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SUMMARY
High-throughput single-cell RNA-sequencing (scRNA-seq) methodologies enable characterization of com-
plex biological samples by increasing the number of cells that can be profiled contemporaneously. Neverthe-
less, these approaches recover less information per cell than low-throughput strategies. To accurately report
the expression of key phenotypic features of cells, scRNA-seq platforms are needed that are both high fidelity
and high throughput. To address this need, we created Seq-Well S3 (‘‘Second-Strand Synthesis’’), a
massively parallel scRNA-seq protocol that uses a randomly primed second-strand synthesis to recover
complementary DNA (cDNA) molecules that were successfully reverse transcribed but to which a second
oligonucleotide handle, necessary for subsequent whole transcriptome amplification, was not appended
due to inefficient template switching. Seq-Well S3 increased the efficiency of transcript capture and gene
detection compared with that of previous iterations by up to 10- and 5-fold, respectively. We used Seq-
Well S3 to chart the transcriptional landscape of five human inflammatory skin diseases, thus providing a
resource for the further study of human skin inflammation.
INTRODUCTION

Single-cell RNA-sequencing (scRNA-seq) is a powerful

approach to define the cellular composition of healthy and

diseased tissues (Klein et al., 2015; Macosko et al., 2015; Mon-

toro et al., 2018; Ordovas-Montanes et al., 2018; Smillie et al.,

2019; Vento-Tormo et al., 2018). The development of high-

throughput methodologies has enabled the characterization of

increasingly complex cellular samples. However, current

scRNA-seq platforms typically demonstrate an inverse relation-
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ship between the number of cells that can be profiled at once and

the amount of biological information that can be recovered from

each cell. Thus, one must choose between quantity and quality,

or alternatively employ two distinct approaches in parallel (Con-

sortium et al., 2018). Indeed, inefficiencies in transcript capture

among massively parallel methods limit our ability to resolve

the distinct cell states that comprise broad cell types (Vieira

Braga et al., 2019) and their essential but often lowly expressed

molecular features, such as transcription factors, affinity recep-

tors, and signaling molecules.
ublished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Improving the fidelity of scRNA-seq is particularly important

for resolving differences within heterogeneous populations of

immune cells (Dutertre et al., 2019; Villani et al., 2017). Here, sub-

tle differences in surface receptor, transcription factor, and/or

cytokine expression can profoundly affect cellular function,

particularly in the setting of human pathology (Puel et al.,

1998). Enhancing data quality in high-throughput scRNA-seq

would facilitate a greater appreciation of the underlying molecu-

lar features that describe such cellular variation. Similarly, it

would ease integration with legacy datasets that often utilize

lowly expressed biomarkers, such as transcription factors and

cytokines that are false-negative prone, when discriminating

subsets of cells.

Most high-throughput scRNA-seq methods rely on early bar-

coding of cellular contents to achieve scale. Typically, these

techniques recover single-cell transcriptomes for thousands of

cells at once by leveraging reverse-emulsion droplets or pico-

wells to isolate individual cells with uniquely barcoded poly-dT

oligonucleotides, which can then capture and tag cellular

messenger RNAs (mRNAs) during reverse transcription (Praka-

dan et al., 2017). Afterward, an additional oligonucleotide prim-

ing site is typically added to the 30 end of the synthesized

cDNA to enable PCR-based amplification of all transcripts

(whole transcriptome amplification [WTA]). A number of tech-

niques have been described to add this second priming site (Sa-

sagawa et al., 2013; Shishkin et al., 2015). A common approach

uses the terminal transferase activity of certain reverse transcrip-

tase enzymes to facilitate a ‘‘template-switch’’ from the original

mRNA to a second defined oligonucleotide (Picelli et al., 2013).

Although simple to implement, this process has the potential to

be highly inefficient, leading to the loss of molecules that have

been converted to cDNA but not successfully tagged with a sec-

ondary PCR priming site (Islam et al., 2012; Kapteyn et al., 2010;

Zajac et al., 2013).

To overcome these limitations, we have developed a

massively parallel scRNA-seq protocol we call Seq-Well S3 (for

‘‘Second-Strand Synthesis’’), which incorporates the use of a

randomly primed second-strand synthesis after reverse tran-

scription to append a second oligonucleotide handle for WTA.

In cell lines and peripheral blood mononuclear cells (PBMCs),

we demonstrated that Seq-Well S3 enables significant improve-

ments in transcript and gene capture. To illustrate the utility of S3,

we applied it to examine the cellular composition of normal skin

and uncover alterations in cellular abundance and phenotype

across multiple inflammatory skin conditions, including acne, al-

opecia areata, granuloma annulare (GA), leprosy, and psoriasis.

Overall, our work provides a key methodological advance and a

valuable resource for understanding how diverse inflammatory

responses can affect a single tissue, as well as the range of

cellular phenotypes that are possible upon perturbation.

RESULTS

Second-Strand Synthesis (S3) Leads to Improved
Transcript Capture and Gene Detection
We hypothesized that the use of ‘‘template-switching’’ to

append a second PCR handle during reverse transcription might

limit the recovery of unique transcripts and genes from individual

cells in some massively parallel scRNA-seq methods such as
Seq-Well and Drop-Seq (Gierahn et al., 2017; Macosko et al.,

2015). Thus, we incorporated a randomly primed second-strand

synthesis following first-strand cDNA construction (Figures 1A

and S1A). Briefly, after reverse transcription, we washed bar-

coded mRNA capture beads with 0.1 molar sodium hydroxide

to remove attached RNA template strands, and then we per-

formed a randomly primed second-strand synthesis to generate

double-stranded cDNA that was labeled on one end with the

SMART sequence and its reverse complement on the other (Fig-

ures 1A and S1A; STAR Methods) (Picelli et al., 2013; Picelli

et al., 2014).

To examine the effectiveness of Seq-Well S3, we tested a

number of conditions by using cell lines and human PBMCs (Fig-

ure S1B; STAR Methods). Here, we observed that S3 led to

marked improvements in library complexity (i.e., the number of

unique transcripts detected per aligned read) at matched

sequencing depth below saturation (note: higher library

complexity implies a greater amount of information remains to

be detected through further sequencing). Seq-Well S3 was

further able to function in the absence of a template-switching

oligo (TSO), whereas Seq-Well v1 failed to generate appreciable

product without a TSO (Figures S1B–S1E). In species-mixing ex-

periments using HEK293 (human) and NIH-3T3 (mouse) cell

lines, we achieved significant increases in the numbers of unique

transcripts and genes detected per cell by using Seq-Well S3

compared with Seq-Well v1 (p < 0.05, Mann-Whitney U Test)

(Figure S1D; STARMethods), but comparable single-cell resolu-

tion (i.e., transcript purity) (Figures S1F and S1G).

To understand how Seq-Well S3 would perform on primary

cells, we applied it to human PBMCs (Figures S1C, S1E, S2,

and S3; STAR Methods), benchmarking against Seq-Well v1

and multiple versions of a commercial technology (abbreviations

for such are as follows: 10x Genomics, v2 30 chemistry: 10x v2;

10 Genomics, v3 30 chemistry: 10x v3). Here, we down-sampled

all resulting data to equivalent numbers of aligned reads per cell

to account for differences in sequencing depth (for comparisons

between Seq-Well S3 and 10x v2: 38,000 reads per cell; between

Seq-Well S3 v10x v3: 47,000 reads per cell) (Table S1; STAR

Methods).

Critically, when we compared the complexity of sequencing

libraries generated by using Seq-Well S3 in relation to both

Seq-Well v1 and 10x v2, we found that Seq-Well S3 significantly

increased the number of transcripts and genes detected at

matched read depth (p < 0.05, Mann-Whitney U Test & Linear

Regression) (Figures S1C, S1E, and S2A; STAR Methods).

Both Seq-Well S3 and 10x v2 displayed increased sensitivity

compared with that of Seq-Well v1 (Seq-Well S3: 6-fold gene

detection, 10-fold unique molecular identifier [UMI] detection),

but Seq-Well S3 detected genes and transcripts for each cell

type more efficiently than 10x v2 (defined as genes recovered

at matched read depth) (Figure S2). Further, comparing Seq-

Well S3 to 10x v3 across PBMC cell types in aggregate (average

read depth: 47,000 reads per cell), we observed that Seq-Well

S3 detected more genes per cell (Seq-Well S3: 1,402 ± 739

genes per cell; 10x v3: 1,225 ± 496 genes per cell), whereas

10x v3 detected more transcripts per cell at comparable

sequencing depth (Seq-Well S3: 3,247 ± 2,418 UMIs per cell;

10x v3: 4,268 ± 2,109 UMIs per cell) (Figures 1B and 1C; Table

S1).
Immunity 53, 878–894, October 13, 2020 879



Figure 1. Overview of Second-Strand Synthesis (S3)

(A) Conceptual illustration of the molecular features that define immune phenotypes as well as the Seq-Well second-strand synthesis method (Seq-Well S3).

(B) Scatterplot showing differences in per-cell transcript capture (y-axis) as a function of aligned reads per cell (x axis) between 10x Genomics v3 (10x v3, grey)

and Seq-Well S3 (black) in human PBMCs. Red line indicates where transcripts per cell and aligned reads would be equivalent.

(C) Scatterplot shows the differences in per-cell gene detection (y axis) as a function of aligned reads per cell (x axis) between 10x v3 (grey) and Seq-Well S3 (black)

in human PBMCs. Red line indicates where genes per cell and aligned reads would be equivalent.

(D) Scatterplot comparing gene detection rates in CD4+ T cells between 10x v3 (x axis) and Seq-Well S3 (y axis). Red line indicates point of equivalence in gene

detection frequency between methods. Colors correspond to classes of genes including transcription factors (blue), cytokines (red), and receptors (green). See

also Table S1.

(E) Scatterplot comparing gene detection frequency (y axis) between Seq-Well S3 (positive values) and 10x v3 (negative values) as a function of the average

expression amounts (log(scaled UMI + 1)) of an individual gene (x axis). Red line indicates point of equivalence in gene detection frequency between methods.

Colors correspond to classes of genes including transcription factors (blue), cytokines (red), and receptors (green). See also Table S1.

