
Supplementary appendix
This appendix formed part of the original submission and has been peer reviewed. 
We post it as supplied by the authors. 

Supplement to: Vollset SE, Goren E, Yuan C-W, et al. Fertility, mortality, migration, and 
population scenarios for 195 countries and territories from 2017 to 2100: a forecasting 
analysis for the Global Burden of Disease Study. Lancet 2020; published online July 14. 
http://dx.doi.org/10.1016/S0140-6736(20)30677-2.



   
 

   
 

Appendix 1: Methods appendix to “Fertility, mortality, migration, and population scenarios for 195 
countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease 
Study” 

 
Preamble 
This appendix provides further methodological detail for "Fertility, mortality, migration, and population scenarios 
for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study." 
This study complies with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) 
recommendations (section 2).1 It provides a comprehensive description of our analytical processes.  
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Section 1    List of abbreviations 

Abbreviation Full phrase 

ARIMA Autoregressive Integrated Moving Average 

AROC Annualised rate of change 

ASFR Age-specific fertility rate 

CCF Completed cohort fertility 

CCMP Cohort-component method of projection 

GBD Global Burden of Diseases, Injuries, and Risk Factors Study 

GDP Gross domestic product 

ICF Incremental cohort fertility 

IHME Institute for Health Metrics and Evaluation 

LDI Lag-distributed income 

NPI Natural population increase 

PAF Population attributable fraction 

PASFR Proportional age-specific fertility rate 

SDGs Sustainable Development Goals 

SDI Socio-demographic Index 

SEV Summary exposure value 

TFR Total fertility rate 

UI Uncertainty interval 

UNPD United Nations Population Division 
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Section 2    GATHER compliance 
This study complies with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) 
recommendations. We have documented the steps involved in our analytical procedures and detailed the data 
sources in the GATHER checklist below. The GATHER recommendations can be found here: http://gather-
statement.org/ 

# GATHER checklist item Description of compliance Reference 
Objectives and funding 

1 Define the indicator(s), populations (including age, sex, 
and geographic entities), and time period(s) for which 
estimates were made. 

Narrative provided in the paper and 
appendix describing indicators, 
definitions, and populations 

Main text (Methods - Overview) 
and appendix 

2 List the funding sources for the work. Funding sources listed in paper Main text (Summary – Funding)  
Data Inputs 
   For all data inputs from multiple sources that are synthesised as part of the study: 

3 Describe how the data were identified and how the data 
were accessed.  

Narrative provided in paper and 
appendix describing data seeking 
methods 

Main text (Methods) and appendix 

4 Specify the inclusion and exclusion criteria. Identify all 
ad-hoc exclusions. 

Narrative provided in paper and 
appendix describing inclusion and 
exclusion criteria by data type 

Main text (Methods) and appendix 

5 Provide information on all included data sources and 
their main characteristics. For each data source used, 
report reference information or contact name/institution, 
population represented, data collection method, year(s) 
of data collection, sex and age range, diagnostic criteria 
or measurement method, and sample size, as relevant.  

Metadata for data sources by 
component, geography, cause, risk, 
or impairment is available through 
an interactive, online data source 
tool; information on metadata for 
UNPD data available in the 
appendix 

Main text (Methods), appendix, 
http://ghdx.healthdata.org/gbd-
2017, 
https://population.un.org/wpp/Dow
nload/Standard/Migration/

6 Identify and describe any categories of input data that 
have potentially important biases (e.g., based on 
characteristics listed in item 5). 

Limitations of and biases in data 
included in paper 

Main text (Discussion – 
Limitations) 

   For data inputs that contribute to the analysis but were not synthesised as part of the study: 
7 Describe and give sources for any other data inputs. Included in online data source tools UNPD data from: 

https://population.un.org/wpp/Dow
nload/Standard/Migration 
Wittgenstein Centre data from: 
https://tntcat.iiasa.ac.at/SspDb/dsd?
Action=htmlpage&page=10 

   For all data inputs: 
8 Provide all data inputs in a file format from which data 

can be efficiently extracted (e.g., a spreadsheet rather 
than a PDF), including all relevant meta-data listed in 
item 5. For any data inputs that cannot be shared 
because of ethical or legal reasons, such as third-party 
ownership, provide a contact name or the name of the 
institution that retains the right to the data. 

Input data (GBD 2017 results and 
UNPD migration data) are 
available for download through the 
Global  Health Data Exchange 
(GHDx) and UNPD website 

GBD 2017 data: 
http://ghdx.healthdata.org/gbd-
2017, UNPD migration data: 
https://population.un.org/wpp/Dow
nload/Standard/Migration/ 

Data analysis 
9 Provide a conceptual overview of the data analysis 

method. A diagram may be helpful.  
A brief overview and flow diagram 
of the overall methodological 
processes have been provided 

Main text (Methods) and appendix 

10 Provide a detailed description of all steps of the analysis, 
including mathematical formulae. This description 
should cover, as relevant, data cleaning, data pre-
processing, data adjustments and weighting of data 
sources, and mathematical or statistical model(s).  

Detailed descriptions of all steps of 
the analysis, as well as relevant 
mathematical formulae, have been 
provided 

Main text (Methods) and appendix 

11 Describe how candidate models were evaluated and how 
the final model(s) were selected. 

Details on model evaluation and 
finalisation have been provided 

Appendix 

12 Provide the results of an evaluation of model 
performance, if done, as well as the results of any 
relevant sensitivity analysis. 

Details on evaluation of model 
performance have been provided 

Main text (Methods) and appendix 

13 Describe methods for calculating uncertainty of the 
estimates. State which sources of uncertainty were, and 
were not, accounted for in the uncertainty analysis. 

Details on uncertainty calculations 
have been provided 

Main text (Methods) and appendix 

14 State how analytic or statistical source code used to 
generate estimates can be accessed. 

Access statement provided Code is provided in an online 
repository [GitHub link to be added 
upon acceptance] 

Results and Discussion 

http://gather-statement.org/
http://gather-statement.org/
http://ghdx.healthdata.org/gbd-2017
http://ghdx.healthdata.org/gbd-2017
https://population.un.org/wpp/Download/Standard/Migration/
https://population.un.org/wpp/Download/Standard/Migration/
https://population.un.org/wpp/Download/Standard/Migration
https://population.un.org/wpp/Download/Standard/Migration
https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=10
https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=10
http://ghdx.healthdata.org/gbd-2017
http://ghdx.healthdata.org/gbd-2017
https://population.un.org/wpp/Download/Standard/Migration/
https://population.un.org/wpp/Download/Standard/Migration/
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15 Provide published estimates in a file format from which 
data can be efficiently extracted. 

Results are available through online 
tools: 
http://ghdx.healthdata.org/record/ih
me-data/global-population-
forecasts-2017-2100 

Online data tools: 
http://ghdx.healthdata.org/record/ih
me-data/global-population-
forecasts-2017-2100 

16 Report a quantitative measure of the uncertainty of the 
estimates (e.g. uncertainty intervals). 

Uncertainty intervals are provided 
with results 

Main text (Results and Discussion) 
and online data tools: 
http://ghdx.healthdata.org/record/ih
me-data/global-population-
forecasts-2017-2100 

17 Interpret results in light of existing evidence. If updating 
a previous set of estimates, describe the reasons for 
changes in estimates. 

Discussion of methodological 
differences between this and 
existing evidence (by IHME, 
UNPD, and Wittgenstein Centre) 

Main text (Research in Context, 
Introduction, Methods, Discussion) 
and appendix 

18 Discuss limitations of the estimates. Include a discussion 
of any modelling assumptions or data limitations that 
affect interpretation of the estimates. 

Discussion of limitations was 
provided 

Main text (Discussion – 
Limitations) 

http://ghdx.healthdata.org/record/ihme-data/global-population-forecasts-2017-2100
http://ghdx.healthdata.org/record/ihme-data/global-population-forecasts-2017-2100
http://ghdx.healthdata.org/record/ihme-data/global-population-forecasts-2017-2100
http://ghdx.healthdata.org/record/ihme-data/global-population-forecasts-2017-2100
http://ghdx.healthdata.org/record/ihme-data/global-population-forecasts-2017-2100
http://ghdx.healthdata.org/record/ihme-data/global-population-forecasts-2017-2100
http://ghdx.healthdata.org/record/ihme-data/global-population-forecasts-2017-2100
http://ghdx.healthdata.org/record/ihme-data/global-population-forecasts-2017-2100
http://ghdx.healthdata.org/record/ihme-data/global-population-forecasts-2017-2100
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Section 3    Overview of the forecasting framework 
The Institute for Health Metrics and Evaluation (IHME) forecasting framework uses the following inputs: estimates 
of past population, cause-specific mortality, fertility, and independent drivers of health from the Global Burden of 
Diseases, Injuries, and Risk Factors Study (GBD) 20172–5 as well as past migration from the United Nations 
Population Division (UNPD) 2017.6 Population forecast probability distributions are obtained by generating Monte 
Carlo draws through a multi-stage modelling approach overviewed in appendix figure 1. First, independent health 
drivers (including risk exposure, education, met need for contraceptives, income, vehicles per capita, and others) are 
forecasted into the future, allowing for alternative scenarios based on varying rates of change of educational 
attainment and contraceptive met need. Next, fertility is forecasted based on education and contraception met need. 
Independent drivers and the Socio-demographic Index (SDI), a country-year specific composite index of fertility 
under 25 years, educational attainment and lag-distributed income (LDI), are then utilised to forecast cause-specific 
mortality. All-cause mortality rate forecasts are obtained by aggregating cause-specific mortality and then utilised to 
generate life tables. Migration is forecasted using SDI, mortality from war and natural disasters, and the natural rate 
of population increase as covariates. Finally, we obtain population forecasts applying forecasts of mortality, fertility, 
migration, and sex ratio at birth to the GBD 2017 starting population. Uncertainty in past data inputs, covariate and 
health driver forecasts, and estimated model parameters are propagated by combining draw-level data from GBD 
2017 with draws from the forecast-generating model incorporating, when feasible, parameter draws from estimated 
sampling or posterior distributions. This allows uncertainty from each modelling stage to be propagated through the 
entire forecasting framework. Point estimates were computed as the mean of 1000 draws from the corresponding 
draw distribution and 95% uncertainty intervals (UIs) were computed using the 2.5 and 97.5 percentiles. 

