Supplemental Information - 2 Homocysteine promotes hepatic steatosis by activating the adipocyte - 3 lipolysis in a HIF1α-ERO1α-dependent oxidative stress manner 4 1 - 5 Yu Yan^a, Xun Wu^{b,c}, Pengcheng Wang^a, Songyang Zhang^a, Lulu Sun^a, Yang Zhao^d, - 6 GuangYi Zeng^a, Bo Liu^a, Guoheng Xu^a, Huiying Liu^a, Lei Wang^{b,c*}, Xian Wang^{a*} and - 7 Changtao Jiang^{a,e,f}* 8 - 9 aDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, - 10 Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of - Education, Beijing 100191, People's Republic of China - 12 bNational Laboratory of Biomacromolecules, CAS Center for Excellence in - 13 Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing - 14 100101, People's Republic of China - ^cCollege of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, - 16 People's Republic of China - ^dDepartment of Laboratory Medicine, Peking University Third Hospital, Beijing - 18 100191, People's Republic of China - 19 ^eCenter of Basic Medical Research, Institute of Medical Innovation and Research, - 20 Third Hospital, Peking University, Beijing, 100191, PR China - 21 ^fCenter for Obesity and Metabolic Disease Research, School of Basic Medical - Sciences, Peking University, Beijing, 100191, PR China - 23 *Correspondence to Changtao Jiang (Tel: +86-10-82801440, E-mail address: - 24 jiangchangtao@bjmu.edu.cn), Xian Wang (Tel: +86-10-82801443, E-mail address: - 25 xwang@bjmu.edu.cn) and Lei Wang (Tel: +86-10-64888501, E-mail address: - 26 wanglei@ibp.ac.cn). ## 28 Supplementary Figures 2930 31 32 33 Figure S1. Hcy activates the lipolytic process in adipose tissue (Related to Figure 1) (A-D) Levels of plasma Hcy, Met, SAM and SAH (n=6). Met, methionine; SAM, Sadenosylmethionine; SAH, Sadenosyl-L-homocysteine. - 34 C57BL/6 mice (8 weeks old) were administered Hcy in the drinking water for 4 weeks. - 35 (E) Protein levels of ATGL and phosphorylation levels of HSL at the Ser660 and - 36 Ser563 residues (n=4). (F) The relative expression of genes involved in adipose tissue - 37 lipolysis (n=6). - 38 C57BL/6 mice (8 weeks old) were administered Hcy in the drinking water for 2 or 4 - weeks. (G, H) Plasma FFAs and glycerol levels after fasting for 24 h at the indicated - 40 time (n=6). (A) Mann-Whitney U test and (B-H) Two-tailed Student's t-test: *P < 0.05, - **P < 0.01 compared to the vehicle group. - 42 (I) Isolated mice eWAT were incubated with or without 500 μM Hcy for 8 h, the - glycerol release per hour in freshly changed medium was examined (n=6). **P < 0.01 - compared to the control group (J, K) After pretreatment with lipolysis inhibitor for 1 h, - 45 the eWAT were treated with Hcy (500 μM) for 8h. The glycerol release per hour in - 46 freshly changed medium was detected. Atglistatin, ATGL inhibitor, 10 μM; BAY 59- - 9435, HSL inhibitor, 5 μM. **P < 0.01 compared to the Hcy group. All of the data are - presented as the means \pm SEM. Figure S2. Hcy upregulates the expression of ERO1α (Related to Figure 4) (A) The relative expression of genes related to ER stress markers in the vehicle or HHcy mice (n=6). (B) C57BL/6 mice (8 weeks old) were administered Hcy in the drinking water for 4 weeks. Protein levels of ERO1 α (n=3). (C, D) 3T3-L1 cells transduced with lentiviral control shRNA (shCtrl) or shEro1a for more than 72 h were treated with 500 μ M Hcy. The protein and mRNA levels of ERO1 α (n=3 or 5). All of the data are presented as the means \pm SEM. (A, B) Two-tailed Student's t-test: **P < 0.01 compared to the vehicle group. (C, D) One-way ANOVA with Tukey's post-hoc test: **P < 0.01 compared to the control + shCtrl group. *#P < 0.01 compared to the Hcy + shCtrl group. Figure S3. Activation of HIF1 α mediates Hcy-induced ERO1 α expression in adipocytes (Related to Figure 5) (A, B) Protein and mRNA levels of HIF1 α in the eWAT of vehicle and HHcy mice (n=3 or 6). Two-tailed Student's t-test: **P < 0.01 compared to the vehicle group. (C) The relative expression of the *Hif1a* and *Pdk1* genes in the eWAT of *Hif1a*^{f/f} and *Hif1a*^{Δ Adipo} mice after 8 weeks on an HMD (n=6). Two-tailed Student's t-test: **P < 0.01 compared to the *Hif1a*^{f/f} + Hcy group. (D) The mRNA levels of HIF1 α in the eWAT of *Hif1a*^{+/+} and Ad*Hif1a*^{LSL/LSL} mice (n=6). Two-tailed Student's t-test: **P < 0.01 compared to the *Hif1a*^{+/+} group. All of the data are presented as the means ± SEM. Figure S4. The lipolytic gene was downregulated in Hcy-treated $Hifla^{\Lambda Adipo}$ mice (Related to Figure 6) (A-C) The relative expression of genes involved in TG synthesis, fatty acid oxidation and lipolysis (n=6). All of the data are presented as the means \pm SEM. Two-tailed Student's t-test: **P < 0.01 compared to the $Hifla^{f/f}$ + HHcy group. Table S1 Characteristical data for nonhyperhomocysteinemia or hyperhomocysteinemia | Groups | Nonhyperhomocysteinemia | Hyperhomocysteinemia | |------------------------------------|-------------------------|----------------------| | Sex, M/F, n/n | 13/39 | 43/15 | | Age, yr | 43.5±1.7 | 47.1±2.3 | | Body mass index, kg/m ² | 21.80±0.22 | 22.45 ± 0.26 | | Homocysteine, µmol/l | 9.72±0.31 | 29.96±2.15** | | Triglycerides, mmol/l | 0.75 ± 0.02 | 1.64±0.10** | | Total cholesterol, mmol/l | 4.45±0.12 | 4.52±0.11 | | HDL cholesterol, mmol/l | 1.51±0.05 | 1.17±0.03** | | LDL cholesterol, mmol/l | 2.63±0.09 | 2.85 ± 0.10 | Data are expressed by mean \pm SEM. **P < 0.01 compared to the nonhyperhomocysteinemia group. 89 90 Table S2. Primer sequences for qPCR | Tuble 52.11 mer sequences for qr ex | | | |-------------------------------------|-------------------------|--| | qPCR primers | Sequence (5' to 3') | | | m <i>Dgat1</i> u | TCCGTCCAGGGTGGTAGTG | | | m Dgat1 1 | TGAACAAAGAATCTTGCAGACGA | | | m <i>Dgat2</i> u | GCGCTACTTCCGAGACTACTT | | | m Dgat2 l | GGGCCTTATGCCAGGAAACT | | | m $Atgl$ u | CTGAGAATCACCATTCCCACATC | | | m <i>Atgl</i> l | CACAGCATGTAAGGGGGAGA | | | m <i>Hsl</i> u | CCAGCCTGAGGGCTTACTG | | | m <i>Hsl</i> 1 | CTCCATTGACTGTGACATCTCG | | | m Mgl u | AGGCGAACTCCACAGAATGTT | | | m <i>Mgl</i> l | ACAAAAGAGGTACTGTCCGTCT | | |----------------------|--------------------------|--| | m <i>Perilipin</i> u | GGGACCTGTGAGTGCTTCC | | | m <i>Perilipin</i> 1 | GTATTGAAGAGCCGGGATCTTTT | | | m <i>CGI58</i> u | TGGTGTCCCACATCTACATCA | | | m <i>CGI58</i> l | CAGCGTCCATATTCTGTTTCCA | | | m <i>Cd36</i> u | AGATGACGTGGCAAAGAACAG | | | m <i>Cd36</i> 1 | CCTTGGCTAGATAACGAACTCTG | | | m <i>Fabp1</i> u | ATGAACTTCTCCGGCAAGTACC | | | m Fabp1 1 | CTGACACCCCCTTGATGTCC | | | m Fasn u | AAGTTGCCCGAGTCAGAGAACC | | | m Fasn 1 | ATCCATAGAGCCCAGCCTTCCATC | | | m Acc u | GATGAACCATCTCCGTTGGC | | | m Acc l | GACCCAATTATGAATCGGGAGTG | | | m <i>Srebp1c</i> u | GGAGCCATGGATTGCACATT | | | m Srebp1c l | GCTTCCAGAGAGGAGGCCAG | | | m <i>Cpt1a</i> u | CTCCGCCTGAGCCATGAAG | | | m <i>Cpt1a</i> l | CACCAGTGATGATGCCATTCT | | | m <i>Ppara</i> u | AGAGCCCCATCTGTCCTCTC | | | m <i>Ppara</i> 1 | ACTGGTAGTCTGCAAAACCAAA | | | m Acox1 u | GGGCACGGCTATTCTCACAG | | | m Acox1 1 | CATCAAGAACCTGGCCGTCT | | | m <i>ApoB</i> u | AAGCACCTCCGAAAGTACGTG | | | m ApoB l | CTCCAGCTCTACCTTACAGTTGA | | | m <i>Mttp</i> u | CTCTTGGCAGTGCTTTTTCTCT | | | m <i>Mttp</i> l | GAGCTTGTATAGCCGCTCATT | | | m <i>Erola u</i> | TTCTGCCAGGTTAGTGGTTACC | | | m <i>Erola l</i> | GTTTGACGGCACAGTCTCTTC | | | m Hifla u | ATAGCTTCGCAGAATGCTCAGA | | | m <i>Hif1a l</i> | CAGTCACCTGGTTGCTGCAA | |------------------|------------------------| | m Atf6 u | GACTCACCCATCCGAGTTGTG | | m <i>Atf6 l</i> | CTCCCAGTCTTCATCTGGTCC | | m <i>Atf4 u</i> | ATGGCGCTCTTCACGAAATC | | m <i>Atf4 l</i> | ACTGGTCGAAGGGGTCATCAA | | m Chop u | CTGGAAGCCTGGTATGAGGAT | | m Chop l | CAGGGTCAAGAGTAGTGAAGGT | | m <i>Bip u</i> | ACTTGGGGACCACCTATTCCT | | m <i>Bip l</i> | ATCGCCAATCAGACGCTCC | ## Table S3. Primer sequences for ChIP | ChIP primers | Sequence (5' to 3') | |---------------------|---------------------| | Erola HRE1 u | GCCAGGTGTACCGGAGG | | Erola HRE11 | TGTCCACGCGAGCCT | | <i>Ero1a</i> HRE2 u | TACCCCGACCCCGGAAG | | Ero1a HRE21 | CTCTGTCCACGCGAGCCT |