(F) Violin plots of the distribution of normalized expression values (log(scaled UMI + 1)) for select transcription factors and cytokine receptors between Seq-Well S3

and 10x v3. ***p < 1.0 3 10�10.
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We examined each cell type separately to confirm that these

improvements were not driven by changes in the relative fre-

quencies of different cell types (Figures S2B, S2C, S3A, and
880 Immunity 53, 878–894, October 13, 2020
S3B). Among CD4+ T cells, for example, we observed significant

increases in the numbers of transcripts captured and genes de-

tected by using Seq-Well S3 in pairwise comparisons against 10x
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v2 (p < 0.05, Mann-Whitney U Test; CD4+ T cells, Seq-Well v1:

1,044 ± 62.3 UMIs per cell; 10x v2: 7,671 ± 103.9 UMIs per

cell; Seq-Well S3: 13,390 ± 253.4 UMIs per cell; mean ± standard

error of the median [SEM]) (Figure S2D; Table S1; STAR

Methods). Meanwhile, in comparison with 10x v3, we observed

that Seq-Well S3 detected more genes per cell (Seq-Well S3:

1,226 ± 604 genes per cell; 10x v3: 1,083 ± 246 genes per

cell), whereas 10x v3 detected more transcripts per cell at com-

parable sequencing depth (Seq-Well S3: 2,739 ± 1,861 UMIs per

cell; 10x v3: 4,047 ± 1,165 UMIs per cell) (Figure S3C; Table S1).

We sought to understand whether these improvements re-

sulted in enhanced detection of biologically relevant genes

typically under-represented in high-throughput scRNA-seq li-

braries (Consortium et al., 2018). Importantly, genes that were

differentially detected (i.e., higher in S3) within each cell type

include numerous transcription factors, cytokines, and cell sur-

face receptors (Figures 1D, 1E, S2E, S2F, S3D, and S3E; Table

S1). For example, among CD4+ T cells, compared with 10x v3,

we observed significantly increased detection of transcription

factors (e.g., STAT6 and STAT5B) and cytokine receptors (e.g.,

TGFBR2 and CCR7) (S3 vs. 10x v3, p < 0.05, Chi-Square Test)

(Figures 1F and S3; Table S1) in Seq-Well S3.

We performed an additional comparison of enriched human

CD4+ T cells profiled by using Seq-Well S3, 10x v2, and Smart-

Seq2 (SS2), a commonly implemented microtiter plate-based

scRNA-seq approach (Figures S2G–S2I; STAR Methods) (Picelli

et al., 2013). Integrated analysis revealed that Seq-Well S3 de-

tected more genes per cell than 10x v2 and nearly as many as

SS2 in pairwise comparison of the techniques (10x v2: 2,057 ±

18.7 genes per cell; Seq-Well S3: 3,514 ± 36.2 genes per cell;

SS2: 3,975 ± 74.0 genes per cell; mean ± SEM; p < 0.05,

Mann-Whitney U Test) (Figure S2H; STAR Methods). Further-

more, comparing the frequency of gene detection between

methods revealed crucial differences for transcription factors,

cytokines, and cytokine receptors (STARMethods). Surprisingly,

we observed similar rates of gene detection between Seq-Well

S3 and SS2 for a large number of biologically informative genes

(Figure S2G). Critically, although comparable numbers of genes

were detected across methods, Seq-Well S3 detected more

genes per aligned read than either 10x v2 or SS2 (p < 0.05,

Mann-Whitney U Test) (Figure S2I; STAR Methods).

Diverse Cellular States across Healthy and
Inflamed Skin
To demonstrate the utility of Seq-Well S3 to profile cellular states

in human pathology, we applied it to characterize normal human

skin and multiple inflammatory skin conditions, including acne,

alopecia areata, GA, leprosy, and psoriasis. In total, we pro-

cessed 19 skin biopsies (acne, n = 4; alopecia, n = 1; GA, n =

2; leprosy, n = 4; psoriasis, n = 5; normal skin, n = 3) and, after

data quality filtering, retained 38,274 high-quality single-cell

transcriptomes spanning 35 clusters identified through Louvain

clustering in Scanpy (Wolf et al., 2018) (Figures 2A–2C and

S4A–S4C; STAR Methods). To collapse clusters to cell types,

we performed enrichment analyses to identify cluster-defining

genes and manually assigned cell type identities on the basis

of the expression of known lineage markers and hierarchical

clustering (Figures 2B, S4A, S4C, and S4D; Table S3; STAR

Methods). We further classified cells by using SingleR (Aran
et al., 2019) and observed close concordance betweenmanually

identified cell types and automated classification where appro-

priate reference signatures existed (Figure S4B and Table S2;

STAR Methods). Ultimately, we recovered 15 primary cell types,

including the following: B cells (marked by expression ofMS4A1

and CD79A), fibroblasts (DCN and COL6A2), hair follicles

(SOX9), keratinocytes (KCs) (KRT5 and KRT1), Langerhans cells

(LCs) (CD207), lymphatic endothelial cells (LYVE1), mast cells

(CPA3 and IL1RL1), melanocytes (MLANA), myeloid cells

(CD68 and CTSS), plasma cells (IGHG1), Schwann cells

(SCN7A), sebocytes (DCD), T cells (CD3D and TRBC2), venular

endothelial cells (ECs) (SELE and CD93), and vascular smooth

muscle cells (VSMCs) (TAGLN) (Figures 2 and S4A–S4E; Table

S3). As a final quality measure, we examined the distribution of

reads, transcripts, and genes within each major cell population

and observed consistent coverage (Figure S4F; Table S2).

Seq-Well S3 Describes T Cell States across
Inflammatory Skin Conditions
To determine the biological features that could be captured by

using Seq-Well S3, we first examined T cells because each in-

flammatory skin condition is known to significantly skew T cell

phenotypes (Figure 3) (Diani et al., 2015; Lowes et al., 2014).

We performed dimensionality reduction and sub-clustering

across T cells alone (Figures 3A and 3B; STARMethods). This re-

vealed nine sub-clusters that closely correspond to natural killer

(NK) cells and CD8+ T cells, as well as several known CD4+ T

helper (Th) cell subsets. As before, we used the enhanced sensi-

tivity of Seq-Well S3 for lineage defining transcripts to help anno-

tate the identity of each sub-cluster; for example, in regulatory

T cells and Th-17 cells, we detected distinct expression of ca-

nonical transcription factors (e.g., FOXP3 and RORC, respec-

tively) and immune receptors (e.g. TIGIT, CTLA4, IL2RA and

CXCR6, respectively) (Figures 3C–3D and S5; Table S3). Addi-

tionally, we cross-referenced each sub-cluster’s marker genes

against a series of curated signatures in the SaVant database

(Lopez et al., 2017) to confirm our assignments, which high-

lighted similarity to previously characterized T cell and NK cell

subsets (Best et al., 2013; Bezman et al., 2012) (Figure S5A;

STAR Methods).

We next explored variability in T cell subset composition by

skin pathology (Figures 3A and 3B). This revealed potentially var-

ied T cell contributions to different classes of cutaneous inflam-

mation. For example, in two out of four leprosy biopsies, we

observed a population enriched for expression of canonical

Th-17 genes including RORC, which encodes the Th-17-line-

age-defining transcription factor RORgt (Ivanov et al., 2006) (Fig-

ures 3A and 3B). We further found that a sub-cluster of T cells,

which express NR4A1, a transcription factor indicative of

dysfunctional T cells (Liu et al., 2019), and are enriched for genes

involved in nuclear organization (NEAT and ANKRD36), was

over-represented in psoriasis samples (Figures 3B and 3C). We

also observed an expansion of regulatory T cells in three of five

patients with psoriasis, and an additional population of T cells

characterized by expression of SESN3, a marker of T cell senes-

cence (Lanna et al., 2017), SATB1, and FURIN (Figures 3A–3D).

Directed analysis within CD8+ T cells revealed a sub-grouping

of activated CD8+ T cells expressing elevated amounts of several

inflammatory cytokines (TNF, CCL4, and XCL1), specific affinity
Immunity 53, 878–894, October 13, 2020 881



Figure 2. Cell Types Recovered across Inflammatory Skin Conditions

(A) (Top, left) Illustration of the anatomic organization and major features of human skin. Shown at the top, right is the cell type composition of the epidermis and

dermis. Shown on the bottom is a sample processing pipeline for skin samples (Table S2).

(B) (Left) UMAP plot for 38,274 cells colored by cell type cluster. Shown on the right is a stacked barplot depicting the cell type composition for each of the 19 skin

biopsies.

(C) (Left) UMAP plot for 38,274 cells colored by inflammatory skin condition. Shown on the right is a stacked barplot depicting the proportion of cells from each

skin condition within phenotypic clusters.
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receptors (FASLG and TNFRSF9), and transcription factors

(KLF9 and EGR2); this phenotypic skewing was observed pri-

marily in a patient with GA (Figure S5B, top; Table S3; STAR

Methods). We also uncovered considerable variation within the

cluster containing cytotoxic T cells and NK cells (cytotoxic),

where we found the highest degree of cytotoxic gene expression

(GNLY, GZMB, and PRF1) (Table S3). Indeed, sub-clustering

analysis of this cytotoxic cluster revealed 3 distinct sub-groups

(Figure S5B): (1) a sub-group of NK cells (cytotoxic-1) enriched
882 Immunity 53, 878–894, October 13, 2020
for expression of c-KIT, RANKL (TNFSF11), and GITR

(TNFSFR18); (2) a sub-group of CD16+ cells (cytotoxic-2) ex-

pressing cytotoxic effector molecules (GNLY, PRF1, and

GZMB) and NK surface receptors, consistent with either NK

cell or tri-cytotoxic cytotoxic T lymphocytes (CTLs) (Balin et al.,

2018); and (3) a sub-group of CD8+ T cells (cytotoxic-3; marked

by TNFSF8, SLAMF1,CLEC2D, andCD5) that express both TCR

ab and gd constant genes (Figure S5B, bottom; Table S3) (Sö-

derström et al., 2010).



Figure 3. Identification of Inflammatory T cell States by using Seq-Well S3

(A) (Left) Force-directed graph of 4,943 T cells colored by phenotypic sub-cluster. Shown on the right is a stacked barplot depicting the distribution of T cell sub-

clusters within each biopsy.

(B) (Left) Force-directed graph of 4,943 T cells colored by inflammatory skin condition. Shown on the right is a stacked barplot depicting the contribution of each

inflammatory skin condition to the T cell sub-clusters.

(C) T cell force-directed graphs displaying normalized expression (log(scaled UMI + 1)) of a curated group of sub-cluster-defining gene. Higher expression values

are shown in black.

(D) Heatmap showing normalized gene expression values (log(scaled UMI + 1)) for a curated list of sub-cluster-defining genes across nine T cell sub-clusters. See

also Table S3.

(E) Plot showing rates of detection of TCR genes from human skin T cells across a range of sequencing depths.