Many core methods used to forecast the independent drivers and mortality are described in detail in Foreman et al, 
2018, a previous publication on mortality forecasting by IHME’s Future Health Scenarios team.4 Where methods did 
not change from this publication, the methods have only been described briefly, using language from Foreman et al.4 
Modifications made to extend independent driver and mortality forecasts to 2100, as well as detailed information on 
the modelling used to generate forecasts of fertility, migration, and populations are described in subsequent sections 
of this document. 



   
 

7 | P a g e  
 

Appendix Figure 1. Flowchart of the forecasting modelling framework

 

The following causes were modelled separately from the three component model: HIV, forces of nature, conflict and 
terrorism, and executions and police conflict. 

Section 4    Forecasting independent drivers 

Independent drivers of health entered our forecasting framework as determinants of fertility (section 5), cause-
specific mortality (section 6.1), and migration (section 7). Forecasts of vehicles per capita, summary exposure values 
(SEVs), and met need for contraception were all forecasted to 2100 utilising the methods described in Foreman et al, 
2018.4 SEVs are the relative risk-weighted prevalence of exposure, where 0 is no risk in the population and 1 is the 
entire population at maximum risk.7 Forecasting methods for education and lag-distributed income, two of the three 
components of SDI, as well as a bias-correction step in generating risk factor scalars for cause-specific mortality 
modelling, differed from that of Foreman et al, 20184 and are described in detail below. Additionally, in order to 
reduce the impact of extreme growth in long-range forecasts for locations with high rates of change, age-specific 
caps were placed at the 1st and 99th percentiles for met need for contraception, 5th and 95th percentiles for summary 
exposure values (SEVs), and 10th and 90th percentiles for vehicles per capita. Education forecasts utilised age-
specific caps as follows: 3 years for 5-9 year olds, 8 years for 10-14 year olds, 13 years for 15-19 year olds, and 18 
years for those 20 years and above. Summary exposure value forecasts utilised a narrower range of recency weights 
(restricted to range between 0 and 3) than that in Foreman et al, 2018.4 

Section 4.1    Education 
Education was forecasted using the methodology described in Foreman et al, 20184 with an added assumption that 
educational attainment (up to a maximum of 18 years of education) does not change after age 25. Educational 
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forecasts for ages 25 and below were obtained using the methods of Foreman et al, 20184 subject to the caps 
described above. After age 25, we held forecasted education constant within each location- and sex-specific birth 
cohort (all individuals born in a certain year). This prevented implausible within-cohort changes in education during 
older age and was more congruent with our cohort-specific modelling approach for fertility forecasting (section 5), 
for which education was a key input. 

Briefly, for age groups with a starting interval of 25 years or below, we computed age-, sex-, and location-specific 
annualised rates of change (AROCs) by a recency-weighted average of annual differences in logit space after scaling 
mean years of education (based on GBD 2017 estimates) by 18 years. The recency-weighting parameters were 
chosen using cross-validation, where to reduce the potential for overfitting, we selected the parameter producing the 
smallest root-mean square error at least 5% greater than the minimum. These AROCs were applied to GBD 2017 
draws to produce forecast draws, denoted 𝐸𝐸𝐸𝐸𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, of mean years of education for location 𝑙𝑙, age 𝑎𝑎 ≤ 25, sex 𝑠𝑠, 
future years 𝑡𝑡 = 2018, … , 2100, and draw 𝑑𝑑. For age groups with interval starts 𝑎𝑎 > 25, the forecasted value was 
set to the previous value on the cohort trajectory, which is lagged in time by the age-group interval (5 years) due to 
the relationship 

𝑐𝑐𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑎𝑎𝑎𝑎𝑎𝑎. 

Specifically, for age groups indexed by the interval start 𝑎𝑎 = 30, 35, … , 95 this is given by 

𝐸𝐸𝐸𝐸𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �
𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙(𝑎𝑎−5)𝑠𝑠(𝑡𝑡−5)𝑑𝑑, 𝑡𝑡 ≤ 2017 + 5
𝐸𝐸𝐸𝐸𝐸𝐸�𝑙𝑙(𝑎𝑎−5)𝑠𝑠(𝑡𝑡−5)𝑑𝑑, 𝑡𝑡 > 2017 + 5 

where 𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙(𝑎𝑎−5)𝑠𝑠(𝑡𝑡−5)𝑑𝑑 and 𝐸𝐸𝐸𝐸𝐸𝐸�𝑙𝑙(𝑎𝑎−5)𝑠𝑠(𝑡𝑡−5)𝑑𝑑 denote draws of past GBD and future forecasts, respectively. 

Section 4.2    Lag-distributed income 
Lag-distributed income (LDI) per capita, which is a moving average transformation of gross domestic product 
(GDP) per capita and is one of three components of the SDI, was used in forecasting cause-specific mortality. 
Retrospective (past) GDP was estimated using methods from James et al, 20128 and computed as GDP per working 
age adult as follows: 

𝐺𝐺𝐺𝐺𝐺𝐺𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑛𝑛 × 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(20−64𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

. 

Using GDP per worker, as compared to GDP per capita, more accurately estimated economic growth in countries 
and territories with demographic trend bubbles in out-of-sample predictive validity testing. LDI was computed by 
conducting a natural log transformation of average GDP with a 10-year lag.9 Future LDI values were forecasted to 
capture country-specific trends that shrink towards the global trend over time. This was accomplished by projecting 
the previous 35 years of retrospective data forward for approximately 35 years without any changes, and then 
applying a decay function to the random intercept effect of country-specific time trends for the next 20 years. We 
did not adjust other covariates in this decay function.2  

Section 4.3    Risk factor scalar bias correction 
Cause-specific mortality risk factor scalars were input to the mortality modelling described in section 6. These 
involved estimation of a risk-specific population attributable fraction (PAF), which is detailed in Foreman et al, 
2018.4 To allow for protective effects in certain risk-cause pairs (eg, alcohol and ischemic heart disease in certain 
populations and age groups), we made the following adjustment to the PAF correction factor estimation and 
application. We let 𝑃𝑃𝑃𝑃𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(2017)𝑑𝑑 and 𝑃𝑃𝑃𝑃𝑃𝑃�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(2017)𝑑𝑑 denote the GBD and estimated PAFs, respectively, for risk 
factor 𝑟𝑟, cause of death 𝑖𝑖, location 𝑙𝑙, age 𝑎𝑎, and draw 𝑑𝑑 in the year 2017. We computed the correction factor by  

𝐶𝐶𝐶𝐶�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = logit �
1 + 𝑃𝑃𝑃𝑃𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(2017)𝑑𝑑

2
� − logit  �

1 + 𝑃𝑃𝑃𝑃𝑃𝑃�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(2017)𝑑𝑑

2
 � 

This was used to adjust forecast draws of the PAFs according to 

𝑃𝑃𝑃𝑃𝑃𝑃�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
∗ = 2 ×  expit�logit�

1 + 𝑃𝑃𝑃𝑃𝑃𝑃�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2
�+ 𝐶𝐶𝐶𝐶�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� − 1 
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where 𝑃𝑃𝑃𝑃𝑃𝑃�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
∗  and 𝑃𝑃𝑃𝑃𝑃𝑃�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 represent the corrected and uncorrected PAF, respectively, for risk factor 𝑟𝑟, cause 𝑖𝑖, 

location 𝑙𝑙, age 𝑎𝑎, time 𝑡𝑡, and draw 𝑑𝑑. This procedure constrains the forecasted PAFs to range from -1 to 1, as 
opposed to 0 to 1 in the correction procedure described by Foreman et al, 2018.4 

Section 5    Forecasting fertility 
Forecasts for age-specific fertility rates (ASFR) were used as a direct input to the populations forecasting model 
(section 8) and in forecasting future SDI, which is an input to cause-specific mortality (section 6.1) and migration 
(section 7) models. ASFR measures the number of livebirths each woman in that age group has in a given year. We 
modelled fertility by first forecasting completed cohort fertility by age 50 (CCF50) using GBD 2017 fertility 
estimates where the time series begins in 1950, and then deriving the implied ASFR using a series of cohort age-
specific models.  

