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Text A. Computational platform

The developed computational platform is composed of a mathematical model and its calibration,
virtual patients (VP) cohort, and patient stratification and treatment optimization. The input data
to the developed platform are clinical data. The data are first pre-processed to extract the necessary
information for model calibration such as overall survival, treatment protocol (dose and frequency of
chemotherapy), and tumor stage.

The core of the platform is the generation of virtual patients (VPs) as explained in the main text. The
creation of VPs is based on sampling values of selected parameters from probability density function
estimated using clinical data. Next, the deterministic model in the form of ordinary differential
equations is simulated using a numerical method (here, we use the Runge-Kutta 4-5 method). Thus,
the patients are defined with a set of parameter values that results in a different clinical outcome for
each patient.

The computational framework is modular as each element in the platform can be adjusted or changed
based on clinical questions and cancer type of interest. The platform is implemented in the MATLAB
environment as it is one of the most popular scientific computation environment applied in mathemat-
ical modeling because of the efficient implementation of algorithms for solving differential equations.
The MATLAB implementation of the computational framework is available on GitHub under the
following address https://github.com/EmiliaKo/PalliativeTreatmentNSCLC.

Material 1. Clinical data

The clinical cohort includes 47 patients with non-small cell lung carcinoma (NSCLC) who were di-
agnosed at the 2nd Radiotherapy and Chemotherapy Clinic, M. Sklodowska-Curie National Research
Institute of Oncology, Gliwice Branch, in Poland between 2004-2014. Patients were divided into two
clinical arms: natural history (NH) and chemotherapy (CT). NH patients receive only symptomatic
treatment, whereas CT patients receive chemotherapy in the form of the platinum doublet. The clini-
cal data of NH patients are presented in Supplementary Table A, whereas clinical data of CT patients
are shown in Supplementary Table B.

Dataset 1: Natural history cohort (NH cohort)

The cohort includes 17 patients with NSCLC (14 patients with squamous-cell cancer, 2 with adenocar-
cinoma, and 1 with another subtype), which are inoperable due to: i) patient age, ii) tumor location,
or iii) general patient performance. These patients have a very poor prognosis as their cancer is at an
advanced stage. Because of it, and patients will, all the patients in the cohort do not receive treat-
ment in the form of chemotherapy, targeted therapy, or radiotherapy. Thus, this group of patients
represents the natural history of advanced NSCLC.

Dominant patient sex is male (70% of patients). It represents the fact that the incidence of lung
cancer is higher in males as they are more often smoking cigarettes. The average patient age is 67
years at diagnosis. At this age, risks of surgery are higher than average, particularly that smoking
compromises the cardiovascular system. The performance score for each patient was determined using
the Zubrod scale [7]. Interestingly, the higher Zubrod score in the NH cohort is two. It means that
at the time of diagnosis, patients usually can take care of themselves.

Patients are diagnosed at an advanced stage with 87% of patients having a tumor of stage II1IB or IV,
according to AJCC staging. As indicated by TNM classification, patients have a primary tumor size
above 7 [cm] at the highest dimension. Around 70% of patients have metastasis to lymph nodes at
diagnosis. Also, 40% of patients have distant metastases at the time of diagnosis. The most common
places of distant metastases in the patients from the NH cohort are the brain, bones, and liver.


https://github.com/EmiliaKo/PalliativeTreatmentNSCLC

Dataset 2: Chemotherapy cohort (CT cohort)

The cohort includes 25 patients with NSCLC (16 patients with squamous cell carcinoma, 5 with
adenocarcinoma, and 4 with other subtypes), which are unresectable similarly the patients in the NH
group. These patients also have a very poor prognosis, but according to the patient’s condition and
consent, they were treated with the platinum doublet.

Dominant patient sex is male (80% of patients), which is very similar in the NH cohort. Patients are
also elderly as their average age at the diagnosis is 63 years. Interestingly, the patient’s performance
score is slightly higher than in the NH cohort as most of the patients have the Zubrod score equal to
one.