(F) Heatmaps showing the distribution of TRAV (left) and TRBV (right) gene expression among T cells within each sample. Within each sample (rows), the color

represents the percent of T cells expressing a given TRAV or TRBV gene (columns). The sidebar shows the gini coefficient (red), the Shannon Divergence (blue),

and the percent of T cells (green) within each sample with non-zero expression of either TRAV or TRBV genes.
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Figure 4. Diverse Myeloid Cell States Uncovered by using Seq-Well S3

(A) (Left) Force-directed graph of 5,010myeloid cells colored by phenotypic sub-cluster (NB, LCswere enriched from leprosy and normal skin). Shown on the right

is a stacked barplot showing the distribution of myeloid sub-clusters within each biopsy. See also Table S3.

(legend continued on next page)
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Profiling of TCR expression is critical to understand T cell an-

tigen specificity (Zhang et al., 2018). Among CD4+ T cells ob-

tained from peripheral blood, we recovered TCR-V and TCR-J

genes at a higher frequency by using Seq-Well S3 than by using

10x v2 (p < 0.05, Chi-square Test) (Figure S5C; STAR Methods),

and observed paired detection of TRAC and TRBC in Seq-Well

S3 in 1,293 out of 1,485 CD4+ T cells (87.1% Paired Detection

Rate) (Figure S5C). In the setting of skin inflammation, we de-

tected TRAC in 53.5% of T cells, TRBC in 76.7% (Figure 3E),

and paired detection in 45.1%. Among T cells with at least

25,000 aligned reads, we recovered paired a and b chains in

68.6%. Among cytotoxic cells, we observed expression of g

and d constant genes (TRGC and TRDC), whereas the remaining

T cell clusters exclusively expressed a and b TCR constant

genes (Table S3). These data further suggested that the cyto-

toxic cluster represents a diverse population of gd, NK, and cyto-

toxic CD8+ T cells that share common gene expression features

and, potentially, roles in inflammation.

Finally, we examined the distribution of TCR V gene expression

across inflammatory skin biopsies to identify clonally expanded

T cells (Figure 3F; STAR Methods). We found biased distributions

of TRAV and TRBV genes (e.g., elevated Gini coefficients and low

Shannon Divergence) (Oakes et al., 2017) within multiple biopsies

including those from leprosy and acne (Leprosy 2 and Acne 2,

TRAV and TRBV Gini Coefficient > 0.85) (Figure 3F).

Spectrum of Myeloid Cell States in Skin Inflammation
In the setting of cutaneous inflammation, myeloid cells play a key

role in maintaining tissue homeostasis, wound healing, and

response to pathogens (Malissen et al., 2014). We identified

numerous myeloid cell subpopulations defined by combinations

of surface markers, cytokines, and lineage-defining transcription

factors. Specifically, we independently analyzed 5,010 myeloid

cells and uncovered 10 sub-clusters representing 4 primary

myeloid cell types based on expression of canonical lineage

markers and comparison to cell type signatures in the SaVant

database: dendritic cells (DCs) (CLEC9A and CLEC10A), LCs

(CD207 and CD1A), macrophages (CD68 and CD163), and

mast cells (CPA3 and TPSAB1) (Figures 4A, S5D, and S5E; Table

S3; STAR Methods) (Lopez et al., 2017).

Among the macrophages, our data revealed two distinct sub-

clusters (Figures 4A and 4B). One spanned normal skin as well

as multiple types of skin inflammation and was characterized by

elevatedexpressionofpreviouslycharacterizedmarkersofdermal

macrophages (CD163, STAB1, and CEPP) (Fuentes-Duculan

et al., 2010). Theother,meanwhile,wasobservedprimarily ina sin-

gle leprosy patient and was defined by genes involved in extracel-

lular proteolysis (LYZ, CHIT1, and CHI3L1) (Di Rosa et al., 2013).
(B) (Left) Force-directed graph of 5,010 myeloid cells colored by inflammatory skin

each inflammatory skin condition to each myeloid sub-cluster.

(C) Force-directed graphs of 5,010myeloid cells highlighting expression of a curat

values are shown in black. See also Table S3.

(D) Heatmap showing the normalized expression (log(scaled UMI + 1)) of a curat

(E) Volcano plot showing genes differentially expressed in LCs between leprosy (n

the x axis and �log10 adjusted p values are shown on the y axis. See also Table

(F) (Left) UMAP plot for 951 DCs from human skin colored by inflammatory skin con

grouping within 19 skin biopsies.

(G) Heatmap showing the distribution of normalized gene expression amounts (log

See also Table S3.
We initially identified LCs cells on the basis of expression of ca-

nonical markers (CD207 andCD1A) (Figures 4C and 4D; Table S3)

(Romani et al., 2003). When we directly compared LCs between a

single leprosy biopsy and a single normal skin biopsy from which

we performed bead-based LC enrichment (STAR Methods), we

detected elevated expression of IDO1, STAT1, HCAR3, and

MHC class I molecules (HLA-A, HLA-B, and HLA-F) in LCs in

leprosy infection (Figure4E;TableS5) (Hungeretal., 2004;Pinheiro

et al., 2018). We further performed gene-ontology analysis among

genes up-regulated in LCs from leprosy and observed enrichment

of genes related to IFN-g response (Table S5).

Sub-analysis of the DC cluster revealed multiple sub-groups,

including conventional and dermal DCs (Figure 4F). Consistent

with previous observations from peripheral blood, we detected

a sub-group that corresponds to cDC1 (CLEC9A, IRF8, and

WDFY4) (Villani et al., 2017) (Dutertre et al., 2019) (p < 0.05, per-

mutation test) (Figure S5F and S5G; STAR Methods). We further

identified another representing cDC2 cells (IRF4, SOCS2,

SLCO5A1, CD1B, and CD1E) (Figures 4F, S5H and Table S3;

STARMethods) (Guilliams et al., 2016). Importantly, we detected

expression of IL12B, a subunit of the IL-23 cytokine, which has

previously been shown to promote mucosal type 17 inflamma-

tion via secretion of IL-23 (Schlitzer et al., 2013), within these

IRF4+ cDC2 cells (Figure S5I). This sub-grouping of cDC2 cells

also expressed high amounts ofCCL17 andCCL22, chemokines

involved in T cell chemotaxis (Figure 4G) (Stutte et al., 2010).

Among the dermal DCs, we identified 3 subgroups that were

broadly distinguished from the conventional DC clusters by

expression ofCLEC10A (Figure S5I),which has been shown to in-

fluence T cell cytokine responses in skin (Kashem et al., 2015; Ku-

mamoto et al., 2013). Cells from dermal DC sub-group 1 showed

elevated expression of IL1R1, IL1R2, andCCR7 and Fc-receptors

including FCER1A, FCGR2A, and FCGR2B, which are important

for interfacing with humoral immunity (Figure S5I; Table S3) (Guil-

liams et al., 2014). We observed a second population of dermal

DCs (dermal DC sub-group 2), and there was elevated expression

of cathepsins (CTSL and CTSB) and surface receptors (CD300E

andSLC11A1), which collectively representmarkers of DC activa-

tion (Figure S5I) (Brckalo et al., 2010). Finally, a third sub-grouping

of dermal DCs (dermal DC sub-group 3) was distinguished

elevated expression of pro-inflammatory chemokines up-regu-

lated during DC maturation (CCL3, CCL4, and CCL5) (Jin et al.,

2010) and soluble mediators (EREG and INHBA).

Detection of Endothelial Heterogeneity and Vascular
Addressin Expression
Multiple types of ECs exist within the dermis of the skin. Impor-

tantly, DARC+ post-capillary venules are the primary site of
condition. Shown on the right is a stacked barplot showing the contribution of

ed group of sub-cluster defining genes (log(scaled UMI + 1)). Higher expression

ed list of myeloid cell type cluster-defining genes.

cells = 67) and normal skin (ncells = 171). Log10-fold change values are shown on

S5.

dition. Shown on the right is a stacked barplot showing the distribution DC sub-

(scaled UMI + 1)) for cluster-defining genes across dermal DC subpopulations.
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Figure 5. Stromal Cell Diversity

(A) Force-directed plots for 8,571 endothelial cells colored by phenotypic sub-cluster (left) and stacked barplot showing the distribution of endothelial phenotypic

sub-clusters across samples (right) (Table S3).

(legend continued on next page)
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egress of immune cells from circulation into tissues, which is

guided by addressin expression (Schön et al., 2003). Using the

improved sensitivity of Seq-Well S3, we sought to understand

the spectrum of EC diversity and vascular addressin expression

across multiple instances of skin inflammation (von Andrian and

Mempel, 2003). We identified three primary sub-clusters of

dermal ECs defined by distinct expression patterns: VSMCs

(TAGLN), ECs (CD93), and lymphatic ECs (LYVE1) (Figures 5A–

5C; STARMethods). Importantly, we foundmultiple sub-clusters

of CD93+ ECs across normal and inflamed skin biopsies (Figures

5A–5B; Table S3). For example, we observed a cluster of

DARC�,CD93+ ECs (venule sub-cluster 3) that displays elevated
expression of SLC9A3R2, which is involved in endothelial

homeostasis (Bhattacharya et al., 2012), and another that is

proliferating (venule sub-cluster 6) (Figure 5D). Notably, across

sub-populations of CD93+ ECs (venule sub-clusters 1–6), we

observed varied expression of vascular addressins (Thiriot

et al., 2017) (Figure 5E). Among post-capillary venules, we

measured broadly elevated expression of ITGA5, ITGA6,

ICAM2, and ITGA2, whereas VSMCs expressed higher amounts

of ITGA7, ITGA8, and ITGB5. Further, we observed the highest

expression of ITGB4, ITGB8, and ITGA9, among lymphatic

ECs (Figure 5E).

Altered Dermal Fibroblast Identities in Skin
Inflammation
Dermal fibroblasts provide structural support and are the primary

source of extracellular matrix components within the skin. Previ-

ous studies have reported significant variation among dermal fi-

broblasts on the basis of their relationship to anatomic features

of the skin (Driskell et al., 2013; Driskell and Watt, 2015). In com-

parison to inflamed biopsies, fibroblasts from normal skin

display enrichments in LTBP4, IGFBP5, and TCF4 (fibroblast

clusters 2 and 8) (Table S3). Consistent with previous single-

cell studies of dermal fibroblasts, we observed a sub-population

of fibroblasts (fibroblast cluster 3) that expressed COL11A1,

DPEP1, and RBP4 and is suggested to have a role in connective

tissue differentiation (Figure 5H; Table S3) (Tabib et al., 2018).