CCF50 is defined as the average number of children born to an individual female from an observed birth cohort 
(indexed by year of birth), if she lived to the end of her reproductive lifespan (from age 15 to 49). Calculation of 
CCF50 requires follow-up through age 49 in order to reach end of reproductive lifespan. Consequently, cohorts born 
between 1969 and 2002 (corresponding to women aged 15 to 48 in 2017, the last observed year) require fertility 
forecasts for the unobservable reproductive years (up to age 50) they have not yet experienced. To overcome this 
challenge of incomplete cohorts, we first forecasted the remaining fertility for incomplete birth cohorts from 1969 to 
2002 using past history of fertility at the last observed age for that cohort (section 5.3). These partially forecasted 
and past CCF50 for birth cohorts from 1955 to 1968 were then used to forecast CCF50 for birth cohorts from 2003 
to 2085 (section 5.2). We derived ASFR forecasts from the year 2018 to 2100 using incremental cohort models to 
estimate the age pattern of fertility for each cohort (sections 5.3-5.4). 

Section 5.1    Incomplete birth cohort completion 
For birth cohorts that are only partially completed at the last observed year (2017) we forecasted fertility that would 
occur from last observed age up to age 50 using the past observed fertility. We utilise cumulative (as opposed to 
completed) cohort fertility up to age 𝑎𝑎, defined as the average number of children born to an individual female from 
an observed birth cohort by age 𝑎𝑎, denoted here by 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 for location 𝑙𝑙, cohort 𝑐𝑐, and age interval start within 
reproductive lifespan 𝑎𝑎 = 20, 25, … , 45, 50. Note that cumulative cohort fertility at age 50, the assumed end of 
reproductive lifespan, equals CCF50, denoted here by 𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙 for location 𝑙𝑙 and birth cohort 𝑐𝑐.  
 
To forecasting the remaining fertility between age 𝑎𝑎 = 20,25, … 45 and age 50, represented by the 
difference 𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙, we used the model given by 
 

𝐸𝐸[Y𝑙𝑙𝑙𝑙𝑙𝑙] =  𝛽𝛽0𝑎𝑎 + 𝑛𝑛𝑠𝑠𝑑𝑑𝑑𝑑=3(𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙) 
𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙 = ln(𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙) 

  
where 𝛽𝛽0 is an intercept and 𝑛𝑛𝑠𝑠𝑑𝑑𝑑𝑑=3(𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙) represents a natural cubic spline on 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙𝑎𝑎with two quantile based 
knots. This model was fit with least squares independently for ages 𝑎𝑎 = 20,25, … 45 using past data from complete 
cohorts 𝑐𝑐 = 1955, … ,1968.  
 
Past estimates of log-space completed fertility based on the fitted values from the above model, 𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙� , were computed 
by  

ln𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙� = ln�𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 + exp(𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙� )� 

To account for trends in cumulative fertility by age 50 unexplained by fertility up to age 𝑎𝑎, we utilised a random 
walk (ARIMA(0,1,0)) model for the log-space residuals in CCF50 fit using the past residuals 

𝑒̂𝑒𝑙𝑙𝑙𝑙𝑙𝑙 = ln(𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙) − ln(𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙)� . 

Future residual draws 𝑒̂𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙were generated from the fitted random walk model and added to the past 
fertility 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 at the oldest observed age available for the past, which corresponds to cohorts 𝑐𝑐 =
1969, … ,1973 for 𝑎𝑎 = 45; 𝑐𝑐 = 1974, … ,1978 for 𝑎𝑎 = 40; …; 𝑐𝑐 = 1994, … ,2002 for 𝑎𝑎 = 20. Final forecast draws 
of completed CCF50 were obtained by exponentiating  
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ln�𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 + exp(𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�)� + 𝑒̂𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

with correction for mean bias arising from modelling in log space using a similar procedure as done for mortality 
(section 6.2), where 𝑌𝑌�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 represents draw 𝑑𝑑 of 𝐸𝐸[𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙] from its sampling distribution. All forecasted CCF50 draws 
below one were set to one. 
 
Section 5.2    Forecasting future birth cohorts 
Using the combined data of observed CCF50 for birth cohorts from 1955 to 1968 and partially forecasted CCF50 for 
incomplete birth cohorts from 1969 to 2002, we forecasted future CCF50 for each location and birth cohort using 
female education and the proportion of met need for contraception (both at age 25). We utilised the following 
regression model:  

𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙 = 𝛽𝛽0 + 𝑛𝑛𝑠𝑠𝑑𝑑𝑑𝑑=4�𝑒𝑒𝑒𝑒𝑢𝑢𝑙𝑙𝑙𝑙(25)� + 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑙𝑙𝑙𝑙(25) + 𝜂𝜂𝑙𝑙𝑙𝑙 

where 𝛽𝛽0 is an intercept, 𝑛𝑛𝑠𝑠𝑑𝑑𝑑𝑑=4�𝑒𝑒𝑒𝑒𝑢𝑢𝑙𝑙𝑙𝑙(25)� represents a natural cubic spline with 4 degrees of freedom applied to 
female education at age 25, 𝛽𝛽𝑚𝑚𝑚𝑚 is a slope on proportion of met need for contraception at age 25, and 𝜂𝜂𝑙𝑙𝑙𝑙 is a 
residual term. Values of CCF50 for location 𝑙𝑙 and cohort 𝑐𝑐, 𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙, are either GBD 2017 estimates (𝑐𝑐 =
1955, … , 1968) or those forecasted to completion using incremental cohort models (𝑐𝑐 = 1969, … , 2002). Internal 
knot placements in the natural cubic spline were set to 3.1, 8.14, and 12.8 approximating the 10th, 36.5th, and 75th 
percentiles, respectively, of education.  

We assumed a random walk model for the residual terms, which capture trends in CCF50 unexplained by education 
and contraceptive met need, after transformation to scaled logit space. This is defined for transformation of 𝑥𝑥 by the 
logit transformation of 𝑥𝑥 scaled from (𝑎𝑎, 𝑏𝑏) to (0, 1): 

logit(𝑎𝑎,𝑏𝑏)(𝑥𝑥) = ln �𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑥𝑥

�. 

For each location, we estimated the random walk model variance using the past-time scaled logit-space residuals  

𝜂̂𝜂𝑙𝑙𝑙𝑙 = logit(1,10)(𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙) −  logit(1,10)�𝐶𝐶𝐶𝐶𝐶𝐶� 𝑙𝑙𝑙𝑙�. 

Draws of future scaled logit-space residual draws 𝜂̂𝜂𝑙𝑙𝑙𝑙𝑙𝑙 for future cohorts 𝑐𝑐 =  2003, … , 2085 were generated from 
the fitted random walk model centred at GBD draws of the last observed cohort residual for that location, 𝜂̂𝜂𝑙𝑙(2002)𝑑𝑑 
to incorporate draw-level uncertainty from GBD 2017: 

𝜂̂𝜂𝑙𝑙𝑙𝑙𝑙𝑙~𝑁𝑁�𝜂̂𝜂𝑙𝑙(2002)𝑑𝑑 , (𝑐𝑐 − 2002)𝜎𝜎�𝑙𝑙2� 

These forecasted residuals were added to forecast draws of CCF50 that were obtained from the regression model 
evaluated at draws of the regression coefficients from their estimated sampling distribution and forecast draws of 
education and proportion of met need for contraception, denoted 𝐶𝐶𝐶𝐶𝐶𝐶� 𝑙𝑙𝑙𝑙𝑙𝑙

∗ . Final forecast draws of CCF50, denoted 
𝐶𝐶𝐶𝐶𝐶𝐶� 𝑙𝑙𝑙𝑙𝑙𝑙, were obtained by  

𝐶𝐶𝐶𝐶𝐶𝐶� 𝑙𝑙𝑙𝑙𝑙𝑙 = expit(1,10)�logit(1,10)�𝐶𝐶𝐶𝐶𝐶𝐶� 𝑙𝑙𝑙𝑙𝑙𝑙
∗ � + 𝜂̂𝜂𝑙𝑙𝑙𝑙𝑙𝑙� − 𝐵𝐵𝐶𝐶𝑙𝑙𝑙𝑙, 

where expit(𝑎𝑎,𝑏𝑏)(𝑥𝑥) = (𝑏𝑏 − 𝑎𝑎) exp(𝑥𝑥)
1+exp(𝑥𝑥)

+ 𝑎𝑎 is the inverse scaled-logit (expit) transformation and 𝐵𝐵𝐶𝐶𝑙𝑙𝑙𝑙 is a bias 
correction factor that mitigates bias in the mean of the residuals introduced by modelling in scaled-logit space and is 
computed by 

𝐵𝐵𝐶𝐶𝑙𝑙𝑙𝑙 =  1
1000

∑ expit(1,10)�logit(1,10)�𝐶𝐶𝐶𝐶𝐶𝐶� 𝑙𝑙𝑙𝑙𝑙𝑙
∗ � + 𝜂̂𝜂𝑙𝑙𝑙𝑙𝑙𝑙�1000

𝑑𝑑=1 −  expit(1,10) �
1

1000
∑ logit(1,10)�𝐶𝐶𝐶𝐶𝐶𝐶� 𝑙𝑙𝑙𝑙𝑙𝑙

∗ �+  𝜂̂𝜂𝑙𝑙𝑙𝑙𝑙𝑙1000
𝑑𝑑=1 �.  