Half of the patients in the CT cohort are diagnosed at a highly advanced stage (stage IIIB or IV) and
a half with advanced stage (IIIA). According to TNM classification, 50% of patients in the CT cohort
have a primary tumor above 7[cm] (T classification). Most of the patients (95%) have lymph nodes
metastases (N classification), and 20% have distant metastases (M classification).

Patients in the CT cohort received the treatment with cisplatin, usually combined with navelbine. A
small fraction of patients is treated with cisplatin combined with gemcitabine or vinorelbine. Patient
response to treatment is poor as only 4% of patients have complete response compared to 32% of
patients with progressive disease. The reason for the poor response is the fact that patients in the
CT cohort are treated with a palliative intent. The patients received a median of three cycles of
chemotherapy. Patients received at minimum one cycle of chemotherapy and a maximum of six
cycles. The median time interval between two consecutive chemotherapy cycles is 17 days. Patients
receive on average a cisplatin dose of 80 [mg/ m2] per chemotherapy cycle.

Material 2: Mathematical model

The mathematical model developed describes the dynamics of platinum-sensitive and platinum-resistant
cells with and without treatment intervention. In addition to modeling the growth of cancer cells, we
also model pharmacokinetics of platinum-based chemotherapy. We described the model in the form
of a system of coupled ordinary differential equations (ODEs).

Growth of treatment sensitive and resistant cells is modeled using a logistic growth model with growth
rate equal to A; and A, for sensitive and resistant cells, respectively. The growth rates are decreasing
logistically until the number of cells reaches carrying capacity K. This allows for more realistic system
formulation as in reality tumor cells are not growing exponentially but rather their growth is restricted
by the surrounding tissues.

In the model, sensitive cells are characterized by a full response to platinum-based chemotherapy
which is included in the model according to the Norton-Simon hypothesis (N-S) which states that the
effect of chemotherapy is proportional to the unperturbed tumor growth. Mathematically, the N-S
hypothesis could be formulated as:

X=f(X)-(1-C) (4)

where f(X) is a function describing the tumor growth and C(t) is a drug concentration at time ¢.
Resistant cells, in contrast, fully do not respond to chemotherapy. Thus, they have C(¢) = 0 during
the simulations. To keep the model simple and the number of model parameters small, we decided
disregard the partially-resistant cells. This, allows us to create a model with identifiable parameters.

What is important, we also included in the model of tumor growth, the competition of tumor cells for
resources and space. It is included by reduction of the growth rate of sensitive cells by resistant ones
(through parameter a,;) and reduction of the growth rate of resistant cells by sensitive ones (through
parameter ag;).

An important part of the model is pharmacokinetics of platinum-based chemotherapy which is repre-
sented by a one-compartmental model describing the exponential decay of drug concentration. The



drug administration in all our simulations is pulsed, which reflects the reality that the chemotherapy
is administered as an intravenous bolus injection.
Key assumptions of the model
The mathematical model is governed by the following key assumptions:
1. Two types of cells are included in the model platinum-sensitive and platinum-resistant.
2. Partially-resistant cells are not included in the model for the sake of simplicity.

3. Both types of cells, platinum-sensitive and platinum-resistant ones, are growing according to
logistic growth law.

Two types of cells included in the model compete for resources and space in a non-linear fashion.
Only innate platinum resistance is included in the model as it is the dominant one in lung cancer.

At the time of diagnosis, a small fraction of cells in the tumor is resistant to platinum.

N o

Pharmacokinetics of cisplatin is modeled as a one-compartmental model with exponential decay
of cisplatin concentration.

®

Cisplatin kills only sensitive cells, and resistant ones are left intact.
9. Cisplatin toxicity constraints are not explicitly included in the model.
10. Clinical lung cancer diagnosis is made when the tumor burden reaches Myiqgnosis cells.
11. Patient death is observed when tumor burden reaches M4t cells.
12. Mgeqsn equals half of carrying capacity Myeqin = 0.5K.
13. Maiagnosis < Maeatn, thus diagnosis is before patient death.

14. After relapse, no second-line treatment is administered to the virtual patients.

Method 1: Parameters selection

The method is composed of two steps, the model simulations for all parameter combinations of interest
and global sensitivity analysis (GSA). Below, we describe both steps in detail. The goal of this Method
is selection of the parameters, which affect the long-term response to platinum doublet chemotherapy
the most. This, in turn, helps us to chose the most important model parameters which vary among
patients in a clinical cohort and therefore should be varied among patients in a virtual cohort.