In GA, we observed two distinct fibroblast populations. Fibro-

blasts from GA patient 1 (sub-cluster 0) displayed elevated

expression of protease inhibitor 16 (PI16), which inhibits the

function of MMP2 (Hazell et al., 2016), and ITIH5, a protease in-

hibitor important for maintenance of dermal hyaluronic acid that

is overexpressed in skin inflammation (Figures 5H–5I; Table S3)

(Huth et al., 2015). Fibroblasts from GA patient 2 (sub-cluster

7), meanwhile, expressed elevated amounts of SPOCK1 (Avg-

Log FC: 0.99), CRLF1 (Avg-Log FC: 1.38), and COMP (Avg-Log
(B) Force-directed plots for 8,571 endothelial colored by inflammatory skin conditi

condition to endothelial phenotypic sub-clusters (right).

(C) Force-directed plot colored by normalized expression amounts of genes that

(Right) LYVE1, lymphatics.

(D) Heatmap showing patterns of normalized gene expression amounts (log(scal

(E) Heatmap showing row-normalized expression amounts of vascular addressin

(F) Force-directed plots for 7,237 fibroblasts colored by phenotypic sub-cluster (

clusters across samples (right) (Table S3).

(G) Force-directed plots for 7,237 fibroblasts colored by inflammatory skin conditi

condition to fibroblast phenotypic sub-clusters (right).

(H) Force-directed graphs highlighting fibroblast cluster-defining genes.

(I) Heatmap showing the normalized gene expression levels (log(scaled UMI + 1)
FC: 1.35), a cartilage protein that is upregulated in matrix-pro-

ducing fibroblasts after myocardial infarction (Fu et al., 2018).

We also observed distinct fibroblast phenotypes in leprosy

infection. Specifically, we found a population of fibroblasts

(fibroblast cluster 1) marked by combined expression of POSTN

(Periostin) and MMP11, a marker of fibroblasts in basal cell car-

cinoma (Micke et al., 2007) (Figure 5I; Table S3). In another

leprosy biopsy, we observed a population of pro-inflammatory fi-

broblasts (fibroblast cluster 5) that expresses elevated amounts

of SFRP2, PRSS23, and IL6. Finally, among all 5 psoriasis bi-

opsies, we observed a population of pro-inflammatory fibro-

blasts (fibroblast cluster 4) marked by elevated expression of

CCL19, TNFSF13B (BAFF), and CXCL12 (Figures 5H–5I; Ta-

ble S3).

Keratinocyte Differentiation Trajectories
Within the epidermis, KCs undergo a stereotyped differentiation

process in which cells acquire altered morphologies and pheno-

types as they mature (Figure 6A) (Fuchs, 1990). Using KCs from

normal skin, we performed pseudo-temporal analysis to recon-

struct the differentiation process of normal epidermal KCs (Fig-

ure 6B; STAR Methods) (Saelens et al., 2019). In normal skin,

we first identified a population of KCs enriched for expression

of KRT14, a marker of basal KCs (Figure 5C) (Pellegrini et al.,

2001). We then used known patterns of cytokeratin expression

to infer localization of KCs along a supervised differentiation tra-

jectory (Figures 6C and S6A) (Ordovas-Montanes et al., 2018).

Our trajectory analysis revealed patterns of transcription factor

and cytokeratin expression that closely correspond to previously

established signatures of KC maturation in both normal skin

samples where we recovered enough KCs to perform trajectory

analysis (STAR Methods; Figures S6A and S6B) (Cheng et al.,

2018). Consistent with immunohistochemical staining from the

Human Protein Atlas (Figure 6C) (Uhlén et al., 2015), we found

enriched expression of filaggrin (FLG), a protein in the outer

layers of the epidermis (Sandilands et al., 2009), among keratino-

cytes that lie at the terminal points in the pseudo-temporal

ordering (Figures 6C and S6B).

We next examined patterns of KC differentiation across

pathologic conditions and discovered marked deviation in the

differentiation trajectory of psoriatic KCs (Figure 6D). We further

identified distinct lineages for basal KCs (COL17A1) and cells of

the hair follicle, where we detected enrichment of published hair

follicle signatures (Figure 6E) (Joost et al., 2016). Consistent with

previous reports, differential expression analysis revealed signif-

icant up-regulation of antimicrobial peptides (S100A7, S100A8,

and S100A9) and pro-inflammatory cytokines (IL36G and
on (left) and stacked barplot showing the contribution of each inflammatory skin

mark endothelial cell types: (Left) CD93, venules, (Middle) TAGLN, arterioles,

ed UMI + 1)) across nine clusters of endothelial cells (Table S3).

s across phenotypic sub-clusters of endothelial cells.

left) and stacked barplot showing the distribution of fibroblast phenotypic sub-

on (left) and stacked barplot showing the contribution of each inflammatory skin

) of fibroblast cluster-defining genes (Table S3).
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IL36RN) in psoriatic KCs (Figures 6E–6F; Table S6) (Li

et al., 2014).

Based on increased sensitivity of Seq-Well S3 to detect

transcription factors observed in peripheral lymphocytes, we hy-

pothesized that our data might enable identification of transcrip-

tional regulators of psoriatic KCs. To identify potential drivers of

the psoriatic disease process within the epidermis, we per-

formed differential pseudo-time correlation analysis between

psoriatic and normal KCs (STAR Methods). We separately con-

structed pseudo-time trajectories for normal (n = 2) and psoriatic

KCs (n = 5), calculated correlation values between diffusion

pseudo-time and gene expression amounts, and examined the

difference in correlation values between psoriatic and normal

KCs (Figures 6G, S6A, and S6B; Table S6). This uncovered pos-

itive correlation of FOSL1, an AP-1 transcription factor, with

diffusion pseudo-time in psoriatic KCs, implying that FOSL1

might be aberrantly expressed along the differentiation trajectory

of psoriatic KCs. To validate this observation, we performed

immunofluorescence staining for FOSL1 protein, and measured

increased amounts of FOSL1 in psoriatic skin (Figure 6H; STAR

Methods). We validated the distribution of additional genes over-

expressed or differentially correlated with diffusion pseudo-time

in psoriatic KCs (including TNFAIP3, IL36G, and APOBEC3) at

the protein level (Figures 6H and S6A; Table S6; STARMethods).

Finally, we examined the relationship between differential

expression and difference in pseudo-time correlation (Fig-

ure S6C). Here, we observed no overall relationship between dif-

ferential expression and differential pseudotime, suggesting a

more complicated picture of dysregulated gene expression in

psoriatic KCs.

To further define differences in gene expression between

normal and psoriatic KCs, we scored the expression amounts

of known cytokine response signatures by using a series of refer-

ence signature gene lists derived from population RNA-seq of

cultured keratinocytes exposed to multiple cytokines including

IL-17A, IL-4, IL-13, TNF-a, IFN-a, and IFN-g (Figure S6D; Table

S6; STAR Methods) (Tsoi et al., 2019). Although IL-17 has been

previously implicated in the pathogenesis of psoriasis, here we

inferred the identity of cells that dominate the IL-17 response,

localizing the expression of IL-17 responsive genes to spinous

KCs (Chiricozzi et al., 2014). To validate this observation, we per-

formed immunofluorescent staining for IL-17R protein and
Figure 6. Keratinocyte Differentiation Trajectories

(A) Diagram showing the layers of the epidermis and morphologic changes asso

(B) t-SNE plot showing differentiation trajectory of keratinocytes from normal s

keratinocytes (purple).

(C) (Top, left) t-SNE plot of normal keratinocytes colored byKRT14 expression. Sh

2015). Shown on the bottom left is a t-SNE plot of normal keratinocytes colored b

protein atlas (Uhlén et al., 2015). Scale bars, 50 mm.

(D) Diffusion map of 10,777 keratinocytes colored by inflammatory skin condition

(E) Diffusion map of keratinocytes colored by signatures of hair-follicle-specific ge

follicle) and genes that distinguish basal (COL17A1), normal (KRT77), and inflam

(F) Volcano plot of genes differentially expressed between psoriatic and normal

adjusted p values are shown on the y axis.

(G) Heatmap showing gene-specific Pearson correlation values between diffus

psoriatic biopsies.

(H) (Top) Immunofluorescence staining in normal (above) and psoriatic (below) for

gene of interest (red fluorescence). Scale bar, 100 mm.

(I). Immunofluorescence staining for IL-17R expression (green) in normal (left), un
measured the highest staining within spinous KCs exclusively

within psoriatic skin (Figure 6I; STAR Methods).

DISCUSSION

Here, we present Seq-Well S3, a high-throughput and high-fidel-

ity scRNA-seq platform. Through use of a templated second-

strand synthesis, S3 reclaims cDNA molecules that were

successfully reverse transcribed but not labeled with a second

oligonucleotide handle through template switching and thus

would normally have been lost in common bead-based high-

throughput scRNA-seq protocol such as Seq-Well or Drop-

Seq. Using Seq-Well S3, in relation to Seq-Well v1 (Gierahn

et al., 2017), we obtained a 5- to 10-fold increase in the number

of unique genes and transcripts captured per cell at similar

sequencing depth. Beyond aggregate increases in the number

of genes and transcripts recovered per cell, Seq-Well S3 facili-

tated enhanced detection of lineage-defining factors in immune

and parenchymal cells—such as transcription factors, cyto-

kines, and cytokine receptors that are often transiently or lowly

expressed among lymphocytes. Critically, the Seq-Well S3 pro-

tocol is easy to integrate into current bead-based RNA-seq plat-

forms, such as Drop-Seq (Macosko et al., 2015) and spatial

RNA-seq platforms like Slide-Seq (Rodriques et al., 2019), mak-

ing it broadly useful for the single-cell community.

Increases in the sensitivity of gene and transcript detection are

increasingly important as single-cell atlasing efforts shift from

defining large differences between cell types within normal tis-

sues to characterizing subtle alterations to cell states in disease.

Although a number of high-throughput methods have been

developed, each fills a specific role. For example, the methods

that rely on split-pool barcoding of cells or nuclei, such as sci-

RNA-seq (Cao et al., 2017) or SPLiT-seq (Rosenberg et al.,

2018), can examine tens to hundreds of thousands of cells at

once, enabling characterization of model organisms or complex

chemical screens, but work best with certain cell types and are

associated with substantial cell and transcript loss (Ding et al.,

2020), limiting their applicability to precious clinical samples.