As with cohort completion forecasting, all forecasted CCF50 draws below one were set to one. 

Section 5.3    Forecasting age patterns of fertility 
Age-specific fertility patterns are required to obtain ASFR forecasts from CCF50 forecasts. To estimate these 
patterns, we utilised incremental cohort fertility models on the log difference between cumulative cohort fertility at 
subsequent five-year age intervals. We modelled incremental cohort fertility (ICF) in five-year age intervals, defined 
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as the average additional number of children birthed during that age interval. Let 𝐼𝐼𝐼𝐼𝐹𝐹𝑙𝑙𝑙𝑙(𝑎𝑎,𝑎𝑎−5) be the ICF from age 𝑎𝑎 
to 𝑎𝑎 − 5 for location 𝑙𝑙 and cohort 𝑐𝑐, which can be determined by the difference in cumulative cohort fertility as 

𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙(𝑎𝑎,𝑎𝑎−5) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙(𝑎𝑎−5), 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 is the cumulative fertility up to age 𝑎𝑎 for location 𝑙𝑙 and cohort 𝑐𝑐 (as defined in section 5.1). 

Using past time data (based on GBD 2017 estimates), we fit the following age-specific models (in log space) using 
least-squares estimation (fit separately to each age): 

ln�𝐼𝐼𝐼𝐼𝐹𝐹𝑙𝑙𝑙𝑙(𝑎𝑎,𝑎𝑎−5)�

= �
𝛽𝛽0,𝑎𝑎 + 𝑛𝑛𝑠𝑠𝑘𝑘𝑘𝑘@9(𝑒𝑒𝑒𝑒𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙) + 𝛽𝛽𝑚𝑚𝑚𝑚,𝑎𝑎𝑚𝑚𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜂𝜂𝑙𝑙𝑙𝑙𝑙𝑙, 𝑎𝑎 = 20

𝛽𝛽0,𝑎𝑎 + 𝑐𝑐𝑠𝑠𝑘𝑘𝑘𝑘@12(𝑒𝑒𝑒𝑒𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙) + 𝛽𝛽𝑚𝑚𝑚𝑚,𝑎𝑎𝑚𝑚𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑛𝑛𝑠𝑠𝑑𝑑𝑑𝑑=5(ln�𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙(𝑎𝑎−5,𝑎𝑎−10)� + 𝜂𝜂𝑙𝑙𝑙𝑙𝑙𝑙, 𝑎𝑎 = 25
𝛽𝛽0,𝑎𝑎 + 𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒,𝑎𝑎𝑒𝑒𝑒𝑒𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽𝑚𝑚𝑚𝑚,𝑎𝑎𝑚𝑚𝑛𝑛𝑙𝑙𝑐𝑐𝑐𝑐 + 𝑛𝑛𝑠𝑠𝑑𝑑𝑑𝑑=5(ln�𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙(𝑎𝑎−5,𝑎𝑎−10)� + 𝜂𝜂𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑎𝑎 = 30, … ,50

 

where  𝑒𝑒𝑒𝑒𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑚𝑚𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙 are years of education and proportion of met need for contraception, respectively, for 
location 𝑙𝑙, birth cohort 𝑐𝑐, and age 𝑎𝑎; 𝛽𝛽0,𝑎𝑎 is an age-specific intercept; 𝛽𝛽𝑚𝑚𝑚𝑚,𝑎𝑎is an age-specific slope on met need; 
𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒,𝑎𝑎 is an age-specific slope on education; 𝑛𝑛𝑠𝑠𝑘𝑘𝑘𝑘@𝐾𝐾(𝑥𝑥) denotes a natural cubic spline with one internal knot at 𝐾𝐾 on 
the covariate 𝑥𝑥; 𝑐𝑐𝑠𝑠𝑘𝑘𝑘𝑘@𝐾𝐾(𝑥𝑥) denotes a cubic spline with one internal knot at 𝐾𝐾 on the covariate 𝑥𝑥; 𝑛𝑛𝑠𝑠𝑑𝑑𝑑𝑑=𝐾𝐾(𝑥𝑥) denotes 
a cubic spline with K degrees of freedom (𝐾𝐾 − 1 knots based on quantiles of 𝑥𝑥); and 𝜂𝜂𝑙𝑙𝑙𝑙𝑙𝑙 is a residual term. 

Residuals 𝜂𝜂𝑙𝑙𝑙𝑙𝑙𝑙 in the above model represent trends not captured by education and contraceptive met need. We fit a 
random walk model to the past-time estimated residuals, 

𝜂̂𝜂𝑙𝑙𝑙𝑙𝑙𝑙 =  ln�𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙(𝑎𝑎,𝑎𝑎−5)� −  ln�𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙(𝑎𝑎,𝑎𝑎−5)�,�  

for each location 𝑙𝑙 and age bin 𝑎𝑎 = 20, 25, … , 50. Using the fitted random walk model variance estimate 𝜎𝜎�𝑙𝑙𝑙𝑙2 , we 
generated draws of forecasted future residual trends, 𝜂̂𝜂𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, for incomplete cohorts 𝑐𝑐 = 1969, … , 2002 centered at 
the last observed cohort residual for that location and age, 𝜂̂𝜂𝑙𝑙(2017−𝑎𝑎)𝑎𝑎: 

𝜂̂𝜂𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙~𝑁𝑁�𝜂̂𝜂𝑙𝑙(2017−𝑎𝑎)𝑎𝑎, (𝑐𝑐 + 𝑎𝑎 − 2017)𝜎𝜎�𝑙𝑙𝑙𝑙2 � 

These residual draws were added to forecasted log ICF draws, ln�𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙(𝑎𝑎,𝑎𝑎−5)𝑑𝑑�� , obtained by evaluating the 
regression model at forecasted covariate draws 𝑒𝑒𝑒𝑒𝑒𝑒� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑚𝑚𝑚𝑚� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and covariate draws from a multivariate normal 
distribution with mean and variance set to the estimated regression coefficients and their variance-covariance matrix, 
respectively. 

Final forecast draws of ICF, denoted 𝐼𝐼𝐼𝐼𝐼𝐼� 𝑙𝑙𝑙𝑙(𝑎𝑎,𝑎𝑎−5)𝑑𝑑, were obtained by exponentiating  

ln�𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙(𝑎𝑎,𝑎𝑎−5)𝑑𝑑�� +  𝜂̂𝜂𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

with correction for mean bias arising from modelling in log space using a similar procedure as done for mortality 
(section 6.2). 

For completion of incomplete cohorts, CCF50 was obtained by combining the observed cumulative cohort fertility 
in 2017 with the cumulative sum of the forecasted ICFs up to age 50: 

𝐶𝐶𝐶𝐶𝐶𝐶� 𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎 =  𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙(15,2017−𝑐𝑐)𝑑𝑑 + � 𝐼𝐼𝐼𝐼𝐼𝐼� 𝑙𝑙𝑙𝑙(𝑎𝑎,𝑎𝑎−5)𝑑𝑑

50

𝑎𝑎=2018−𝑐𝑐

, 

Where 𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙(15,2017−𝑐𝑐)𝑑𝑑 denotes the GBD ICF from age 15 to the last observed age for that incomplete cohort, age  
2017 − 𝑐𝑐. 

Section 5.4    Age-specific fertility rates 
ASFRs were forecasted using the fitted ICF models described in section 5.3 to estimate the proportional age-specific 
fertility rate (PASFR), defined as the proportion of CCF50 composed by a given age group. We then obtained ASFR 
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utilising the relationship between PASFR, CCF50, and ASFR. At a given single-year age 𝑎𝑎, the PASFR can be 
expressed as 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎) =  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑎𝑎)

∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑎𝑎)49
𝑎𝑎=15

=
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑎𝑎)
𝐶𝐶𝐶𝐶𝐶𝐶50

. 

Thus, the single-year ASFRs can be computed as 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑎𝑎) =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎) ×  𝐶𝐶𝐶𝐶𝐶𝐶50. 

Forecast draws of PASFR were estimated using location-, cohort-, and age-specific forecast draws of ICF for cohort 
births 𝑐𝑐 = 2018 − 𝑎𝑎, … , 2085 by extending the forecast horizon in the ICF model of section 5.3 and computing the 
implied PASFR between age 𝑎𝑎 and 𝑎𝑎 − 5: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 𝑙𝑙𝑙𝑙(𝑎𝑎,𝑎𝑎−5)𝑑𝑑 =  
𝐼𝐼𝐼𝐼𝐼𝐼� 𝑙𝑙𝑙𝑙(𝑎𝑎,𝑎𝑎−5)𝑑𝑑

𝐼𝐼(𝑐𝑐 < 2003)𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙(15,2017−𝑐𝑐)𝑑𝑑 + ∑ 𝐼𝐼𝐼𝐼𝐼𝐼� 𝑙𝑙𝑙𝑙(𝑎𝑎,𝑎𝑎−5)𝑑𝑑
50
𝑎𝑎=2018−𝑐𝑐

 

where 𝐼𝐼(∙) is the indicator function. Note the denominator is CCF50 as forecasted using the ICF model, as opposed 
to CCF50 forecasted using the model of Section 5.2 which considers only total, rather than incremental, fertility. 

