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SUPPLEMENTAL INFORMATION 

 

FIG. S1 Recording sites in the two animals, Related to Fig. 1. 

 On the left, posteromedial view of 3D-reconstructed macaque brain. The posterior part of the occipital lobe was cut off 

to visualize the entire extent of the anterior bank of parieto-occipital sulcus. Superimposed, a flattened map of the caudal 

part of the SPL. The level of the cut is shown in grey. On the right, the 2D map of caudal SPL with the locations of 

recorded neurons in area V6A for the 2 monkeys (red M1, blue M2).  Abbreviations:  cal, calcarine sulcus;  pos, parieto-

occipital sulcus; cin,  cingulate sulcus. 

 

 



   

 

 

FIG. S2 Extrinsic regressors’ influence across the population (two animals’ data were pooled together, related to Fig. 3 

Box plot of the w-values for each block of regressors across the population obtained merging data from the 2 animals. Other 

conventions as fig. 3A. 



   

 

 

FIG. S3 Correlations between beta coefficients relative to different target positions across the population, related to Fig. 4 

Panels are paired for short/long distances and columns are results for POSTSACC, PREP, PREMOV, PREMOV2, MOV2 

epochs. Other conventions as fig. 4C. 

 

 

 

 

 



   

 EYEPOS EYESPEED POSTSACC DELAY PREP PREMOV MOV HOLD PREMOV2 MOV2 

 
M1 

'0.018 
[0.004 
0.050]' 

'0.003 
[0.0005 
0.009]' 

'0.008 
[0.0008 
0.014]' 

'0.006 
 [0  

0.016]' 

'0.0015  
[0 

0.007]' 

'0.014 
[0.001 
0.030]' 

'0.011 
[0.003 
0.033]' 

'0.011 
[0.003 
0.032]' 

'0.006 
 [0.001 
0.017]' 

'0.007 
[0.0005 
0.019]' 

 
M2 

'0.017 
[0.005 
0.044]' 

'0.001 
 [0 

 0.007]' 

'0.0003 
 [0  

0.009]' 

'0.007 
 [0 

0.019]' 

'0.001 
 [0 

 0.005]' 

'0.005 
 [0 

0.013]' 

'0.030 
[0.008 
0.066]' 

'0.019 
[0.003 
0.054]' 

'0.004 
[0.0005 
0.012]' 

'0.007 
[0.002 
0.016]' 

M1 
+ 

M2 

'0.018 
[0.004 
0.045]' 

'0.002  
[0 

 0.008]' 

'0.004  
[0 

 0.011]' 

'0.005  
[0  

0.017]' 

'0.001    
  [0  

0.005]' 

'0.007  
[0 

 0.019]' 

'0.015 
[0.006 
0.054]' 

'0.015 
[0.003 
0.039]' 

'0.005 
[0.001 
0.014]' 

'0.007 
[0.001 
0.018]' 

 

Table S1. ‘Median [25-th percentile 75-th percentile]’ of the w-values for the M1, M2, M1+M2 relative to every block 

of regressors, related to Fig. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

Transparent methods 

The current study consisted in an extended computational analysis of neural data reported previously 

(Breveglieri et al., 2014). Accordingly, the procedures described herein focus on analytical treatment 

of the data and provide only essential details of the behavioural and electrophysiological procedures. 

Full details of experimental methods are provided in our previous reports. 

The study was performed in accordance with the guidelines of the EU Directives (86/609/EEC; 

2010/63/EU) and the Italian national law (D.L. 116-92, D.L. 26-2014) on the use of animals in 

scientific research. Protocols were approved by the Animal-Welfare Body of the University of 

Bologna. During training and recording sessions, particular attention was paid to any behavioral and 

clinical sign of pain or distress. 

 

Experimental Procedures  

Two male macaque monkeys (Macaca fascicularis) weighting 4.4 kg (M1) and 3.8 kg (M2) were 

used. Single cell activity was extracellularly recorded from the anterior bank of the parieto-occipital 

sulcus (POs). The electrodes entered directly into the cortex of the exposed surface of the caudal 

aspect of superior parietal lobule or passed through the occipital pole and the POs to reach the anterior 

bank of the sulcus in the depth (inclination angle of electrodes was 28–30°posteriorly from the 

coronal plane). After passing through areas V1–V2 of the occipital lobe, the electrode reached the 

anterior bank of the POs at a variable depth (up to 8mm) according to the anteroposterior coordinate 

of penetration. Area V6A was initially recognized on functional grounds following the criteria 

described in (Galletti et al. 1999) and later confirmed based on the cytoarchitectonic criteria of 

(Luppino et al. 2005).  