Commercial reverse-emulsion droplet-based methods, like

10x, overcome these inefficiencies and provide streamlined

workflows, but add substantial cost, both with respect to con-

sumables and instrumentation, and constrain where and how
ciated with keratinocyte differentiation.

kin from basal cells (yellow) through differentiating cells (aqua) and terminal

own at the top right is KRT14 staining from the human protein atlas (Uhlén et al.,

y FLG expression. Shown on the bottom right is FLG staining from the human

. Axes correspond to diffusion components 1, 2, and 3.

ne expression (Joost et al., 2016) (Left: outer bulge, inner bulge, and upper hair

ed (S100A9) keratinocytes.

keratinocytes. Log10-fold change values are shown on the x axis and �log10

ion pseudotime and gene expression for two normal skin biopsies and five

FOSL, IL36G, TNFAIP3, and APOBEC3. All images stained for nuclei (DAPI) and

involved (middle), and psoriatic skin (right). Scale bar, 100 mm.
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samples can be run. Although the state-of-the-art continues to

evolve rapidly, Seq-Well S3 provides a competitive alternative

that is uniquely suited for clinical studies because of its effi-

ciency, simplicity, compatibility with fragile cells, limited periph-

erals, flexible stopping points (post-reverse transcription), ability

to be parallelized (up to 20 samples in a one-day experiment),

high degree of technical reproducibility, and open molecular

biology (which enables targeted enrichment of molecules of in-

terest) (Tu et al., 2019; van Galen et al., 2019).

Cost is a key factor in the selection of scRNA-seq methods.

Prior to sequencing, the cost of Seq-Well S3 is significantly less

than that of commercial scRNA-seq platforms. Ignoring differ-

ences in instrumentation requirements and their associated costs

(over an order ofmagnitude less for Seq-Well S3), Seq-Well S3 and

10x v3 required approximately the same amount of money to

obtain 50,000 aligned reads for the PBMCs presented here

(note: alignment rates and exact figures will change as a function

sample type and pre-processing). Although this price exceeds

that for the cell-based split-pool methods, at present, the fidelity

is higher. Moreover, the throughput and price of processing for

both can be further reduced through sample multiplexing, driving

sequencing, rather than sample preparation (especially for Seq-

Well S3), to dominate costs (McGinnis et al., 2019; Stoeckius

et al., 2018).

The increased sensitivity of gene detection and transcript cap-

ture afforded by Seq-Well S3 enhances the strength of the infer-

ences and hypotheses that can be generated when examining

the cellular and molecular features of disease pathophysiology

by using scRNA-seq. To date, single-cell analyses of healthy

and diseased human skin have revealed heterogeneity among

immune and parenchymal cell types (Cheng et al., 2018; He

et al., 2020; Kim et al., 2020; Tabib et al., 2018). However, these

studies have largely focused on a single cell type or disease.

Here, we examined the cellular composition of normal skin as

well as alterations in cellular phenotypes associated with multi-

ple inflammatory skin conditions, including acne, alopecia

areata, GA, leprosy, and psoriasis. Our results provide a draft

atlas of human skin inflammation, creating a compendium of

cell types and states for the broader research community (An-

gelo et al., 2014) while providing insights into putative mecha-

nisms and the cellular localization of previously appreciated

and unknown responses to specific inflammatory mediators in

immunologic skin conditions.

We detected numerous T cell phenotypes and sub-pheno-

types across inflammatory skin conditions by using Seq-Well

S3. Among multiple psoriasis biopsies, we observed over-repre-

sentation of Tregs, dysfunctional NR4A1-expressing T cells, and

senescent SESN3+ T cells, which could reflect a role for broader

T cell dysfunction in disease pathology (�Sahmatova et al., 2017).

Meanwhile, in leprosy, we identified a population of T cells en-

riched for expression of ROR-gT, consistent with a suggested

role for Th-17 cells in bacterial control (Saini et al., 2013; Saini

et al., 2016). However, this population was only detected in

two of four biopsies, including one patient undergoing a reversal

reaction, which implies a variable role for Th-17 cells across pa-

tients and forms of leprosy. Further, using Seq-Well S3, we

observed improved TCR recovery in PBMCs. By examining V re-

gion sharing, we found the highest enrichment of TCR se-

quences in leprosy and acne biopsies, which suggests an impor-
890 Immunity 53, 878–894, October 13, 2020
tant role for antigen-specific T cell responses in these diseases

consistent with recent data from acne (Shao et al., 2020). How-

ever, further experimentation is needed to more fully understand

the relationship between TCR clonality and T cell phenotype in

skin inflammation.

In psoriasis, T cells are thought to be a primary driver of inflam-

mation, and DCs play a central role in the recruitment and polar-

ization of T cells that contribute to the hyperproliferation of KCs in

the disease (Lowes et al., 2014). Across five patients with psori-

asis, we reported a sub-cluster of DCs (IRF4+ cDC2) that dis-

plays elevated expression of CCL17, CCL22, and IL12B,

markers of cDC2s that have recently been shown to drive psori-

atic inflammation in mice and humans through the recruitment of

inflammatory T cells (Kim et al., 2018; Zaba et al., 2010). We

further observed a population of fibroblasts in psoriasis that ex-

pressCCL19, TNFSF13B (BAFF), andCXCL12. Notably, expres-

sion of CCL19 and BAFF by synovial fibroblasts has been impli-

cated in the progression of rheumatoid arthritis (Pickens et al.,

2011; Reyes et al., 2008), but their relevance to psoriasis has

yet to be described and will require further exploration.

Among ECs, we identified two clusters marked by expression

of SLC9A3R2, a marker of endothelial homeostasis, and a signa-

ture of proliferation (venule clusters 3 and 4) (Bhattacharya et al.,

2012). These proliferating EC clusters were enriched in acne,

which is thought to arise in response to infection with P. acnes,

resulting in the formation of lesions that resemble a wound after

eruption of the hair follicle into the dermis (Beylot et al., 2014).

Our findings suggest a prominent role for proliferative angiogen-

esis in the wound healing response that is seen in acne (Holland

et al., 2004).

Differentiated KCs have been suggested to be the primary re-

sponders to IL-17A in psoriasis on the basis of previous studies

by using in vitro KC systems, given larger effect sizes in differen-

tiated compared with monolayer KCs (Chiricozzi et al., 2014). By

cross-analyzing the data generated here against an IL-17

response signature in KCs, we have shown that IL-17 responses

are observed in KCs from all layers of the epidermis, but that

these responses are stronger in KCs derived frommore differen-

tiated layers of the psoriatic epidermis. By more precisely local-

izing IL-17 responses in psoriasis, our data might help to inform

improved treatment strategies.

Beyond describing what can be gleaned about the cellular and

molecular deviations associated with any one disease, we distin-

guished expression patterns associated with multiple diseases

by looking across different inflammatory skin conditions to reveal

common and unique response features. For example, our

profiling uncovered a diverse group of cytotoxic cells that con-

tains NK cells, gd T cells, and a sub-cluster of immature cytotoxic

T cells that are derived primarily from leprosy and GA samples,

which suggests common T cell programming between two forms

of granulomatous inflammation. In GA, we observed multiple,

distinct fibroblast populations that segregate between patients:

one expressing cartilage associated proteins (e.g., COMP) and

another expressing protease inhibitors and matrix metalloprotei-

nases, respectively, whichmight reflect different forms of inflam-

mation in distinct types of granuloma annulare (Piette and Rose-

nbach, 2016). In leprosy, meanwhile, we also detected a unique

macrophage population defined by expression of extracellular

proteases, as well as elevated expression of IFN-g associated
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transcriptional programs in LCs, which might reflect their role in

response to infection (Pinheiro et al., 2018). Identifying how com-

mon cellular phenotypes affect disease pathophysiology in

distinct cellular ecosystems is a critical avenue for future inquiry.

By charting the spectrumof skin inflammation at single-cell res-

olution, we have generated a resource that will serve as a refer-

ence for future inquiry into cutaneous biology. Among many of

the cell types and states we identified, we found expression fea-

tures that are shared across diseases, suggesting potentially

common targetable biology; in others, our work revealed unique

features, potentially associated with disease trajectory, for further

inquiry. In future studies, Seq-Well S3 will enable enhanced char-

acterization of immune and parenchymal phenotypes in various

types of inflammation across tissue compartments and how their

interactions influence the development of humandisease to reveal

actionable therapeutic and prophylactic axes.

LIMITATIONS OF STUDY

Although Seq-Well S3 results in improved capture of transcripts

from each cell, there are important limitations associated with

the method and the results presented here. First, in Seq-Well

S3, the size of the cDNAs after second-strand synthesis was

shorter than that obtained in Seq-Well or Drop-Seq. This de-

creases the utility of Seq-Well S3 for certain downstream appli-

cations that seek information from full-length transcripts or

from their 50 ends. Meanwhile, although we uncover multiple

cellular phenotypes across inflammatory skin conditions, we

were limited in our ability to distinguish inter-individual variation

from disease-specific biology because of low numbers of sam-

ples per condition. Here, future studies with larger cohort sizes

and/or matched unaffected skin samples from the same individ-

ual will be needed to resolve disease- from individual-specific

features. Further, many of our findings are based on mRNA

expression and correlative. Follow up experiments using protein

detection and perturbation strategies will be necessary to

corroborate significance. Nevertheless, the increased sensitivity

of gene detection and transcript capture afforded by S3 en-

hances the strength of the inferences that can be drawn from

these types of single-cell data, as evidenced by the range of im-

mune, stromal, and parenchymal cell states we describe across

a spectrum of human skin inflammation.
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López-Botet, M. (2010). Functional analysis of the CD300e receptor in human

monocytes and myeloid dendritic cells. Eur. J. Immunol. 40, 722–732.

Cao, J., Packer, J.S., Ramani, V., Cusanovich, D.A., Huynh, C., Daza, R., Qiu,

X., Lee, C., Furlan, S.N., Steemers, F.J., et al. (2017). Comprehensive single-

cell transcriptional profiling of a multicellular organism. Science 357, 661–667.

Cheng, J.B., Sedgewick, A.J., Finnegan, A.I., Harirchian, P., Lee, J., Kwon, S.,

Fassett, M.S., Golovato, J., Gray, M., Ghadially, R., et al. (2018).

Transcriptional programming of normal and inflamed human epidermis at sin-

gle-cell resolution. Cell Rep. 25, 871–883.

Chiricozzi, A., Nograles, K.E., Johnson-Huang, L.M., Fuentes-Duculan, J.,

Cardinale, I., Bonifacio, K.M., Gulati, N., Mitsui, H., Guttman-Yassky, E.,
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Fuentes-Duculan, J., Suárez-Fariñas, M., Zaba, L.C., Nograles, K.E., Pierson,

K.C., Mitsui, H., Pensabene, C.A., Kzhyshkowska, J., Krueger, J.G., and

Lowes, M.A. (2010). A subpopulation of CD163-positive macrophages is clas-

sically activated in psoriasis. J. Invest. Dermatol. 130, 2412–2422.

Gierahn, T.M., Wadsworth, M.H., 2nd, Hughes, T.K., Bryson, B.D., Butler, A.,

Satija, R., Fortune, S., Love, J.C., and Shalek, A.K. (2017). Seq-Well: portable,

low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14,

395–398.