We then applied these forecasted PASFR draws to the forecasted CCF50 draws (obtained using the methods of 
section 5.2) to obtain forecasted ASFR draws by single-year age 𝑎𝑎 as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 × 𝐶𝐶𝐶𝐶𝐶𝐶� 𝑙𝑙𝑙𝑙𝑙𝑙

5
 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the single-year age PASFR value obtained by assuming it is constant for all single-year ages in 
the corresponding 5-year age interval. To obtain final ASFR forecast draws by age group for years 𝑡𝑡 =
2018, … , 2100, we averaged over the ages within the age group interval for that year. Discontinuities between 
location-, age-, and draw-specific ASFR values for the last past year, 2017, and first forecasted year, 2018, were 
reduced using a three-point moving average iterated five times over future years in period space. The resulting 
adjusted ASFRs were raked to cohort space CCF50 to preserve those forecasted values. 

Section 6    Forecasting mortality 
All-cause mortality was forecasted by modelling 215 collectively exhaustive and mutually-exclusive causes 
independently, and separately for males and females, then aggregating to all-cause and modelling all-cause latent 
trends. Details of this approach are described in Foreman et al, 2018,4 which we extended with some modifications 
to ensure stability of forecasts out to 2100. Briefly, a three-component cause-specific model was utilised for 270 of 
the 274 causes and cause groups, while the remaining four causes (HIV, exposure to forces of nature, conflict and 
terrorism, executions) were modelled with alternative approaches. From the all-cause mortality rates produced from 
aggregating cause-specific mortality and modelling all-cause latent trends, we generated life tables for use in the 
population cohort-component model described in section 8.1. 

Section 6.1    Forecasting cause-specific mortality 

Section 6.1.1    All causes except HIV, disasters, war and terrorism, legal interventions 
The cause-specific model, used for 270 of 274 causes and cause groups, is composed of three components: 

1. The underlying (or risk deleted) mortality, modelled as a function of the SDI3, time, and additional cause-
specific covariates where appropriate.  

2. A risk factor scalar that captures cause-specific combined risk factor effects based upon the GBD 
comparative risk assessment, which quantifies risk-outcome associations accounting for risk factor 
mediation.5 

3. Unexplained residual mortality. 

Specifically, the total mortality rate 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇  for cause 𝑖𝑖, location 𝑙𝑙, age group 𝑎𝑎, and sex 𝑠𝑠 at time 𝑡𝑡 was decomposed 

in log space into an underlying mortality rate 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑈𝑈 , a risk factor scalar 𝕊𝕊i𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, and residual 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 as 
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ln(𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇 ) = α𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + β𝑖𝑖𝑖𝑖SDI𝑙𝑙𝑙𝑙 + θ𝑖𝑖𝑖𝑖𝑖𝑖t���������������

ln�𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑈𝑈 �

 + ln(𝕊𝕊i𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

where for the 𝑖𝑖th cause and 𝑠𝑠th sex , α𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ~ N�β𝛼𝛼,𝑖𝑖𝑖𝑖, 𝜏𝜏𝛼𝛼,𝑖𝑖𝑖𝑖
2 � is a location-age-specific random intercept, β𝑖𝑖𝑖𝑖 is a global 

fixed slope on SDI, and 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖~ N�β𝜃𝜃,𝑖𝑖𝑖𝑖, 𝜏𝜏𝜃𝜃,𝑖𝑖𝑖𝑖
2 �  is an age-specific random slope on the secular time trend. This model 

has the option to place Girosi-King type priors10 on the log total cause-specific mortality rate to smooth forecasts 
over age, time, and location by penalising large differences in adjacent ages, times, and locations.  The residuals 
𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  represent latent trends in total cause-specific mortality not captured by risk factors, SDI, and global secular 
trends. Note our model lacks the spline on SDI used in Foreman et al, 20184 to increase long-term forecast stability. 
Forecasting methodology for the independent drivers used to compute SDI and the risk factor scalar is described in 
section 4. Additional covariates for specific causes were included as in Foreman et al, 20184 with the modification 
of applying the natural log transformation to the SEV covariates high plasma fasting glucose and impaired kidney 
function. To prevent time trend reversals in demographic subgroups, when the mean slope on time, β𝜃𝜃,𝑖𝑖𝑖𝑖, was 
estimated to be non-positive, the overall slope on time, 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 + β𝜃𝜃,𝑖𝑖𝑖𝑖 was constrained to be non-positive. 

Draws of non-latent cause-specific total mortality forecasts at time 𝑡𝑡 are generated in several steps. First, 
independent drivers (detailed in section 4) used to compute the forecasted risk factor scalar 𝕊𝕊�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and covariate 
SDI� 𝑙𝑙𝑙𝑙𝑙𝑙, where 𝑑𝑑 has been added to index draw. To account for uncertainty in model estimation, draws of the fixed 
and random effects were generated from a multivariate normal distribution with mean and variance matrix set to the 
estimates and their estimated joint covariance matrix, respectively, computed using the TMB package for R11 using 
the GBD estimates of past mortality and assuming 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑖𝑖𝑖𝑖2). Forecast draws of the underlying mortality,  
ln(𝑚𝑚𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤

𝑈𝑈 )� , are obtained by evaluating the model at these parameter and SDI forecast draws. Cause-specific non-
latent mortality forecast draws are obtained by adding draw-specific forecasts of the underlying mortality rate and 
risk factor scalar, and used in obtaining all-cause mortality forecasts as described in section 6.2. 

Section 6.1.2    HIV 
HIV mortality was forecasted using the Spectrum modelling process, as described in Foreman et al4 with the 
following modifications. HIV-related health financing was input based on HIV care and treatment estimates from 
IHME, 2018.12 These direct estimates of overall HIV-specific spending showed better performance and predictive 
validity for modelling HIV rates than the previously utilised measures, which were HIV-specific development 
assistance for health and government health expenditure per capita.  

Secular trends in the counterfactual incidence hazard were projected based on a time-dynamic AROC model. The 
Spectrum model uses incidence hazard, the rate of new HIV infections among the susceptible population, as a key 
input. We defined rates of change relative to the counterfactual incidence hazard, which is the expected rate when 
ART coverage is zero. We let 𝐻𝐻𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙 denote the counterfactual hazard for location 𝑙𝑙, number of years 𝑘𝑘 since that 
location’s epidemic start at year 𝑡𝑡𝑙𝑙∗, and draw 𝑑𝑑 (calculated for both sexes aged 15-49). The AROC was computed in 
log space based on the draw-averages 𝐻𝐻𝐻𝐻����𝑙𝑙𝑙𝑙 = 1

𝐷𝐷
∑ 𝐻𝐻𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑  as 

𝑑𝑑𝑙𝑙𝑙𝑙 = ln �𝐻𝐻𝐻𝐻����𝑙𝑙�𝑡𝑡𝑙𝑙∗+𝑘𝑘�� −  ln(𝐻𝐻𝐻𝐻����𝑙𝑙�𝑡𝑡𝑙𝑙∗+𝑘𝑘−1�)  

for  𝑘𝑘 = 1, … , 𝑥𝑥. The maximum years since epidemic start, x, was determined such that after x years, fewer than half 
of locations (countries or territories) had an HIV epidemic extending that many years. All scenarios utilised the 
median AROC across all locations: 

𝛿𝛿𝑘𝑘 = median
𝑙𝑙 

{𝑑𝑑𝑙𝑙𝑙𝑙}, 

for each year 𝑘𝑘 = 1, … , 𝑥𝑥 during the epidemic. We allowed the AROC for each location to follow the characteristic 
course of the HIV epidemic over time: growth in incidence at the outset, followed by levelling off, then decline to 
zero. To capture such trends, we defined time-dynamic AROCs based on the year of epidemic start for each 
location. For each location, we projected counterfactual incidence starting in year 2018. We assumed each epidemic 
reaches equilibrium within 50 years, so we interpolated to 1 at 𝑘𝑘 = 50 years after the epidemic start: 
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∆𝑙𝑙𝑙𝑙=  

⎩
⎪
⎨

⎪
⎧ δ�𝑡𝑡−𝑡𝑡𝑙𝑙∗�  for 𝑡𝑡 = 2018, … , 𝑡𝑡𝑙𝑙∗ + 𝑥𝑥

1 − 𝛿𝛿𝑥𝑥
𝑡𝑡𝑙𝑙∗ + 50 − 𝑡𝑡 

   for 𝑡𝑡 = 𝑡𝑡𝑙𝑙∗ + 𝑥𝑥 + 1, … , 𝑡𝑡𝑙𝑙∗ + 50

1              for 𝑡𝑡 =  𝑡𝑡𝑙𝑙∗ + 51, … , 2100

 

These time-dynamic AROCs were used to forecast counterfactual hazards at future times 𝑡𝑡 = 2018, … , 2100 
according to 

𝐻𝐻𝐻𝐻�𝑙𝑙𝑙𝑙𝑙𝑙 = exp�ln�𝐻𝐻𝐶𝐶𝑙𝑙(2017)𝑑𝑑�+ ∆𝑙𝑙𝑙𝑙�. 

Section 6.1.3    Disasters, war and terrorism, legal interventions 
We forecasted cause-specific mortality due to exposure to forces of nature, conflict and terrorism, and executions 
and police conflict following the methods in Foreman et al, 20184 with alterations for long-range forecast stability. 
We removed the LOESS regression model with SDI utilised for discounting mortality forecasts generated by 
resampling from past mortality. Additionally, for the causes conflict and terrorism and executions, we adjusted the 
probability of sampling past years 1950-2017 to up-weight more recent years according to an exponential decay 
function, as opposed to being uniformly sampled from the past years. The probability of sampling past year 𝑡𝑡 for a 
given forecast year was set to be proportional to exp[−0.15(2017 − 𝑡𝑡)]. 