We performed multiple electrode penetrations using a five-channel multielectrode recording system 

(Thomas Recording GmbH, Giessen, Germany). The electrode signals were amplified (at a gain of 

10,000) and filtered (bandpass between 0.5 and 5 kHz). Action potentials in each channel were 



   

isolated with a waveform discriminator (Multi Spike Detector; Alpha Omega Engineering Nazareth, 

Israel) and were sampled at 100 kHz. Quality of single-unit isolation was determined by the 

homogeneity of spike wave forms and clear refractory periods in ISI histograms during spike-sorting. 

Only well-isolated units not changing across tasks were considered. The animal behaviour was 

controlled by custom-made software implemented in LabVIEW (National Instruments, Austin, TX) 

environment (Kutz et al. 2005). Eye position signals were sampled with two cameras (one for each 

eye) of an infrared oculometer system (ISCAN, Woburn, MA) at 100 Hz. The vergence angle was 

not recorded online, but it was reconstructed offline from the horizontal eye positions of the two eyes. 

A sort of control for vergence resulted from the presence of electronic windows (one for each eye, 4° 

× 4° each) that controlled the fronto-parallel gaze position, so that we could set an offset of the 

horizontal eye position signal for targets located in the same direction, but at different depths. 

 

Behavioural Task 

Electrophysiological signals were collected while the monkeys were performing an instructed-delay 

body-out reaching task (Fig. 1B-C). The targets were located in different positions in the 3-D space. 

During the task the animals were fixating a target that they would reach when instructed. Monkeys 

sat in a primate chair, with the head restrained, and faced a horizontal panel located at eye level. Nine 

light-emitting diodes (LEDs) mounted on the panel at different distances from the eyes were used as 

fixation and reaching targets (Fig. 1B, left). As shown in the right part of Fig. 1B, the target LEDs 

were arranged in three rows: one central, along the sagittal midline, and two laterals, at isoversion 

angles of −15° and +15°, respectively. Along each row, three LEDs were located at isovergent 

positions of 17.1°, 11.4°, and 6.9°, respectively. The two animals had the same interocular distance 

(3.0 cm), so we placed the isovergent rows at the same distance from the monkeys in both animals 

(nearest targets: 10 cm from monkey eyes; intermediate targets: 15 cm; far targets: 25 cm).  The range 

of vergence angles was chosen to be within the limits of peripersonal space, so the monkeys were 

able to reach all target positions. The animals performed the task with the limb contralateral to the 



   

recording site while maintaining steady fixation. The hand started the trial pushing a button (home 

button, 2.5 cm in diameter, Fig. 1B, C) placed outside the monkeys’ visual field, 5 cm in front of its 

trunk. 1000 ms after home button pressing one of the 9 LEDs lit up green. The monkeys were required 

to fixate the fixation point while keeping the button pressed. The fixation point served as a cue 

concerning the direction of the arm movement to perform. However, the monkeys needed to withhold 

the instructed behaviour without performing any eye or arm reaching movement for 1700–2500 ms, 

till the change in colour of fixation LED (green to red). The colour change of fixation target was the 

go signal for the animal to release the home button and start an arm movement toward the target. The 

monkeys had 1 sec after the go signal to reach the target; otherwise, the trial was aborted. Then, 

monkeys pushed the target and held the hand on it for 800–1200 ms. The target offset cued the 

monkeys to release the LED and return to the home button, which ended the trial and allowed 

monkeys to receive reward. Notice that since target offset, the animals were allowed to break fixation. 

Only correctly executed trials were used in this analysis. 

 

Poisson GLM and LASSO optimization 

Generalized linear models (GLMs) are a flexible generalization of ordinary linear regression used for 

variables that have distribution other than Gaussian. In this sense, ordinary linear regressions can be 

seen as a specific type of GLM. 

In premotor (Takahashi et al., 2017) and somato-motor (Goodman et al., 2019) (Hatsopoulos et al., 

2007), for instance, GLMs (or ordinary linear regressions) provided interesting insights about the 

neural modulations for several kinematic parameters of the upper limb. In different contexts, also 

gaze position can be included in these models (Lehmann and Scherberger, 2013). 

