Group	Genotype	CBX102	TD50		Health	
		colonisation	CBX102	p-value	CBX102	p-value
		Day-2 adult	25°C		Day-1 adult	
					(BBPS)	
A*	sek-1 (ag1)	+++	5	<0.0001	0.5194	0.0001
	nsy-1 (ag3)	++	5	< 0.001		
	pmk-1 (km25)	++	5	<0.001		
	lys-7 (ok1384)	+++	5	<0.0001	0.9708	0.0001
	phm-2 (ad597)	+++	5	< 0.0001		
	hsf-1 (sy411)	+++	5	<0.0001		
B*	llys-3 (ok3222)					
	bar-1 (nu63)	+++	7	0.0166		
	cep-1 (gk138)	+++	7	0.0031		
	dbl-1 (nk3)	++	7	0.9149		
	vhl-1 (ok161)	+++	7	0.006		
	sur-2 (e2706)	++	8	0.9578		
	eat-2 (ad465)	++	6	0.191		
	kgb-1 (mu3)	+++	7	0.7053		
C**	N2 (wild type)					
	sqt-3 (e24)	++	8	0.5673		
	sqt-3 (e2117)	++	9	0.5201	0.8253	0.4641
	ced-1 (e1735)	++	8	0.0793		
D**	daf-2 (e1370)	++	46	<0.0001	1.261	0.0001
	age-1 (hx546)	+	10	<0.01	1.332	0.0001
	clk-1 (e2519)	+++	14	<0.0001		
	hif-1	++	10	0.0094		

Table S1. Statistics for Lifespan and Health assays and mutants tested. For group categories see Fig. 2. WT is wild type (strain N2). Measurements: A* and B* relative to *ilys-3* and C** and D** relative to the reference strain (N2). *C. elegans* mutants without a numerical value in the health column were not moving at all and therefore we were unable to film their vigour. All lifespan experiments above were done in parallel.

FIGURE S1. *M. nematophilum* **CBX102** accelerates ageing. Representative images from animals expressing the mitochondria marker *mito-GFP* in the intestine (A), (C) in OP50 showing normal tubular mitochondria (arrows) while age-matched (B), (D) CBX102-grown Day-1 and Day-2 animals show fragmented mitochondria (arrows) with irregular shape. N=25 per treatment. Results are from 3 independent experiments.

Fig S2

FIGURE S2. Quantification of bacterial colonisation of CBX102 in *C. elegans* mutants. Each dot represents a 1-day adult animal with SYTO13 fluorescence counted. *M. nematophilum* strain CBX102 displayed less colonisation in *daf-2* compared to N2 (designated as wild-type of WT). In contrast, mutants lacking the antimicrobial *ilys-3* gene, displayed significantly increased colonisation. Dunnett's-multiple comparisons one-way ANOVA test was performed. *****P*<0.0001; except comparisons with *ilys-3* and *daf-2*, all other comparisons were not significant.

FIGURE S3. Tail swelling and colonisation when N2 and *daf-2* **grow in CBX102.** Representative images of worms 10 days after bleaching of L1. In comparison to N2 *daf-2* were found to have no tail swelling (arrows) and reduced intestinal colonisation. We looked at 25 worms per genotype per treatment in 3 independent experiments.

FIGURE S4. Health of animals with different microbiota. Box plot represents body bends per second (BBPS) counted per animal for each strain. Each box represents a group of 1-day adult animals (n=25). Dunnett's-multiple comparisons one-way ANOVA test was performed showing that CBX102 was always significantly lower across the same host genotypes (p<0.0001) while *daf-2* was significantly higher than N2 across bacterial strains (p<0.0001). Comparison between *daf2* and *daf-16*, *daf-2* showed significant difference (p<0.0001) across the different bacteria while N2 and *daf-16*, *daf-2* were statistically indistinguishable (p>0.1).

Fig S5

FIGURE S5. Colonisation of OP50 and CBX102 in *daf-2.* Both bacterial species hardly colonised the gut of *daf-2* mutants opening up the possibility that these worms ate less. Representative images of worms 10 days after bleaching of L1. We looked at 25 worms per genotype per treatment in 3 independent experiments.