 

Section 6.2    Aggregating to all-cause mortality 
All-cause total mortality forecasts were obtained by aggregating cause-specific non-latent mortality forecasts (based 
on risk factors, SDI and global secular trends) and adding in forecasted all-cause latent trends, described previously4 
for forecasting at each cause-level in the GBD hierarchy but only performed here for all-cause aggregation with 
slight modifications detailed below.  

At future (past) times 𝑡𝑡, the age-, sex-, and location-specific all-cause non-latent mortality, denoted by 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁𝑁𝑁 , was 

forecasted (estimated) by aggregation of cause-specific estimates and forecasts (after exponentiation out of log 
space): 

𝑚𝑚𝑙𝑙𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠
𝑁𝑁𝑁𝑁� = � exp�ln(𝑚𝑚𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤

𝑈𝑈 )� + ln�𝕊𝕊�i𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙��
274

𝑖𝑖=1

. 

Latent all-cause trends were modelled using the unexplained residual mortality at the all-cause level by a random 
walk with attenuated drift to diminish latent trends over future time. Past-time all-cause residuals were computed in 
log space (using the mean of the reference scenario draws) as 

𝜖𝜖𝑙̂𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  
1
𝐷𝐷
��ln(𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑇𝑇 ) − ln(𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁𝑁𝑁 )�  �

𝑑𝑑

 

for 𝑡𝑡 = 1990, … , 2017 where 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇  is the GBD draw of all-cause total mortality for location 𝑙𝑙, age 𝑎𝑎, sex 𝑠𝑠, time 𝑡𝑡, 

and draw 𝑑𝑑. We estimated past time drift using the linear regression model with mean 

E(𝜖𝜖𝑙̂𝑙𝑙𝑙𝑙𝑙𝑙𝑙) =  𝛾𝛾0,𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛾𝛾1,𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡, 

where  𝛾𝛾0,𝑙𝑙𝑙𝑙𝑙𝑙 is an intercept and 𝛾𝛾1,𝑙𝑙𝑙𝑙𝑙𝑙 is a slope on time for past times 𝑡𝑡 = 1990, … , 2017. Beginning at the first 
forecasted year 𝑡𝑡0 = 2018, future latent trend forecasts were generated with slope attenuation according to  

𝜖𝜖𝑙̂𝑙𝑙𝑙𝑙𝑙(𝑡𝑡+1) =  𝜖𝜖𝑙̂𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛾𝛾1,𝑙𝑙𝑙𝑙𝑙𝑙 exp[−0.1(𝑡𝑡 − 𝑡𝑡0)].   

This approach produced more plausible long-term forecasts than the ARIMA blend used by Foreman and 
colleagues, 2018.4 

Final all-cause log total mortality forecasts were generated by drawing latent trends from the fitted random walk 
with drift model, denoted by 𝜖𝜖𝑙̂𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, and adding these to the non-latent forecasts with an adjustment to account for 
uncertainty in the input GBD estimates. Notably, estimation of both the non-latent and latent trends made use of 
past-time GBD estimates, which are means across the corresponding GBD draw distributions. To incorporate 
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uncertainty in the supplied GBD estimates and ensure continuity between past and forecast means, we intercept-
shifted the non-latent all-cause mortality forecast draws (in log space) by the draw-level residual in 2017 non-latent 
all-cause mortality. Specifically, the shifts were defined by 

𝜁𝜁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ln(𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙(2017)𝑑𝑑
𝑇𝑇 ) −  ln(𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙(2017)𝑑𝑑

𝑇𝑇 )� , 

where 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙(2017)𝑑𝑑
𝑇𝑇  is the 𝑑𝑑th GBD draw of location-, age-, and sex-specific all-cause total mortality in 2017. In log 

space, the all-cause total mortality forecasts were computed as  

ln(𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇 )� = ln(𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁𝑁𝑁 ) +� 𝜖𝜖𝑙̂𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜁𝜁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 

Since the log of the mean of a log normally distributed random variable is biased away from the mean of the 
corresponding normal distribution by an additive factor of the half the variance of the normal distribution, we 
applied the following bias correction in exponentiation to obtain final all-cause total mortality forecasts in the 
original mortality rate space: 

𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇� = exp �ln(𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑇𝑇 )� + 
𝑠̂𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2

2
�. 

where 𝑠̂𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 is the sample variance (across the draws) of ln(𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇 )� . 

Section 7    Forecasting migration 
We forecasted net migration rates for each country or territory as a function of natural population increase (NPI); 
SDI; and mortality resulting from natural disasters, wars, execution and police conflict, and terrorism (eg, events 
that can be considered cultural and/or economic shocks). We utilised UNPD estimates of past migration rates and 
NPI6,13 in conjunction with GBD 2017 estimates of past mortality and SDI to model migration rates (section 7.1). 
Migration rate forecasts were then used to adjust migrant counts using Eurostat migrant population data14,15 (section 
7.2) and balanced across locations to achieve zero-net migration globally (section 7.3). The resulting balanced net 
migration counts by sex, age, location, and time were utilised to generate population forecasts using the cohort-
component method of projection (CCMP) (section 8.1). 

Section 7.1    Migration rates 
For country or territory 𝑙𝑙 at year 𝑡𝑡, we fit the following multiple linear regression model for the migrate rate using 
least squares estimation with past times 𝑡𝑡 = 1990, 1991, … , 2016, 2017: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑙𝑙𝑙𝑙 = 𝛽𝛽0 + 𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼𝑙𝑙𝑙𝑙 + 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑙𝑙𝑙𝑙 + 𝛽𝛽𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐾𝐾𝑙𝑙𝑙𝑙 + 𝜀𝜀𝑙𝑙𝑙𝑙 , 

where 𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺𝑙𝑙𝑙𝑙is the UNPD migration rate estimate (annual net number of migrants per 1000 people); 𝑁𝑁𝑁𝑁𝐼𝐼𝑙𝑙𝑙𝑙is the 
UNPD natural population increase estimate (difference between crude birth and death rates per 1000 people); 𝑆𝑆𝑆𝑆𝐼𝐼𝑙𝑙𝑙𝑙 
is the GBD SDI; 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐾𝐾𝑙𝑙𝑙𝑙 is the GBD mortality rate estimate aggregated over all ages and both sexes and summed 
across the causes natural disasters, war, terrorism, and legal interventions; and 𝜀𝜀𝑙𝑙𝑙𝑙 is a residual accounting for 
variation in location- and time-specific migration unexplained by the model. 

We utilised a random walk with attenuated drift model to forecast the residuals. For each location, past-time 
residuals were computed as 𝜀𝜀𝑙̂𝑙𝑙𝑙 = 𝑀𝑀𝑀𝑀𝐺𝐺𝑅𝑅𝑙𝑙𝑙𝑙 −  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀� 𝑙𝑙𝑙𝑙 and were used to fit the random walk model using the same 
approach described in section 6. Future forecasts of the migration rate, denoted 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀� 𝑙𝑙𝑙𝑙𝑙𝑙, were generated by 
evaluating the estimated regression model at the UNPD forecasted estimates for NPI and our mean forecasts of SDI 
(section 4) and cause-specific mortality for natural disasters, war, terrorism and legal interventions (section 6.1.3) 
then adding this value to forecast draws of the residuals, 𝜀𝜀𝑙̂𝑙𝑙𝑙𝑙𝑙. Finally, to prevent implausibly extreme long-range 
trends in migration, migration rate forecast draws 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀� 𝑙𝑙𝑙𝑙𝑙𝑙 were capped between -10 and 10, which approximates 
the 5th and 95th percentiles of past migration rates. 

Section 7.2    Converting migration rates to migrant counts 
Forecast draws of location-specific migration rates, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀� 𝑙𝑙𝑙𝑙𝑙𝑙, were converted to net migrant counts, denoted by 𝑌𝑌�𝑙𝑙𝑙𝑙𝑙𝑙, 
using a population forecast generated with CCMP under zero migration. Since CCMP requires input on migration by 
age and sex, we disaggregated the net migrant counts by age group and sex. We computed age- and sex-specific 
patterns of migration that were applied to each location by scaling the net migrant counts. For most locations, these 



   
 

16 | P a g e  
 

were computed by the geometric mean of migrants for each age and sex using Eurostat migration data from 2006-
2015.14,15 Specifically, we applied past age-sex patterns from European Union member countries to decompose 
migration rate forecasts by age and sex in all locations except the gulf countries Saudi Arabia, Bahrain, United Arab 
Emirates, and Oman. In these gulf countries, most recent migration was by young adult male temporary workers, so 
we instead utilised Qatar census data from 2015. Unlike in countries that Eurostat provides data for, Qatar’s recent 
census captures this uptick in young adult male migration. We produced age- and sex-specific migration patterns for 
that subset of gulf countries using a Bayesian demographic balancing model fit with Qatar. This methodology is 
described in full elsewhere.3  