Poisson distribution is used for modelling the number of times that an event occurs in an interval of 

time. So, the behaviour of a neuron (i.e. variations of its spiking activity) can be modelled as a Poisson 

process (Fig. 1D) (Triplett and Goodhill, 2019; Pillow et al., 2008; Truccolo et al., 2005;  Paninski et 



   

al., 2004b; Dayan and Abbott, 2001). Thus, the probability of observing the spike count y from a 

neuron in a short period of time is:  

 
P(y|μ, Δ) =

e−μΔμΔy

y!
  

where μ represent the firing rate over unit time and Δ is the bin width.  

GLM with Poisson distribution assumes that the varying firing rate at a specific time t can be 

represented as the exponential of the linear combination of the parameters called regressors (Fig. 1D), 

and so:  

 
μt = exp(β0 + β1X1,t+. . . +βKXK,t)  

where K is the number of regressors, {β𝑘}𝑘=1,...𝐾 are the regression coefficients, eachXk,1...T is a vector 

of regressors and β0 is the constant of the model. 

 The regression coefficients are estimated through a procedure called Maximum Likelihood 

Estimation (MLE) that maximizes the log-likelihood (the logarithm of the likelihood, 

computationally easier to calculate), i.e. the probability, given a model, to observe a given spike train. 

The log-likelihood function for Poisson GLMs can be calculated as (Goodman et al., 2019):  

 
ℓ(y, β) = log[L(y, β)] = ∑ yt

T

t=1

log(μt) − μt  

We followed a procedure similar to the one recently adopted by Goodman and colleagues (2019). In 

a first phase of the fitting, we applied an optimization method called LASSO, which is used to avoid 

over-fitting and to select the more significant regressors because it shrinks the size of the regression 

coefficient and sets the unimportant ones to zero. For this aim, we added the LASSO penalty term to 

the log-likelihood and maximized the resulting function:  

 
β̂LASSO = argmaxβ (ℓ(y, β) − λ ∑ |

𝐾

k=1

β𝑘|)  



   

 

 
 

and where λ represents the strength of the LASSO shrinkage. After this, we applied the classic MLE 

regression with only the selected regressors to get not penalized β coefficients:  

 
β̂MLE = argmaxβℓ(y, β)  

in this way we estimate only coefficients related to significant regressors.  

 

Data pre-processing  

We aligned data on the release of home button, then we considered neural activity and eye tracks for 

all neurons for all trials from -3000 ms to +1720 ms. Cropping trials in this way allowed us to capture 

the last part of free epoch and the beginning of fixation for every trial; after the release of home button 

we captured the whole hold epoch and the returning of arm to the resting position for most of trials. 

We then binned spiking activity at 40 ms calculating the number of spikes in each bin. We chose this 

binning interval because we wanted to focus the influence of each regressor on cell activity expressed 

as its firing rate, rather than predict each spike precisely and direct the attention on spiking mechanics.  

For each bin, we calculate the averaged gaze position along x and y coordinates for the two eyes (each 

40 ms bin contains 4 points of the raw eye track sampled at 10 ms). We averaged x-position for the 

two eyes (Rx, Lx) and y-position for the two eyes (Ry, Ly), getting a couple of values that indicates for 

each bin real gaze direction (version and elevation).  

𝑉𝐸𝑅𝑆𝐼𝑂𝑁 =
Rx + Lx

2
;  𝐸𝐿𝐸𝑉𝐴𝑇𝐼𝑂𝑁 =

Ry + Ly

2
 

We also got horizontal vergence for each bin applying the formula: 

VERGENCE = 𝐿x − 𝑅x 

 

 

 



   

Extrinsic regressors  

As gaze modulations are not linear (Breveglieri et al., 2012; Galletti et al., 1995), in order to capture 

the responses’ non-linearity with our model, we discretized the space in front of the monkey. This 

allowed us to assign a beta coefficient for each spatial volume we considered and allowed to take into 

account both linear and non-linear gaze modulations with a unique model, approximating neural 

activity within each volume. First, considering that the reaching targets are in a central frontal position 

and the animal has to fix them for most part of the trial, we focused on this subregion of the space. 