Guilliams, M., Bruhns, P., Saeys, Y., Hammad, H., and Lambrecht, B.N. (2014).

The function of Fcg receptors in dendritic cells and macrophages. Nat. Rev.

Immunol. 14, 94–108.

Guilliams, M., Dutertre, C.-A., Scott, C.L., McGovern, N., Sichien, D.,

Chakarov, S., Van Gassen, S., Chen, J., Poidinger, M., De Prijck, S., et al.

(2016). Unsupervised high-dimensional analysis aligns dendritic cells across

tissues and species. Immunity 45, 669–684.

Haghverdi, L., Buettner, F., and Theis, F.J. (2015). Diffusion maps for high-

dimensional single-cell analysis of differentiation data. Bioinformatics 31,

2989–2998.

Hazell, G.G., Peachey, A.M., Teasdale, J.E., Sala-Newby, G.B., Angelini, G.D.,

Newby, A.C., and White, S.J. (2016). PI16 is a shear stress and inflammation-

regulated inhibitor of MMP2. Sci. Rep. 6, 39553.

He, H., Suryawanshi, H., Morozov, P., Gay-Mimbrera, J., Del Duca, E., Kim,

H.J., Kameyama, N., Estrada, Y., Der, E., Krueger, J.G., et al. (2020). Single-

cell transcriptome analysis of human skin identifies novel fibroblast subpopu-

lation and enrichment of immune subsets in atopic dermatitis. J. Allergy Clin.

Immunol. 145, 1615–1628.

Holland, D.B., Jeremy, A.H., Roberts, S.G., Seukeran, D.C., Layton, A.M., and

Cunliffe, W.J. (2004). Inflammation in acne scarring: a comparison of the re-

sponses in lesions from patients prone and not prone to scar. Br. J.

Dermatol. 150, 72–81.

Hunger, R.E., Sieling, P.A., Ochoa, M.T., Sugaya, M., Burdick, A.E., Rea, T.H.,

Brennan, P.J., Belisle, J.T., Blauvelt, A., Porcelli, S.A., and Modlin, R.L. (2004).

Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide

antigens to T cells. J. Clin. Invest. 113, 701–708.

Huth, S., Heise, R., Vetter-Kauczok, C.S., Skazik, C., Marquardt, Y., Czaja, K.,

Kn€uchel, R., Merk, H.F., Dahl, E., and Baron, J.M. (2015). Inter-a-trypsin inhib-

itor heavy chain 5 (ITIH5) is overexpressed in inflammatory skin diseases and

affects epidermal morphology in constitutive knockout mice and murine 3D

skin models. Exp. Dermatol. 24, 663–668.

http://refhub.elsevier.com/S1074-7613(20)30409-X/sref1
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref1
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref1
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref2
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref2
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref2
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref2
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref3
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref3
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref3
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref3
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref4
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref4
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref4
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref4
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref4
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref5
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref5
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref5
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref6
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref6
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref6
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref6
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref7
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref7
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref7
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref8
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref8
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref8
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref9
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref9
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref9
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref10
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref10
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref10
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref10
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref11
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref11
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref11
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref11
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref11
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref12
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref12
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref12
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref12
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref12
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref12
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref13
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref13
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref13
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref14
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref14
https://doi.org/10.1038/s41587-020-0465-8
https://doi.org/10.1038/s41587-020-0465-8
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref16
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref16
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref17
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref17
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref17
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref17
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref18
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref18
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref18
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref18
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref18
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref19
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref19
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref19
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref19
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref20
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref20
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref21
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref21
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref21
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref21
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref22
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref22
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref22
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref22
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref23
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref23
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref23
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref24
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref24
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref24
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref24
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref25
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref25
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref25
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref26
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref26
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref26
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref27
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref27
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref27
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref27
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref27
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref28
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref28
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref28
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref28
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref29
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref29
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref29
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref29
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref30
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref30
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref30
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref30
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref30
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref30


ll
OPEN ACCESSResource
Islam, S., Kj€allquist, U., Moliner, A., Zajac, P., Fan, J.-B., Lönnerberg, P., and

Linnarsson, S. (2012). Highly multiplexed and strand-specific single-cell RNA

5¢ end sequencing. Nat. Protoc. 7, 813–828.

Ivanov, I.I., McKenzie, B.S., Zhou, L., Tadokoro, C.E., Lepelley, A., Lafaille,

J.J., Cua, D.J., and Littman, D.R. (2006). The orphan nuclear receptor

RORgammat directs the differentiation program of proinflammatory IL-17+ T

helper cells. Cell 126, 1121–1133.

Jin, P., Han, T.H., Ren, J., Saunders, S., Wang, E., Marincola, F.M., and

Stroncek, D.F. (2010). Molecular signatures of maturing dendritic cells: impli-

cations for testing the quality of dendritic cell therapies. J. Transl. Med. 8, 4.

Joost, S., Zeisel, A., Jacob, T., Sun, X., La Manno, G., Lönnerberg, P.,

Linnarsson, S., and Kasper, M. (2016). Single-cell transcriptomics reveals

that differentiation and spatial signatures shape epidermal and hair follicle het-

erogeneity. Cell systems 3, 221–237.

Kapteyn, J., He, R., McDowell, E.T., and Gang, D.R. (2010). Incorporation of

non-natural nucleotides into template-switching oligonucleotides reduces

background and improves cDNA synthesis from very small RNA samples.

BMC Genomics 11, 413.

Kashem, S.W., Riedl, M.S., Yao, C., Honda, C.N., Vulchanova, L., and Kaplan,

D.H. (2015). Nociceptive sensory fibers drive interleukin-23 production from

CD301b+ dermal dendritic cells and drive protective cutaneous immunity.

Immunity 43, 515–526.

Kim, T.-G., Kim, S.H., Park, J., Choi, W., Sohn, M., Na, H.Y., Lee,M., Lee, J.W.,

Kim, S.M., Kim, D.-Y., et al. (2018). Skin-Specific CD301b+ Dermal Dendritic

Cells Drive IL-17-Mediated Psoriasis-Like Immune Response in Mice.

J. Invest. Dermatol. 138, 844–853.

Kim, D., Kobayashi, T., Voisin, B., Jo, J.-H., Sakamoto, K., Jin, S.-P., Kelly, M.,

Pasieka, H.B., Naff, J.L., Meyerle, J.H., et al. (2020). Targeted therapy guided

by single-cell transcriptomic analysis in drug-induced hypersensitivity syn-

drome: a case report. Nat. Med. 26, 236–243.

Klein, A.M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V.,

Peshkin, L., Weitz, D.A., and Kirschner, M.W. (2015). Droplet barcoding for sin-

gle-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201.

Kumamoto, Y., Linehan, M., Weinstein, J.S., Laidlaw, B.J., Craft, J.E., and

Iwasaki, A. (2013). CD301b+ dermal dendritic cells drive T helper 2 cell-medi-

ated immunity. Immunity 39, 733–743.

Lanna, A., Gomes, D.C., Muller-Durovic, B., McDonnell, T., Escors, D., Gilroy,

D.W., Lee, J.H., Karin, M., and Akbar, A.N. (2017). A sestrin-dependent Erk-

Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat.

Immunol. 18, 354–363.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,

Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing

Subgroup (2009). The sequence alignment/map format and SAMtools.

Bioinformatics 25, 2078–2079.

Li, B., Tsoi, L.C., Swindell, W.R., Gudjonsson, J.E., Tejasvi, T., Johnston, A.,

Ding, J., Stuart, P.E., Xing, X., Kochkodan, J.J., et al. (2014). Transcriptome

analysis of psoriasis in a large case-control sample: RNA-seq provides in-

sights into disease mechanisms. J. Invest. Dermatol. 134, 1828–1838.

Liu, X., Wang, Y., Lu, H., Li, J., Yan, X., Xiao, M., Hao, J., Alekseev, A., Khong,

H., Chen, T., et al. (2019). Genome-wide analysis identifies NR4A1 as a key

mediator of T cell dysfunction. Nature 567, 525–529.

Lopez, D., Montoya, D., Ambrose, M., Lam, L., Briscoe, L., Adams, C., Modlin,

R.L., and Pellegrini, M. (2017). SaVanT: a web-based tool for the sample-level

visualization of molecular signatures in gene expression profiles. BMC

Genomics 18, 824.
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Picelli, S., Björklund, Å.K., Faridani, O.R., Sagasser, S., Winberg, G., and

Sandberg, R. (2013). Smart-seq2 for sensitive full-length transcriptome

profiling in single cells. Nat. Methods 10, 1096–1098.

Picelli, S., Faridani, O.R., Björklund, Å.K., Winberg, G., Sagasser, S., and
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and Lowes, M.A. (2010). Identification of TNF-related apoptosis-inducing

ligand and other molecules that distinguish inflammatory from resident den-

dritic cells in patients with psoriasis. Journal of Allergy and Clinical

Immunology 125, 1261–1268.

Zajac, P., Islam, S., Hochgerner, H., Lönnerberg, P., and Linnarsson, S. (2013).

Base preferences in non-templated nucleotide incorporation by MMLV-

derived reverse transcriptases. PLoS ONE 8, e85270.