To explore the dependence of model parameters on the overall survival, we performed the model
simulation for a wide range of parameter values. It is performed in three steps, choosing the parameters
ranges, the performance of Latin hypercube sampling (LHS), and the model simulation of virtual
patients from cancer diagnosis until death for each parameter combination.

Selecting the parameter ranges

The parameter ranges are chosen that they span all possible values for lung cancer or, in case it is
impossible, for a solid tumor. The list of parameters together with their ranges are listed in Table [A]
Three out of eleven parameters are set to constant values to minimize the possibility that the given
set of parameters is not clinically relevant. Thus, we assume that the cisplatin elimination rate, lethal
tumor burden as well as carrying capacity are constant, leaving eight parameters which could vary
among patients. In the case of three parameters, the ranges of their values are assumed because they
are not measurable. Indeed, C},4, and competition coefficient are difficult to measure in real patients
as well as n vitro or in vivo.



Table A: Ranges of model parameters values

parameter | parameter range | constrains reference
DT 5 — 1000 days [
Agr 0 — 500 Assumed

Qg 0 — 500 Assumed

K 30 em K =2 - Mycarn 1]
Maiagnosis | 1 —T;em taken from TNM classification [E]
Maecath 15 cm Maeatn = 0.5 - K 2]
o 0-1 Tumor can be fully-resistant at diagnosis
Crnax 0 — 40[a.u.] Assumed

T 7 — 40 days Clinical data

CToycies 1-6 Clinical data

k 0.211 Half-life of cisplatin equals to 80 [hours] | [§]

Perform Latin hypercube sampling

In the second step, Latin hypercube sampling is performed to sample the parameter values evenly. In
short, the LHS method rests on dividing the parameter ranges for a given parameter into N equal
small ranges, where N is the number of parameter combinations we are interested to sample. Next,
within each smaller range, one parameter set is sampled from a uniform distribution. In total, we
performed a sampling of 10,000 parameter combinations. As a result, we obtain an evenly distributed
parameter values which are independent of each other. In practice, the LHS was performed in the
project using the lhsdesign function in MATLAB environment. LHS allows us to cover the values of
parameter ranges uniformly.

Perform global sensitivity analysis

The global sensitivity analysis was performed as follows. Having simulated the model with a wide
range of parameter values, we first plotted overall survival as a function of each parameter separately
(see Figure . As we can see visually, the parameter, which linearly affects overall survival is DT'. It
is expected that overall survival in the computer simulations is calculated as a time until the tumor
reaches a certain (lethal) size.

Next, to quantify the dependence of each parameter on overall survival, we compute the Pearson
correlation coefficient between each parameter and overall survival. As a result, we have a list of
parameters that correlate with OS, i.e., a list of sensitive parameters. The values of the correlation
coeflicient for each mathematical model are depicted in Figure 2 of the main text. Based on Figure
2, we chose two parameters DT and o as parameters that could control the overall survival in the
developed mechanistic model.



Method 2: Model calibration using Gaussian Mixture Model

The goal of this Method is to estimate the values of parameters, which vary from patient to patient.
To choose the values of each parameter of choice, we need the probability distribution functions of
the parameters allowing us to sample the parameter values.

Estimation of OS as a function of the model parameters

In the first step, we consider the function: OS = f(p1,p2,...,pn), where p1,pa,...,p, are parameters
we chose using Method 1. The function is estimated as follows. Firstly, function OS = f(CT,ycies, T)
is estimated using the clinical cohort. Here, the pair f(CT,ycies,T') from clinical data is bootstrapped
with replacement 10,000 times giving us a large clinical cohort. Bootstrapping is performed as the
number of patients in the clinical cohort is relatively small. Next, the bootstrapped values serve as
an input to the Expectation-Maximization algorithm applied to estimate the parameter values of the
Gaussian Mixture Model (GMM). The model parameters, which could be directly extracted from
clinical data are sampled from the fitted Mixture Gaussian Model.