Section 7.3    Balancing migration globally 
In order to balance the global net migration to zero (ie, no loss or gain of people globally), we applied an adjustment 
to the migration forecasts for each age, sex, year, and draw. We let 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 be the forecasted net immigrants 
and emigrants, respectively, for location 𝑙𝑙, age 𝑎𝑎, sex 𝑠𝑠, year 𝑡𝑡, and draw 𝑑𝑑. These were computed from the 
forecasted migration counts, denoted by 𝑌𝑌�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, as  

𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐼𝐼�𝑌𝑌�𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 > 0�𝑌𝑌�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝐼𝐼�𝑌𝑌�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 < 0�𝑌𝑌�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

where 𝐼𝐼(∙) is the indicator function. For each age, sex, draw, and year, we imposed the following constraint to 
balance migration across locations:  

∑ 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙195
𝑙𝑙=1

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
+ 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

195

𝑙𝑙=1

= 0 

where 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the age-, sex-, year-, and draw-specific square root of the global ratio of immigrants to emigrants 
defined by 

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �
∑ 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙195
𝑙𝑙=1

∑ 𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙195
𝑙𝑙=1

 

To uphold the above constraint, we adjusted the forecasted migration counts according to: 

𝑌𝑌�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙∗ = �𝑌𝑌
�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(1 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁄ ), 𝑌𝑌�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 > 0
𝑌𝑌�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), 𝑌𝑌�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 < 0

 

Section 8    Forecasting populations 
We used the cohort-component method of projection (CCMP) to forecast population.16 The inputs were estimates 
from GBD 2017 of past population and sex ratio at birth, and forecasts of age-specific fertility, all-cause mortality,  
and net migration rates. 

Section 8.1    Cohort-component method of projection 
This method calculates future populations, 𝑁𝑁𝑡𝑡+1, from current populations, 𝑁𝑁𝑡𝑡, using the population balancing 
equation, 

𝑁𝑁𝑡𝑡+1 = 𝐿𝐿𝑡𝑡𝑁𝑁𝑡𝑡 + 𝑀𝑀𝑡𝑡 

where 𝐿𝐿𝑡𝑡 is the Leslie matrix and 𝑀𝑀𝑡𝑡 is migration. The time step of the CCMP is usually chosen as five-year or one-
year intervals, to match the granularity of ages in population data. In order to capture behaviour for the youngest 
ages, this forecast used a one-week time step, which required interpolation and disaggregation to one-week age 
intervals.  

Section 8.2    Robust age-specific mortality input to CCMP 
Age-specific mortality inputs were taken from forecasted age-specific all-cause mortality, mx. The graduation 
method16 was applied to estimate 𝑛𝑛𝑎𝑎𝑥𝑥  of those 5-year age groups with 5-year neighbours.  Armed with 𝑛𝑛𝑚𝑚𝑥𝑥 and 𝑛𝑛𝑎𝑎𝑥𝑥, 
the rest of the life table columns could be readily computed using standard formulas.  However, additional work was 
needed for the terminal age groups. 



   
 

17 | P a g e  
 

Section 8.3    Extending age-specific mortality to 100–105 
The CCMP model requires knowledge of the survivorship of the terminal age group (95+), and calculating this 
survivorship of the terminal age group (95+) necessitates completing the 𝑙𝑙𝑥𝑥 curve beyond 95 years of age.  
Therefore, we extrapolated age specific probabilities of dying 5𝑞𝑞95 and 5𝑞𝑞100, iteratively, from 5𝑞𝑞90: 

logit(5𝑞𝑞𝑥𝑥+5) − logit(5𝑞𝑞𝑥𝑥) = 𝛼𝛼𝑠𝑠 + 𝛽𝛽𝑠𝑠,𝑥𝑥 + 𝛾𝛾𝑠𝑠 logit(5𝑞𝑞90) 

Where 𝑥𝑥 is the start of the age group, 𝑠𝑠 is sex.  𝛼𝛼𝑠𝑠, 𝛽𝛽𝑠𝑠,𝑥𝑥, and 𝛾𝛾𝑠𝑠 are fitting parameters that depend on sex-only, age-
and-sex, and sex-only.  Note that the logit term on the right hand side is pinned at the starting age point of the 
extrapolation, which is 90 years in our case.  This method has been previously described elsewhere.17 

The fitting parameters are provided as follows: 

Parameter Value 

αmale 0.958635 

αfemale 1.038949 

βmale,90 0.020551 

βfemale,90 0.030907 

βmale,95 –0.059321 

βfemale,95 –0.052221 

γmale –0.146208 

γfemale –0.197924 

The above method allowed us to extrapolate for 5𝑞𝑞95 and 5𝑞𝑞100, which in turn yielded 𝑙𝑙100 and 𝑙𝑙105.  We then 
declared 𝑙𝑙110 = 0 to complete the 𝑙𝑙𝑥𝑥 curve. 

Our extrapolated 𝑙𝑙𝑥𝑥 values needed to conform to the universal relationship  

 ¥𝑚𝑚95 =
𝑙𝑙95
𝑇𝑇95

 

where 𝑇𝑇95 is the integral under the 𝑙𝑙95 curve beyond 95.  For self-consistency, we scaled the extrapolated 𝑛𝑛𝑞𝑞𝑥𝑥 values 
such that the back-calculated ¥𝑚𝑚95 equals the forecasted value. This was done with the help of Simpson’s 3/8 rule: 

𝑇𝑇95 = � 𝑙𝑙𝑥𝑥
∞

95
 𝑑𝑑𝑑𝑑 ≈

15
8

(𝑙𝑙95 + 3 𝑙𝑙′100 + 3 𝑙𝑙′105 + 3 𝑙𝑙′110) = 𝑇𝑇95′  

Where the apostrophe denotes the current tentative value, and 𝑙𝑙𝑥𝑥 at 110 is set to zero. 

The above formulas allowed us to compute directly 

α =  
𝑇𝑇95
𝑇𝑇95′

 =
𝑙𝑙95  ¥𝑚𝑚95
�
𝑇𝑇95′

 

as a “mismatch factor”.   

Furthermore, we maintained the relationship between 5𝑞𝑞95 and 5𝑞𝑞100, that is, 

𝛽𝛽 =  
 5𝑞𝑞′95
 5𝑞𝑞′100

 =  
 5𝑞𝑞95
 5𝑞𝑞100

=  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Having both α and β computed, we proceeded with 
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𝛼𝛼 ≈
15
8 (𝑙𝑙95 + 3 𝑙𝑙100 + 3 𝑙𝑙105)

15
8 (𝑙𝑙95 + 3 𝑙𝑙′100 + 3 𝑙𝑙′105)

 

and substituted 𝑙𝑙100and 𝑙𝑙105with  

𝑙𝑙100 = 𝑙𝑙95 (1 − β 5𝑞𝑞100) 

𝑙𝑙105 = 𝑙𝑙95 (1 − β 5𝑞𝑞100)(1 −  5𝑞𝑞100) 

to finally arrive at the quadratic equation for 5𝑞𝑞100: 

β 5𝑞𝑞1002   −  (2 β + 1)  5𝑞𝑞100  +  γ =  0 

where 

γ =  −α  �
7
3
− (2 β + 1)  5𝑞𝑞′100 + β  5𝑞𝑞′100

2� 

with the solution 

 5𝑞𝑞100 =  
(2𝛽𝛽 + 1) ± �(2𝛽𝛽 + 1)2  −  4 𝛽𝛽 𝛾𝛾  

2 𝛽𝛽
 

Since  5𝑞𝑞100< 1, the only viable solution was subtraction in the numerator of the above equation.  Computing 
 5𝑞𝑞95 and tail of the 𝑙𝑙𝑥𝑥 curve was then straightforward. 

It should be noted that, due to approximation errors, the above equation will not always yield sensible solutions.  In 
those instances, we reverted back to the original values.  

For calculation of life expectancy at birth we employed the method used in Foreman et al4 and described in section 
2.5.3 of the supplemental appendix of Wang et al.18 

Section 9    Life table and life expectancy 
Life tables and life expectancy were calculated as in Foreman et al. (2018)4 with 23 age groups (early neonatal, late 
neonatal, post neonatal, 1-4 years, 5-9, … to 95 years and older). Older ages were handled as described in 
supplementary appendix (section 3.2) in Wang et al (2016)17:  

“To extrapolate age-specific mortality beyond age 85, the Gompertz law of mortality and other functional 
model age pattern of mortality methods are generally used.19,20 Here, we have developed a new model with 
better predictive validity than existing methods. Age-group dummies and probability of dying from age 80 
to 84 in logarithmic scales are used to estimate the difference in age-specific probability of dying in logit 
scale between two consecutive age-groups, as described in the following equation:  

 

Here, j refers to country, g refers to sex, and t refers to time. Parameters are estimated using data from selected 
countries in Human Mortality Database with high quality VR data in the oldest old age groups above age 80.21 
The parameters estimated from the above model are then used to generate age-specific probability of death 
from age 85 to 109.” 
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Section 10    Alternative scenarios based on educational attainment and met need for 
contraception 
Our forecasting reference scenario captures the future population trajectory if recent trends continue by assuming 
future trends will continue at the current rate of change. We also considered four alternative scenarios based on 
hypothetical future rates of change for contraceptive met need and educational attainment: 

1. Slower (15th percentile rate of change) 

2. Faster (85th percentile rate of change) 

3. Fastest (99th percentile rate of change) 

4. SDG pace (rate of change required to meet 2030 UN Sustainable Development Goal [SDG] targets) 

Changes in contraceptive met need and educational attainment impact our population forecasts through their effects 
as covariates (directly or through SDI) in our fertility, mortality, and migration models. 