We considered the position of the central nearest target as the origin of our x-y (version-elevation) 

coordinates system. Then we discretized the space in a 15° wide 2D grid that spanned from -22,5° 

(left side) up to 22,5° (right side) of version (with targets located at -15°,0°,15°) and from -22,5° 

(bottom) to 22,5° (up) of elevation; we divided the remaining space outside the grid in 4 quadrants 

(top-right, bottom-right and so on). Note that, since the targets were located at the eye level, elevation 

during all the fixations was ideally always 0°. For this reason, variations along the vertical coordinate 

happened most during the free epoch at the beginning of each trial.  In addition, we created a 5° wide 

subdivision based on the vergence obtaining 4 layers of depth (from 20° up to 0°). This subdivision 

spanned from 20° of vergence (about 8-10 cm of distance from cyclopic eye) up to 0° (infinite 

distance, with targets located at 17°, 11°, 7°). We chose 20° as maximum limit for the vergence 

because no object or point of interest for the monkey was nearer than 8-10 cm. We considered each 

volume obtained from this double-discretization as a dummy variable that took value of 1 only when 

the monkey ‘watches in it’. To have a reliable reference level we removed the dummy variable 

corresponding to the volume with coordinates (-7,5)°-7,5° (version) x (-7,5)°-7,5° (elevation) 15°-

10° (vergence). In this manner we obtained 51 dummy variables ((9 squares in the 2D grid + 4 

quadrants) x 4 layers of vergence – 1) indicating for each bin where the animal was looking. We 

considered them as the EYE POSITION block of regressors of our model. 

Then, to compute x,y eye movement velocity, for each bin, for each eye, we subtracted the initial 

position from the final position of raw eye track , then we divided this angular variation for bin width 



   

(40 ms) and averaged the values of the two eyes. Thus we obtained an average of gaze movement 

velocity in that particular bin (°/ms) (x>0, rightward movements; for y>0, upward movements). We 

normalized it for its highest value across all condition and all trial. In order to take into account actual 

saccadic neural activity, but also post- and pre-saccadic activity (Kutz et al., 2003), we built several 

pairs of vectors applying this procedure to eye tracks at bin t, but also to eye tracks at bin t-1, t-2 ... 

t+1, t+2, … t+n, spanning for the 4 previous and  following bins. In this way we fed the model with 

information on eye movements going from -160 ms up to +160 ms around each bin. We used these 

vectors as the EYE SPEED/DIR block of regressors of our model. 

We built other regressors to take into account the main behavioural epochs of the task. We chose the 

following epochs: POSTSACC (from fixation start to 500ms after it), DELAY (from target onset to 

go signal), PREP (from 500ms before go signal to go signal itself), PREMOV (from 200ms before 

home button release to home button release itself, if more than 200 ms passed after go signal; 

otherwise, from go signal to home button release) , MOV (from home button release to target touch), 

HOLD (from target touch to led colour switch), PREMOV2 (from 200ms before target release to 

target release itself, if more than 200 ms passed after go signal; otherwise, from led colour switch to 

target release), MOV2 (from target release to Home button pression).  

Each of these blocks of regressors contained 9 dummy variables (1 for each target). The first dummy 

variable for MOV, for example, took the value of 1 in bins in which the animal was moving the arm 

toward first position in the space and it took 0 in all other bins; the second dummy variable, was 1 

for movements toward second targets and so on. We added to the blocks of PREMOV and PREMOV2 

regressors a variable containing the reaction time for each trial (normalized on the maximum across 

all trials and all conditions). We added to the blocks of MOV and MOV2 regressors a variable 

containing the average movement velocity calculated as the ratio between the distance home button-

target and the movement time (normalized on the maximum across all trials and all conditions). 

 EYE POSITION, EYE SPEED/DIR, POSTSACC, DELAY, PREP, PREMOV, MOV, HOLD, 

PREMOV2, MOV2 were our blocks of extrinsic regressors. 



   

 

Intrinsic regressors 

We added to the model 5 independent variables providing information about spike history grouped 

in the block of intrinsic regressors. The first one associated each bin t to spike count at bin t-1, the 

second one associated each bin t to spike count at bin t-2 and so on. Past spike count had been 

normalized for his maximum value across all trials and all conditions. In this way, we provided to the 

model information about the neural activity in the previous 200 ms.  In the context of GLMs, it is 

common to give the model information about other cells’ activity in order to take into account cross 

correlations within the population of neurons (Truccolo et al., 2010). In our case, as our recordings 

were performed with single electrodes and not simultaneously, we exclude the possibility of crosstalk 

between neurons of our population and we did not provide any information about other cells’ activity. 

 

Fitting procedures  

With data consisting on the spike count (dependent variable) and all the vectors of regressors 

(independent variables), for each cell independently we fitted different Generalized Linear Models 

following a double-step procedure. Note that our dataset consisted more than 104 datapoints for each 

cell (118 bins for each trial, 10 trials for target, 9 targets), enough to handle the ≃150 variables we 

had with a good confidence interval. 