Zhang, L., Yu, X., Zheng, L., Zhang, Y., Li, Y., Fang, Q., Gao, R., Kang, B.,

Zhang, Q., Huang, J.Y., et al. (2018). Lineage tracking reveals dynamic rela-

tionships of T cells in colorectal cancer. Nature 564, 268–272.

http://refhub.elsevier.com/S1074-7613(20)30409-X/sref67
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref67
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref68
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref68
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref68
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref68
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref68
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref68
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref69
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref69
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref69
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref70
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref70
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref70
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref71
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref71
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref71
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref72
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref72
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref72
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref72
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref73
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref73
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref73
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref74
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref74
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref74
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref74
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref75
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref75
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref75
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref76
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref76
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref76
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref76
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref77
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref77
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref77
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref77
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref78
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref78
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref78
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref78
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref79
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref79
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref79
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref79
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref79
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref80
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref80
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref80
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref80
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref81
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref81
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref81
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref81
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref82
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref82
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref82
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref83
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref83
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref83
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref83
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref84
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref84
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref84
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref84
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref85
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref85
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref85
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref85
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref86
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref86
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref86
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref86
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref87
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref87
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref87
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref87
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref88
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref88
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref88
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref88
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref88
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref89
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref89
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref89
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref89
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref90
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref90
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref90
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref90
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref91
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref91
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref92
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref92
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref93
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref93
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref94
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref94
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref94
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref94
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref94
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref94
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref95
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref95
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref95
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref96
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref96
http://refhub.elsevier.com/S1074-7613(20)30409-X/sref96


ll
OPEN ACCESSResource
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

IL-17RA Lifespan Bioscience Cat#LS-C359381

IL-17RC Lifespan Bioscience Cat#LS-400522

FOSL Boster Cat# A03927

IL-36G Santa Cruz Biotechnology Cat#Sc-80056; RRID: AB_2124893

TNFAIP3 Abcam Cat#Ab74037; RRID: AB_1524499

APOBEC3A Lifespan Bioscience Cat#LS-C98892-400

Biological Samples

Skin Biopsies UCLA N/A

Skin Biopsies University of Michigan N/A

PBMCs MGH N/A

Chemicals, Peptides, and Recombinant Proteins

Maxima H-RT and Buffer ThermoFisher Scientific Cat#EP0751

dNTPs New England Biolabs Cat#N0447L

Polyethylene Glycol 8000 Fisher Scientific Cat#BP233-1

SUPERase*In RNase inhibitor ThermoFisher Scientific Cat#AM2696

Exonuclease I and Buffer New England Biolabs Cat#M0293S

1M Tris-HCl, pH 8.0 ThermoFisher Scientific Cat#15568025

Klenow Fragment (3’�5’ exo-) New England Biolabs Cat#M0212L

KAPA 2x HiFi HotStart PCR mix Kapa Biosystems Cat#KK2602

Nextera XT Kit Illumina, Inc Cat#FC-131-1096

UltraPure DNase/Rnase-Free

Distilled Water

ThermoFisher Scientific Cat#10977015

TWEEN 20 Fisher Scientific Cat#BP337-100

Sodium Dodecyl Sulfate (SDS) Solution Sigma Cat#71736-100mL

TE Buffer ThermoFisher Scientific Cat#12090015

Critical Commercial Assays

mRNA Capture Beads Chemgenes Corp. Cat#MACOSKO-2011-10B

KAPA 2x HiFi HotStart PCR mix Kapa Biosystems Cat#KK2602

NextSeq500 (75 cycles) Illumina Cat#20024906

Nova-Seq S2 (100 cycles) Illumina Cat#20028316

Deposited Data

Raw and Processed data GEO GEO: GSE150672

Experimental Models: Cell Lines

HEK293 ATCC CRL-1573

NIH/3T3s ATCC CRL-1658

Oligonucleotides

Template-Switching Oligo:

AAGCAGTGGTATCAACGCAG

AG TGAATrGrGrG

This Paper N/A

SMART PCR Primer:

AAGCAGTGGTATCAACGCAGAGT

This Paper N/A

S3 Randomer:AAGCAGTGGTAT

CAACGCAGAGTGANNNGGNNNB

This Paper N/A

(Continued on next page)

Immunity 53, 878–894.e1–e7, October 13, 2020 e1



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

P5-SMART Hybrid Oligo:

AATGATACGGCGACCACCG

AGATCTACACGCCTGTCCGC

G-GAAGCAG TGGTA

TCAACGCAGAGT*A*C

This Paper N/A

Custom Read 1 Primer:

GCCTGTCCGCGGAAGC

AGTGGTATCAACGCAGAGTAC

This Paper N/A

Software and Algorithms

Seurat Satija et al. 2015 http://satijalab.org/seurat/

SCANPY Wolf et al. 2018 http://github.com/theislab/Scanpy
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RESOURCE AVAILABILITY

Lead Contact
Additional information and requests for resources and reagents should be directed to the Lead Contact: Alex K. Shalek (shalek@

mit.edu).

Materials Availability
All unique reagents generated are listed in the key resources table along with the supplemental protocol. Additional requests for re-

sources and reagents can be directed to the Lead Contact.

Data and Code Availability
Raw and processed data are available on the gene expression omnibus (GEO) in GSE150672. Processed data are further available in

an interactive format as part of the Alexandria Project (https://singlecell.broadinstitute.org/single_cell?scpbr=the-alexandria-

project). Additional code is available upon request from the Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
HEK293 and NIH-3T3 cell lines used in species mixing experiments were obtained from ATCC. Cell lines were cultured in DMEM

supplemented with 10% FBS at 37C with 5% CO2.

PBMCs
Peripheral blood mononuclear cells (PBMCs) used in optimization and comparison experiments were obtained from Massachusetts

General Hospital. Aliquots of 1.0x106 PBMCs were frozen in 90% FBS with 10% DMSO and thawed prior to use in experiments.

Human Skin Samples
Skin biopsies were obtained from a total of 16 patients at the University of California, Los Angeles and University of Southern Cal-

ifornia Hansen’s Clinic, while an additional 3 samples were obtained from the University of Michigan. Informed written consent

was obtained from human subjects under a protocol approved by the institutional review boards of the University of Michigan

and University of California Los Angeles (UCLA). This study was conducted according to the Declaration of Helsinki Principles.

METHOD DETAILS

Skin Biopsy Processing
For each sample, a 4-mmpunchbiopsywas obtained following local anesthesia andwas placed immediately into 10mLofRPMI on ice.

Initially, skin biopsies were incubated in 5 mL of a 0.4% Dispase II solution (Roche Inc.) at 37�C for 1 hour with vigorous shaking. The

dermisandepidermiswere thencarefully separatedusing forcepsand transferred toseparate tubes for additional processing.Epidermal

sampleswereplaced in 3mLof 0.25%Trypsin and 10U/mLDNAse for 30minutes at 37�C.Trypsinwasneutralizedwith 3mLof fetal calf

serum (FCS), and the tissue was passed through a 70-micron nylon cell strainer which was washed with 5 mL of RPMI. Epidermal cells

were thenpelletedat 300xg for 10minutes andcounted.Dermal samplesweremincedwith a scalpel and incubated in a solutionof 0.4%

collagenase 2 and 10 U/mLDNAse for 2 hours at 37�Cwith agitation. The cell suspension was passed through a 70-micron cell strainer

andwashedwith 5mL of RPMI. Cells were pelleted at 300 xg for 10minutes, resuspended in 1mL of RPMI and counted.MACS enrich-

ment for CD1A+ cells was performed for epidermal fractions from biopsies from normal skin 1 and leprosy 1.
e2 Immunity 53, 878–894.e1–e7, October 13, 2020
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Single-Cell Processing Pipeline
We utilized Seq-Well, a massively parallel, low-input scRNA-seq platform for clinical samples, to capture the transcriptome of single

cells. A complete, updated protocol for Seq-Well S3 is included as a Supplementary Protocol and is hosted on the Shalek Labwebsite

(www.shaleklab.com). Briefly, 10-15,000 cells were loaded onto a functionalized-polydimethylsiloxane (PDMS) array preloaded with

uniquely barcoded mRNA capture beads (Chemgenes; MACOSKO-2011-10). After cells had settled into wells, the array was then

sealed with a hydroxylated polycarbonate membrane with a pore size of 10 nm, facilitating buffer exchangewhile confining biological

molecules within each well. Following membrane-sealing, subsequent buffer exchange permits cell lysis, mRNA transcript hybridi-

zation to beads, and bead removal before proceeding with reverse transcription. The obtained bead-bound cDNA product then un-

derwent Exonuclease I treatment (New England Biolabs; M0293M) to remove excess primer before proceeding with second-strand

synthesis.

Templated Second-Strand Synthesis
Following Exonuclease I treatment, beads were washed once with 500 mL of a TE-SDS (0.5% SDS) solution, and twice in 500 mL of a

TE-Tween (0.01% Tween) solution. After the second TE-TWwash the beads were solvated with 500 mL of 0.1 M NaOH andmixed for

5minutes at room temperature using an end-over-end rotator with intermittent agitation to denature themRNA-cDNA hybrid product

on the bead. Following denaturing, the NaOH was removed and beads were washed once with 1 M TE, and then combined with a

mastermix consisting of 40 mL 5xmaxima RT buffer, 80 mL 30%PEG8000 solution, 20 mL 10mM dNTPs, 2 mL 1mM dn-SMART oligo,

5 mLKlenow Exo-, and 53 ml of DI ultrapurewater. Second-strand synthesis was carried out by incubating the beads for 1 hour at 37�C
with end-over-end rotation and intermittent agitation. Following incubation, beads were sequentially washed twice with 0.5 mL of TE

buffer with 0.01% Tween 20, and once with 0.5 mL of TE. Immediately prior to PCR amplification, beads were washed once with

0.5 mL of water and resuspended in 0.5 mL of water.

PCR Amplification
After second-strand synthesis, PCR amplification was performed using KAPA HiFi PCRMix (Kapa Biosystems KK2602). Specifically,

a 40 mL PCRMastermix consisting of 25 mL of KAPA 5XMastermix, 0.4 mL of 100 mM ISPCR oligo, and 14.6 mL of nuclease-free water

was combined with 2,000 beads per reaction. For each sample, the total number of PCR reactions performed varied based on the

number of beads recovered following second-strand synthesis. PCR amplification was performed using the following cycling con-

ditions: an initial denaturation at 95�C for 3 minutes, then 4 cycles of 98�C for 20 seconds, 65�C for 45 seconds, and 72�C for 3 mi-

nutes, followed by 9-12 cycles of 98�C or 20 seconds, 67�C or 20 second, and 72�C for 3 minutes, and then a final extension of 72�C
for 5 minutes. Following PCR amplification, WTA products were isolated through two rounds of SPRI purification using Ampure Spri

beads (Beckman Coulter, Inc.) at both 0.6x and 0.8x volumetric ratio and quantified using a Qubit.

Optimization of Second-Strand Synthesis
A series of experiments was performed to validate the performance of the second-strand synthesis protocol relative other tech-

niques. Species-mixing and PBMC profiling experiments were performedfor the comparison of the Seq-Well protocol with and

without second-strand synthesis. For species-mixing experiments, we applied a mixture of 5,000 HEK293 and 5,000 NIH-3T3 cells

to a loaded Seq-Well device, while for PBMC comparisons, a total of 10,000 PBMCs were applied to Seq-Well devices. In optimi-

zation experiments, PBMCs were thawed and immediately loaded directly onto Seq-Well devices without stimulation. Following

bead removal, beads were split into separate reverse transcription reactions with and without the template-switching oligo. After

reverse transcription and ExoI treatment, beads for each comparison were processed separately with andwithout the second-strand

synthesis protocol.