The slower, faster, and fastest scenarios were derived from the 15th, 85th, and 99th percentile annualised rates of 
change of contraceptive met need and education in past location-years, respectively. The slower and faster scenarios 
are intended capture the future trajectories, given plausibly slower or faster (compared to the past) rates of change of 
contraceptive met need and education. The fastest scenario captures population trajectories under the highest 
achievable (as seen in the past) rate of change of contraceptive met need and education. Finally, the SDG pace 
scenario assumes the population trajectory if the rate of change needed to meet relevant 2030 SDG targets, and this 
rate of change is carried out from 2018 until 2100.  

Section 10.1    Slower, faster, fastest met need and education scenarios 
Percentile-based scenarios were implemented using the strategy of Foreman and colleagues, 20184 applied only to 
contraceptive met need and education (while all other independent drivers of health were forecasted using the 
reference scenario methodology).  

Section 10.2    SDG pace contraceptive met need and education scenario 
Our population scenario for change at the SDG pace adopted the rate of change needed to meet United Nations 
SDGs on educational attainment and met need for contraceptives in 2030 specified by targets 3.7 and 4.1, 
respectively.22,23  

Section 10.2.1    SDG pace met need for contraception 
Our SDG pace scenario for met need for contraceptives Target 3.7 states “by 2030, ensure universal access to sexual 
and reproductive health-care services, including for family planning, information and education, and the integration 
of reproductive health into national strategies and programmes.” We incorporated this into the SDG pace scenario 
by requiring met need for contraceptives to be 100% in 2030, and computing the required location- and age-specific 
AROCs (in normal, not logit space) to reach it from the 2017 value as: 

δ𝑙𝑙𝑙𝑙
[𝑆𝑆𝑆𝑆𝑆𝑆−𝑀𝑀𝑀𝑀] = 1 −𝑀𝑀𝑁𝑁𝑙𝑙𝑙𝑙(2017) 

2030 − 2017
 

were 𝑀𝑀𝑁𝑁𝑙𝑙𝑙𝑙(2017) is the proportion of contraceptive met need for females in age group 𝑎𝑎 and location 𝑙𝑙 in 2017. The 
above AROC was applied to reach 100% contraceptive met need in 2030, then held at 100% after 2030, by applying 
the following AROCs at each time: 

∆𝑙𝑙𝑙𝑙𝑙𝑙
[𝑆𝑆𝐷𝐷𝐷𝐷−𝑀𝑀𝑀𝑀]= �𝛿𝛿𝑙𝑙𝑙𝑙

[𝑆𝑆𝑆𝑆𝑆𝑆−𝑀𝑀𝑀𝑀], 𝑡𝑡 = 2018, … 2030
0, 𝑡𝑡 = 2031, … 2100

 

Section 10.2.2    SDG pace education 
We based the SDG pace scenario for education on Target 4.1, which specifies “by 2030, ensure that all girls and 
boys complete free, equitable and quality primary and secondary education leading to relevant and effective learning 
outcomes.” Due to the lack of comprehensive global data in GBD on the cost, equitability, quality, and outcomes of 
education, we only considered completion of primary and secondary education prior to reaching adulthood as 
defined by 100% of the population completing at least 12 years of education by age group 20-24.  
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Since both GBD 2017 and our framework measure educational attainment by the mean years of education for a 
given location, age, sex, and time, we utilised forecasts of single-year education distributions in 2030 for age 20-24 
years, each sex, and each location24 to imply the smallest mean years of education required to meet the SDG Target 
4.1 without changing the trajectory of those that would already attain 12 or more years. We let 𝑝̂𝑝𝑙𝑙𝑙𝑙(𝑦𝑦) denote the 
forecasted proportion of individuals in country or territory 𝑙𝑙 of sex 𝑠𝑠 that have 𝑦𝑦 years of education in 2030 at age 
20-24 years.  The most conservative adjustment to this distribution to meet SDG Target 4.1 sets all individuals with 
<12 years of education to instead have 12 years, accomplished by the following single-year education distribution 
adjustment: 

𝑝̂𝑝𝑙𝑙𝑙𝑙
[𝑆𝑆𝑆𝑆𝑆𝑆](𝑦𝑦) =

⎩
⎪
⎨

⎪
⎧

0, 𝑦𝑦 = 0, 1, … , 11

�𝑝̂𝑝𝑙𝑙𝑙𝑙(𝑖𝑖)
12

𝑖𝑖=0

  , 𝑦𝑦 = 12

𝑝̂𝑝𝑙𝑙𝑙𝑙(𝑦𝑦) , 𝑦𝑦 = 13, 14, … , 18

 

The mean years of education of this adjusted distribution, 𝐸𝐸𝐸𝐸𝑈𝑈𝑙𝑙𝑙𝑙
[𝑆𝑆𝑆𝑆𝑆𝑆], represents the minimum mean required to meet 

SDG 4.1 in 2030 given the forecasted distribution, and is computed by 

𝐸𝐸𝐸𝐸𝑈𝑈𝑙𝑙𝑙𝑙
[𝑆𝑆𝑆𝑆𝑆𝑆] = � 𝑖𝑖 × 𝑝̂𝑝𝑙𝑙𝑙𝑙

[𝑆𝑆𝑆𝑆𝑆𝑆](𝑖𝑖)
18

𝑖𝑖=12

 

For each location and sex, we set the SDG pace by deriving the AROC required to reach 𝐸𝐸𝐸𝐸𝑈𝑈𝑙𝑙𝑙𝑙
[𝑆𝑆𝑆𝑆𝑆𝑆] in 2030 for 20-

24 year olds starting from the corresponding value in 2017. We assumed a constant rate of change over the 23-year 
timespan in logit space (after scaling by 18 years to represent proportion out of maximum educational attainment) 
and computed the SDG AROC by 

𝛿𝛿𝑙𝑙𝑙𝑙
[𝑆𝑆𝑆𝑆𝑆𝑆−𝐸𝐸𝐸𝐸𝐸𝐸] =

logit�𝐸𝐸𝐸𝐸𝑈𝑈𝑙𝑙𝑙𝑙
[𝑆𝑆𝑆𝑆𝑆𝑆]/18� − logit�𝐸𝐸𝐸𝐸𝑈𝑈𝑙𝑙(20−24)𝑠𝑠(2017)/18�

2030 − 2017
 

where 𝐸𝐸𝐸𝐸𝑈𝑈𝑙𝑙(20−24)𝑠𝑠(2017) is the mean years of education for 20-24 year olds of sex 𝑠𝑠 at location 𝑙𝑙 in 2017.  

Some locations may have high AROCs under the reference scenario for a particular sex and age group. To avoid 
having the SDG pace scenario slow down progress relative to the reference scenario, the location-, age-, and sex-
specific AROCs for the SDG pace were taken to be 

Δ𝑙𝑙𝑙𝑙𝑙𝑙
[𝑆𝑆𝑆𝑆𝑆𝑆−𝐸𝐸𝐸𝐸𝐸𝐸] = max�𝛿𝛿𝑙𝑙𝑙𝑙

[𝑆𝑆𝑆𝑆𝑆𝑆−𝐸𝐸𝐸𝐸𝐸𝐸],∆𝑙𝑙𝑙𝑙𝑙𝑙
[𝑅𝑅𝑅𝑅𝑅𝑅−𝐸𝐸𝐸𝐸𝐸𝐸]� 

where ∆𝑙𝑙𝑙𝑙𝑙𝑙
[𝑅𝑅𝑅𝑅𝑅𝑅−𝐸𝐸𝐸𝐸𝐸𝐸] is the education AROC under the reference scenario for location 𝑙𝑙, age 𝑎𝑎, and sex s (obtained 

using methods in Foreman et al, 20184). 

Section 11    Uncertainty interval estimation 
Uncertainty intervals (UIs) were estimated using the 0.025 and 0.975 quantiles of the draw distributions for the 
measure of interest. When total fertility rate and population forecasts were aggregated over geographical locations 
(eg, global total fertility rate and population), we performed an ad-hoc adjustment to account for unmodelled spatial 
correlation. Due to the large number of interdependent models in the forecasting framework, directly accounting for 
spatial correlation in our forecast draws was infeasible. Nevertheless, producing valid uncertainty estimates for 
location-aggregated quantities requires accounting for spatial correlation. To this end, we applied an ad-hoc 
adjustment to our UIs for quantities aggregated over locations that has been utilised previously in similar 
situations.25 We generated two sets of draw distributions: one assuming spatial independence, and another generated 
under maximal rank dependence of the draws induced by an ordering strategy.  For each aggregated quantity (TFR 
and population), we ordered the age-, sex- and location-specific draws at each year according to their rank in 2100. 
This induced increasing rank correlation between the draws across locations over time. Our final estimates of all UIs 
for aggregate quantities were computed by averaging the 0.025 and 0.975 quantiles of these two draw distributions. 
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Section 12    Model evaluation 
The overall performance of our fertility forecasting framework was evaluated by out-of-time predictive performance 
and is described in the supplementary results appendix 2. 
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