In the next step, multivariate probability density function (PDF(DT,o)) is estimated using the
Gaussian Mixture model with the results from simulations as an input. Here, firstly, the model
parameters are selected uniformly using the ngrid function in MATLAB environment and, for each
parameter set, the model is simulated. In total, we performed simulations for 4,100 parameter sets
to extract overall survival. It is important to mention that we vary only parameters of choice (see
Method 1) and the rest of the parameters are extracted from literature (see Table 2 in the main text).
The simulations allows estimating OS = f(DT, o).

Estimation of conditional probability distribution

Here, we estimate the conditional probability dnsity function (PDF (DT, 0, Cpez|OS, R)) of DT and
o conditional on long-term (OS) and short-term (R) response to platinum doublet chemotherapy.

Firstly, the value of C),4, is chosen and set as a parameter with a constant value during the whole
simulation and equal for each virtual patient. Next, the clinical patients (OS) are bootstrapped with
replacement. Next, for each bootstrapped patient, every parameter combination leading to the same
OS as the one observed in the bootstrapped patient. As a result, we have a list of parameter combi-
nations that fit the individual patient (see Supplementary Figure . From the list, one combination
is taken with an equal probability for each combination. As a result, we estimated OS as a function
of DT and o.

In the second step, we fitted DT and o to the multivariate Gaussian Mixture model (GMM) using
the expectation-maximization algorithm. This, allows us to estimate multivariate probability density
function of (DT, o). The estimated probability density function is shown in Supplementary Figure

Next, the fitness of the model to short-term response is evaluated as follows. From a clinical cohort,
the proportion of patients with a given initial response (stratified into CR, PR, SD, and PD group) is
extracted. The same procedure is performed also for the virtual patient cohort by patient stratification
into CR, PR, SD, and PD by R as depicted in Table 1 of the main text. Next, the proportions between
clinical and virtual cohort are compared with the x? statistical test.

All steps described in this section are repeated until the x? statistical test accepts the null hypothesis
that the initial response to platinum doublet chemotherapy is the same in both clinical and virtual
cohort with a significant level equal to 5%. In such a way, we estimated Ci,q, = 20[A.U.].

Method 3: Creation of a virtual patient cohort

The method for the creation of virtual patients is composed of two steps generation of (DT, o) and
(CTeycles, T') as well as simulation of the mechanistic model.



Firstly, we make assumption that DT and o is not dependent on CT,y¢es and T'. The rationale for this
is the fact that the first two parameters affect long-term response and the last two the initial response
to chemotherapy. Also, the first two parameters are directly extracted from clinical data whereas the
last two are hard to extract from patients. The values of the first two parameters are sampled from
the trimmed probability density function of GMM (see Method 2) using random function in MATLAB
environment. The trimming is performed in such a way that the values generated by the GMM are
within a certain range (see Method 1). The same procedure is performed for two last parameters.
As a result, we have a virtual patient defined with four parameters DT, o, CT¢ycres, and 1. In total
1,000 parameter combinations are sampled leading to 1,000 VPs.

Next, for each parameter combination, the mechanistic model described with a set of coupled differ-
ential equations 1-3 is simulated using the Runge-Kutta 4-5 numerical method (using ode45 function
in MATLAB environment). The simulations are performed to extract the dynamics of sensitive and
resistant cancer cells from the time of diagnosis until patient death. Details of the simulations are ex-
plained in Supplementary Text 2. As an output from simulations, we extract overall survival and initial
response defined as a ration between tumor volume after and before platinum doublet chemotherapy.

Method 4: Survival analysis and patient stratification

To evaluate the fit of the virtual patient cohort to the NH cohort, we performed Kaplan-Meier (K-M)
analysis. This analysis is routinely applied by clinicians to estimate survival probability as a function
of time from diagnosis. Also, the K-M model is used for the comparison of different treatment arms
in clinical trials.

The K-M analysis was performed using an ecdf function in MATLAB environment. Both overall
survival from data, and model is done without censoring. The reason for this is that in model
simulations, we do not consider patients who left the clinical study before the end of the follow-up
period. Also, in the clinical cohort, we have only those patients with full history, i.e. the patient dies
before the end of the follow-up period. The estimated survival function is presented in Figure 3 of
the main text.