In the first step, to make a selection of the regressors and retain only the important on cell neural 

activity, we fitted a GLM with all the available regressors applying the LASSO regularization. This 

regularization has the property to shrink the unimportant regressions coefficients to zero, so these 

features can be removed from the model. During this first phase, we performed a 10-fold automatic 

cross-validation (option ‘CV’ in lassoglm Matlab function that random datapoints to one out of 10 

subsets of roughly equal size) to choose the value of  λ (see equation 4) that minimizes the deviance 



   

of the model. This step allowed us to exclude from the subsequent phase the regressors that got a 

regression coefficient equal to zero.  

In the second step, we fitted different classic GLMs with Poisson distribution using the remaining 

selected features, grouped in blocks (see Extrinsic Regressors) We performed a leave-one-out cross-

validation (training on 9 randomly chosen trials for each target and validating the model on the left-

out 1). We repeated this cross-validation procedure 10 times for each model for each cell.  

Note that each subset contained ≃9500 datapoints for training and ≃1000 points for testing. Predicted 

firing rate and the other statistics reported are computed on the test sets.  

For each cell, we fitted several models: a ''complete'' one using all the regressor blocks, 10 ''nested'' 

models excluding from the complete model a different extrinsic block of regressors at a time, an 

''intrinsic only'' model removing all the extrinsic regressor blocks, an ''extrinsic only''  model 

removing all the intrinsic regressor blocks and finally a ''null'' model with only the intercept that 

represented the ground zero goodness of fit. All the analyses and results reported in this paper were 

relative to these non-LASSO-regularized models. 

 

Units selection and analysis of fitted models 

Single cell level 

We tried to select task-related cells to reduce noise in our population. For this purpose, we computed 

the mean firing rate in each epoch of interest (8, see ‘Extrinsic regressors’ for more details) in each 

trial and we performed one-way ANOVA (factor: epoch; levels: 8). All units resulted significantly 

modulated in at least one epoch (ANOVA p<0.05 for every unit). Thus, we proceeded with a cell 

selection based on the fitting of our model (see below). 

To quantify our complete model goodness of fit and make it easy to interpret, we used a pseudo-R2. 

McFadden’s pseudo-R2, for Poisson GLMs, can be calculated (Cameron and Windmeijer, 1997) 

starting from the log-likelihood of the complete fitted (ℓcomplete)  and null (ℓnull) models: 



   

𝑅pseudo
2 = 1 −

ℓcomplete

ℓnull

 

The log-likelihood of the null model (a model with only the intercept) represented the ground zero 

value and, by definition, it is independent from every regressor Note that McFadden’s pseudo-R2 can 

be interpreted as the more common R2 in ordinary linear regression, ranging from 0 (extremely poor 

fit) to 1 (perfect fit), but its values tend to be considerably lower (values of 0.2 to 0.4 are considered 

excellent fit). When calculated on test datasets (data never seen by the model during the fitting), 

pseudo-R2 values are even lower. We selected those units that reached at least a pseudo-R2 relative to 

the complete model of 0.05 to discard the noisier part of population or neurons for which our model 

failed to capture neural activity modulations (Goodman et al., 2019; Paninski et al., 2004a).  

To analyze the nested models (see ‘Fitting procedures’) and to get a score associated with the 

importance on neural activity of the information contained in every block of regressors, we proceeded 

as follows. 

First at all, we calculated a relative pseudo-R2 as: 

𝑅relativepseudo
2 =

ℓnested − ℓnull

ℓ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 − ℓnull

 

Where ℓnested is the log-likelihood of the nested model. This value compares the log-likelihood (i.e. 

the goodness-of-fit) of each nested model with the one of the complete model (and of the null model). 

Then, for an higher interpretability, we converted the relative pseudo-R2 in a weight (w-value):= 1 - 

relative pseudo-R2 .We used this as a score directly associated with the importance of groups of 

variables on the complete model. The idea behind this metric is that to build each nested model, we 

removed from the complete model a block of regressors, leading a worsening in the fitting. Whether 

a block of regressors contained important information for the model, its removal causes a great 

worsening of the fit, the relative pseudo-R2 will decrease (towards 0) and the w-value will increase 

(towards 1). Vice versa, whether a regressors’ block had little influence on the complete model, its 

removal will cause a little worsening of the fit, an increase (towards 1) in the relative pseudo-R2 

resulting finally in a little w-value (towards 0). From these computations, we obtained a set of w-



   

values (1 for each extrinsic block of regressors, 10 in total; 1 for the extrinsic-only model that 

corresponds to the removal of the SPIKE HISTORY block and 1 for the intrinsic-only model) for 

each selected cell that allowed us to evaluate the influence of the different parts of our model on 

neural activity. 

