, measured at 15.9 s⁻¹ and 20°C.

Table S4. Membrane	performance d	ata
--------------------	---------------	-----

	Permeability [L/h m ² bar]				Rejection [%]				
Membrane	Po	SD	P 1	SD	PEG 35kDa	SD	PEO 100kDa	SD	n
1% PVP; no NP	1088	101	847	87	3	2	87	0	3
50% PVP-mod NP	957	77	759	81	29	15	80	1	2
1% PVP; 40% NP	536	41	411	25	49	4	81	1	2
1% PVP; 50% NP	500	232	400	222	57	21	78	11	33

Figure S4. Cross-sections morphology of PVDF membranes obtained from dope solutions (20 % PVDF and 1 % PVP in NMP) precipitated in coagulation bath consisting of a 50 %Vol/50 %Vol mixture of NMP and water; left: no zinc oxide at 2726x magnification; right: 50 %w/w(PVDF) zinc oxide at 2973x magnification.