Next, we performed log-rank and two-sided Kolmogorov—Smirnoff statistical test. The first test is
applied to compare two survival plots, whereas the second one examines the distribution of overall
survival. The goal of these tests is to measure qualitatively if long-term responses between real and
virtual patients are the same.



Text B. Mathematical model simulation

All mathematical model simulations are performed in MATLAB 2019 environment. As the model
is non-linear, we performed numerical simulations by solving a system of ODEs. System of coupled
ordinary differential equations is solved using Runge-Kutta method 4-5. Thus, the ode45 function in
MATLAB environment was applied.

Model simulations without treatment (when CTeyeres = 0 and T' = 0), the simulations are performed
in one phase. Simply, the model is simulated from the time of clinical diagnosis until death. The
tumor is diagnosed when the tumor diameter equals 4 cm. It corresponds to the primary tumor
burden observed for very advanced stage NSCLC patients according to TNM classification. The
model simulations are stopped, however, when the tumor burden reaches 15 cm in diameter. Thus,
we assume that the primary tumor burden is a reason for patient death. The assumption is based on
the fact that the tumor burden is a single clinical parameter, which causes death in the majority of
patients [6].

Model simulations of patients treated with maximum-dose therapy (MTD) or metronomic therapy
(MT) are performed in two phases treatment and post-treatment. The treatment phase is performed
in such a way that the chemotherapy cycle is administered as an intravenous bolus injection (IV bolus).
In the model, it is performed by increasing C' by C),4,. The pulses of chemotherapy are performed
with a 7" time interval between two chemotherapy cycles and until C'T¢ycies pulses are administered.
After the treatment phase, the model is simulated without any perturbation, i.e., C' is not increased
during whole post-treatment simulations. The simulations are stopped, similarly to the case when no
treatment is administered, when the tumor burden reaches the lethal one.

The model simulations, in case drug holidays are incorporated, are performed sequentially. The
sequence is composed of CT¢yeies cycles of platinum doublet chemotherapy and time free of treatment
lasting for Ty,ugholiday days. The sequence is repeated until virtual patient death. This drug scheduling
resembles so-called adaptive therapy [3]. The main difference is the type of drug holidays. Here, the
drug holiday is fixed for each patient and is equal during the whole course of simulations. In adaptive
therapy, the drug holiday is adapted depending on the response to the treatment.

From model simulations, two clinical outputs are extracted initial response to platinum doublet
chemotherapy and overall survival. The initial response is computed as )f,iffr', where X (Y) corre-
sponds to tumor burden at the end of treatment phase (before treatment). Overall survival of virtual
patients is computed as a time interval between the start and end of the simulation,i.e., measured as

a time elapsed from clinical diagnosis until death.
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Table B. NH cohort

Table B: Subtype- subtype of NSCLC (S - squamous, A - adenocarcinoma, O - other), ZS - Zubrod
performance score, TNM - TNM classification, Loc - location (left/right lung), MFS - metastasis-free
survival, MFSc - censoring for MFS, OS - overall survival, OSc - censoring for OS.

Sex Age Subtype ZS Stage TNM Loc MFS MFSc OS OSc
1 M 55 S 1 IV T4N3M1I R 1 1 1 1
2 M 68 S 1 IV T3N2M1 R O 1 2 1
3 |M 61 S 0 IIIB T4N2MO R 25 0 25 1
4 1M 71 S 0 IIIB T4NOMO R 1 0 1 1
5 M 66 S 0 IIB T3NOMO R 5 0 5 1
6 |[M 65 S 1 IV T4Nx M1 R 1 1 3 1
7T|F 74 S 1 IIIB T4N2MO R 1 0 1 1
8 |[M 63 S 2 IV T2N2M1 R O 1 20 1
9 |F 58 S 1 IIIB T4N2MO R 3 0 3 1
10/F 75 S 2 IIIB T4N2MO R 4 0 4 1
11|F 78 S 2 IIIB T4N2MO L 2 0 2 1
12/M 63 S 2 IV T3N3M1I R O 1 8 1
13/M 73 A 2 IV T4N2M1 L O 1 1 1
14/M 70 S 0 IIB T3INOMO L 27 O 27 1
15/M 7 O 0 IV T2N3M1 R O 1 1 1
16/|M 71 S 1 IITA T4N1IMO L 1 1 9 1
17/F 64 A 1 IIIB T4N3MO L 2 0 2 1
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Table C. CT cohort