It is worthy to remark that the w-values express the goodness of fit of the nested model in comparison 

with the complete one. Thus, a neuron can have a larger w-value for a block of regressors than another 

having less deviance explained by that block in absolute. Furthermore, they do not carry necessarily 

information about the spatial tuning of the cell. We used the 10 w-values of the extrinsic blocks to 

build the ‘functional fingerprint’ for each unit. This fingerprint shows how the cell is sensitive to the 

various external factors considered by our model. 

Population level: extrinsic blocks of regressors 

We further analyzed the extrinsic blocks of regressor across the population. We checked consistency 

of the results in the animals comparing the distribution of median values for all the blocks of 

regressors between the two animals (two-samples Kolmogorov-Smirnov test, p<0.05). To find the 

elbow of the w-values distributions (Fig. 3B), we first split the curves in two parts and then fitted one 

line for each part. We repeated this procedure to find the dividing point (the elbow) that minimize the 

sum of fitting errors. 

 We used PCA to reduce dimensions of data and to visualize them in a 3D space (the first 3 PCs). To 

look for a clustering in the population based on type of modulations (for example visual cells, motor 

cells, visuomotor cells modulated by gaze-position and movement, but not by hold epoch…), we then 

applied K-means clustering algorithm on the raw w-values (not manipulated with PCA). This 

algorithm needs the number of clusters to seek in input. So, to find out the optimal one, we tried with 

three of the most common procedures: elbow, average silhouette and Gap statistic method. 

Furthermore, we also tried a hierarchical clustering of the w-values. All the techniques we employed 

failed in finding different clusters in the data. To highlight the continuity in the modulations and the 



   

mixed selectivity characteristic of area V6A, we coloured the dots in PCA representation according 

to the w-values of the three most important extrinsic blocks of regressors.  

In order to study the selectivity for one of the extrinsic blocks of regressors (or the lack of it, i.e. 

mixed selectivity), we chose to calculate the number of important blocks on each unit spiking activity. 

For each cell, we summed all its extrinsic w-values. Then, we iteratively added together in descending 

order the extrinsic w-values up to reach 85 % of the total sum. The blocks required to achieve this 

value have been identified as important on that cell spiking activity. The obtained number can range 

from 1 (cell selective for only one feature) to 9 (cell equally selective for all the 10 features). 

Spatial and temporal correlations 

To study the spatial and temporal evolution of the population encoding, we performed a correlation 

analysis on the beta coefficients resulting from the complete models (Zhang et al. 2017). For each 

cell, we averaged the beta coefficients resulting from the 10 cross-validation training subsets. We 

then built a population vector with the beta coefficients of each cell for every spatial position and 

every epoch. We evaluated the correlations between vectors of beta coefficients of each pair of 

positions within each epoch separately (spatial correlations) and between vectors of beta coefficients 

of each position in subsequent epochs (temporal correlations) with the Spearman's rank correlation 

coefficient (RSpearman). This coefficient does not assess linearity between the variables, but only 

monotonic relationships and, exploiting the rank, it is less sensitive to the outliers.  

We used a linear regression to assess the dependence (r) of strength of correlations (RSpearman) on the 

spatial distance between two target position (measured directly on the reaching panel, Fig. 1B). 

Finally, we averaged both the spatial and the temporal correlations to have results easier to interpret. 

Spike history influence 

The influence of the intrinsic part of the model on the fitting has been evaluated plotting the w-values 

for the intrinsic part of the model and for the extrinsic part(calculated on the extrinsic-only and 

intrinsic-only models, respectively) in a scatterplot where each dot represents a cell. We extracted 



   

from the complete model the 5 beta coefficients relative to different lags of the spike history for each 

cell and we ran on them a K-means clustering algorithm with 100 replicates with different random 

initial centroids and choosing the result with the lowest sum of point-to-centroid distances. We tested 

whether there was an association between the 2 clusters and the 2 animals with a chi-squared test (n° 

of M1 units in one cluster / total n° of M1 units vs n° of M2 units in the same cluster / total n° of M2 

units). To represent these data, we used PCA to reduce their dimensionality projecting the cells and 

their clustering in the plane of the first 2 PCs. We averaged the 5 beta coefficients within each cluster 

and tested if distributions of the 5 beta coefficients were different between the clusters (t-test, p<0.05).  
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