Table C: Subtype- a subtype of NSCLC (S - squamous, A - adenocarcinoma, O - other), ZS - Zubrod
performance score, TNM - TNM classification, Loc - location (left/right lung), Tint - the time interval
between two CT cycles in days, CTcycles- the amount of CT cycles, Drugs - CT drugs combination
(P+G -cisplatin+gemicitabine, P+V - cisplatin+vinorelbine), R- response to CT MFS - metastasis-
free survival, MFSc - censoring for MFS, OS - overall survival, OSc - censoring for OS.

Sex Age Subtype ZS Stage TNM Loc Tint CTeycles Drugs R MFS MFScens OS OScens
1 M 63 S 1 IITA T3N2MO R 30 6 P+V PR 8 0 8 1
2 |M 65 S 1 TITA T3 N2MO L 30 4 P+V PD 14 0 14 1
3| M 68 S 1 IITA T2N2MO R 23 3 P+V NA 4 0 4 1
4 (M 57 S 1 TITA T2N2MO R 16 3 P+V SD 4 0 4 1
5 |F 54 A 1 IIIB TxN3MO R 17 3 P+V PR 8 0 8 1
6 M 61 A 1 TITA T2N2MO R 19 3 P+V SD 5 1 10 1
7T M 62 S 1 IIIB T4N2MO L 20 3 P+V PD 4 0 4 1
8 |F 69 O 1 IV T3 N3 M1 L 15 2 P+G PD 0 1 4 1
9 |F 65 S 1 IITA TxN2MO L 36 2 p+V PR 6 1 20 1
10|M 47 S 0 IIIB T4NxMO R 16 3 P+G SD 4 0 4 1
11|M 60 S 1 TIITA T2N2MO L 30 5 P+V PD 10 0 10 1
12|M 71 S 1 TITA T3 N2MO L 0 1 P+V PD 2 1 13 1
13|M 64 S 1 IIIB T2N3MO R 11 2 P+V PR 2 1 6 1
4\M 59 O 1 TITA T2N2MO R 29 2 P+V SD 42 1 81 1
15|M 50 A 2 IV T4 N3 M1 L 16 4 P+G PD 0 1 3 1
16|M 62 S 2 TIITA T4 N1MO L 14 3 P+V CR 8 1 9 1
17|M 76 S 1 IV TIN3MI R 14 3 P+V PD 4 1 19 1
18|M 63 A 1 IIIB T3N3MO R O 1 P+V NA 15 0 15 1
19|/F 58 O 1 IV T4N3 M1 R 26 4 P+V PR 1 1 15 1
200|M 65 S 1 IIIB T4 N2MO L 26 2 P+V PD 2 1 14 1
21|F 57 A 1 IV T3N1IMI L 14 3 P+V SD 6 1 7T 1
22|M 76 S 1 IIIB T2N3MO R 0 1 P+V NA 4 0 4 1
23| M 72 O 1 IITA T4NOMO R O 1 P+V NA 6 0 6 1
24|M 71 S 1 IIIB T4N3MO R O 1 P+V NA 1 0 1 1
25|M 73 S 1 IITA T3N2MO R 14 2 P+V NA 4 0 4 1

11



Figure A. Global sensitivity analysis
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Figure A: Global sensitivity analysis. The plots show the dependence of each model parameter on
overall survival. Each dot on the plot represent one parameter combination.
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Figure B. Probability density function of (DT, o)
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Figure B: The histogram shows the joint probability density function of two parameters DT and o.
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Figure C. Probability density function of (C7.q., T)
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Figure C: The histogram shows the joint probability density function of two parameters CT,.ycle and
T.

cycles
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Figure D.
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Figure D: The histogram shows the joint probability density function of two parameters DT and o
for each overall survival value observed in clinical cohort.
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