A series of optimization experiments were performed to validate the effectiveness of Seq-Well S^3. Here, a series of control ex-

periments were performed using beads from a single Seq-Well array loaded with 10,000 PBMCs. For each array the beads were split

into six equal fractions and performed the following controls: (1) PCR amplification without the use of second-strand synthesis, (2)

random second-strand synthesis followed by PCR amplification, (3) no template switching oligo without the use of second-strand

synthesis, (4) no template switching oligo with subsequent random second-strand synthesis, (5) heat inactivation of the reverse tran-

scription reagent without the use of second-strand synthesis, (6) heat inactivation of the reverse transcription reagent followed by

random second-strand synthesis. Following PCR amplification, products were obtained from all conditions with the exception of

Condition 3 (Seq-Well V1/ No TSO), which did not yield appreciable WTA product.

CD4+ T Cell Comparisons of 10x Genomics, Seq-Well S3, and Smart-Seq2
Human PBMC were thawed and rested overnight. Cells were stimulated for 18 hours by adding aCD3 (UCHT1) and aCD28 (CD28.2)

antibodies to the bulk PBMC culture at a concentration of 1 mg/mL and 5 mg/mL, respectively, and CD4+ T cells were enriched

following stimulation usingmagnetic negative selection (Stemcell Technologies). Following isolation, T cells were stainedwith calcein

violet live stain (Thermo), Sytox dead stain (Thermo), and aCD45-AF647 (HI30) antibody at 4�C for 30 minutes. After two washes,

aliquots of the cells were placed on ice and sorted directly into RLT buffer using a Sony SH800S Sorter for Smart-Seq2 processing

and another unstained sample for 10x Chromium analysis. Once the cells were delivered, a third aliquot was loaded onto a Seq-Well

array. Single-cell libraries were generated using the Smart-Seq 2, 10x v2, and Seq-Well S3 protocols. For comparison experiments
Immunity 53, 878–894.e1–e7, October 13, 2020 e3
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between 10x v3 and Seq-Well S3 human PBMC were thawed and rested overnight. Aliquots of cells were washed, counted and

placed on ice prior to processing with 10x v3 and Seq-Well S3 protocols.

Sequencing Library Preparation
A total of 1 ng of WTA product at a concentration of 0.2 ng/mL was combined with 10 mL of Buffer TD and 5 mL of Buffer ATM and

incubated at 55�C for 5 minutes. Following tagmentation, 5 mL of Buffer NT was added and incubated at room temperature for 5 mi-

nutes to neutralize the reaction. A total of 8 mL of nuclease-free water, 15 mL of buffer NPM, 1 mL of Custom P5 hybrid Oligo, and 1 mL

of N700 Index oligo were combined and PCR amplification was performed using the following cycling conditions: an initial denatur-

ation of 95�C for 30 seconds, then 12 cycles of 95�C for 10 seconds, 55�C for 30 seconds, and 72�C for 30 seconds, followed by a

final extension of 72�C for 5 minutes. PCR products were isolated through two rounds of SPRI purification (0.6x and 0.8x volumetric

ratios) and quantified using a Qubit. Library size distributions were determined using an Agilent Bioanalyzer D1000 High Sensitivity

Screen tape.

DNA Sequencing and Alignment of PBMC Optimization samples
PBMC optimization experiments were all sequenced on NextSeq500 75 cycle kits. Sequencing read alignment was performed using

version 1 of the Drop-seq pipeline (Macosko et al., 2015). NextSeq runs were loaded at a final concentration of 2.2 pM along with the

custom read 1 primer using NextSeq 550 v2 sequencing kits at the Ragon Institute. Briefly, for each sequencing run, raw sequencing

reads were converted from bcl files to FASTQs using bcl2fastq and demultiplexed using Nextera N700 indices that corresponded to

individual samples. Demultiplexed FASTQs were then aligned using an implementation of DropSeqTools v1.0 maintained by the

Broad Institute for data analysis, and aligned to the Hg19 genome using standard parameters. Individual reads were tagged with

a 12-bp barcode and 8-bp unique molecular identifier (UMI) contained in Read 1 of each sequencing fragment. Following alignment,

aligned read 2 sequences were grouped by the 12-bp cell barcodes and subsequently collapsed by the 8-bp UMI for digital gene

expression (DGE) matrix extraction and generation.

Tissue Immunofluorescence Staining
Formalin fixed, paraffin-embedded tissue slides obtained frompsoriasis patients and normal controls were heated for 30min at 60�C,
rehydrated, and epitope retrieved with Tris-EDTA, pH 6. Slides were blocked, incubated with primary antibody APOBEC3 (LS-

C98892-400; Lifespan bioscience), FOSL (A03927; Boster), IL-36G (sc-80056; Santa Cruz Biotechnology), TNFAIP3 (ab74037, Ab-

cam), IL-17RC (LS-C400522, Lifespan bioscience), and IL-17RA (LS-C359381, Lifespan bioscience) overnight at 4 �C. Slides were

then washed and incubated with Donkey anti-Rabbit IgG 594, Donkey anti-Mouse IgG 488, or Donkey anti-Rat IgG 594 (all from In-

vitrogen) for 1 h at room temperature. Slides were washed and prepared in mounting medium with 4’,6-diamidino-2-phenylindole

(DAPI) (VECTASHIELD Antifade Mounting Medium with DAPI, H-1200, VECTOR). Images were acquired using Zeiss Axioskop 2 mi-

croscope and analyzed by SPOT software 5.1. Images presented are representative of at least three experiments from separate

donors.

QUANTIFICATION AND STATISTICAL ANALYSIS

PBMC Comparison Experiments
Unaligned sequencing reads from 10x genomics and Seq-Well S3 were downsampled to an average sequencing depth of 38,000

reads per cell. Specifically, downsampling was performed on Seq-Well S3 to match the sequencing depth of 10x Genomics v2.

For each data set, variable gene identification was separately performed (Seq-Well S3, 856 variable genes and 10x Genomics v2,

516 genes). Principal component analysis was performed, and the first 20 principal components were use for t-SNE dimensionality

reduction and cluster identification and discovered clusters. The proportion of cell types recovered between Seq-Well S3 and 10x v2

was compared using a Chi-Square test.

Differences in aggregate gene detection and transcript capture were separately examined within each cell type between Seq-Well

S3 and 10x v2 using a Mann-Whitney U Test. A Lilliefors test was used to assess normality of the distribution of genes and UMIs for

each technique. The linear relationship between the number of UMIs captured and aligned sequencing reads was calculated as a

measure of library complexity. Specifically, the slope of the regression line between the number of UMIs against the number of

aligned reads was calculated for each PBMC cell type for each technique. Library complexity was compared using a multivariable

linear regression model in which the number of transcripts per cell was modeled as follows: nUMI � Intercept + B1*nReads +

B2*Technique + B3*nReads*Technique. Statistical significance of the difference in slope (i.e. library complexity) was determined

based on p values for the interaction term B3*nReads*Technique, the magnitude and significance of which correspond to a differ-

ence in slope (i.e. library complexity or the number of UMIs per aligned read). For example, in a library of low-complexity, application

of additional sequencing readsmight result in detection of a new transcript in every 20th aligned read (i.e. slope = 0.05). Conversely, a

library of high complexity might result in detection of a new transcript with every 4 aligned reads (i.e. slope = 0.25). These compar-

isons were performed on libraries that have been sequenced or down-sampled to similar depths as over-sequencing can alter the

relative perception of differences in library complexity. Here, libraries that have been ‘‘over-sequenced’’ will appear to have lower

complexity because unique molecular identifiers will eventually accumulate additional reads upon saturation.
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Additional comparisons were performed between Seq-Well S3 and 10x v3 on a per cell type basis. Downsampling was performed

within each cell type, for both Seq-Well S3 and 10x v3, to the same number of aligned reads. The tagged aligned BAMswere first split

by cell types, and Samtools (Li et al., 2009) was used to sort and down-sample each cell-type-specific BAM to the appropriate read

depth. Picard-Tools and Drop-seq tools were used to extract down-sampled barcodes and generate expression matrices for both

aligned reads and unique molecular identifier counts after separate down-sampling for each cell type within each technique.

Comparison of Gene Detection Rates
For each cell type cluster, the rate of detection for each gene was calculated as the proportion of cells with a non-zero expression

value. Gene detection rates were separately calculated across CD4+ T cells, B cells, CD8+/NK cells, and monocytes for both Seq-

Well S3 and 10x Genomics v2. For comparisons between Seq-Well S3 and 10x Genomics v3, gene detection rates were separately

calculated within 8 cell types. For comparisons of relationship between gene-detection rates and overall expression levels, the

expression level of individual genes was calculated as the average normalized expression value within each cell type for all cells iden-

tified in both Seq-Well S3 and 10x v2 data. Statistical significance of differences in gene detection frequencies was assessed using a

chi-square test using the number of cells in which a given gene had a non-zero expression values for each technique.

Sequencing and Alignment of Skin Samples
Sequencing read alignment was performed using version 2 of the Drop-seq pipeline previously described inMacosko et al. Briefly, for

each Nova-Seq sequencing run, raw sequencing reads were converted from bcl files to FASTQs using bcl2fastq based on Nextera

N700 indices that corresponded to individual samples. Demultiplexed FASTQs were then aligned to the Hg19 genome using STAR

and the DropSeq Pipeline on a cloud-computing platform maintained by the Broad Institute. Individual reads were tagged with a 12-

bp barcode and 8-bp uniquemolecular identifier (UMI) contained in Read 1 of each sequencing fragment. Following alignment, reads

were grouped by the 12-bp cell barcodes and subsequently collapsed by the 8-bp UMI for digital gene expression (DGE) matrix

extraction and generation.

Cell Quality Filtering
Cells were initially filtered on the basis of gene detection (> 500 genes per cell) and transcript detection (> 700 UMIs per cell) for in-

clusion in downstream analysis. Cells with fractional representation of mitochondrial genes greater than 40%were excluded. To ac-

count for potential transcript spreading, any duplicated or hamming=1 barcodes among samples sequenced on the same Nova-Seq

runs were removed. For each sample, variable gene identification was separately performed and 30 principal components were

calculated. Within each sample, jackstraw simulations were used to identify significant principal components that were then used

to perform t-SNE dimensionality reduction and clustering for each sample using only significant principal components. Within

each sample, clusters defined exclusively by mitochondrial gene expression, indicative of low-quality cells, were removed from

downstream analysis.

Removal of Ambient RNA Contamination
Correction for ambient RNA contamination was performed within each sample using SoupX (Young and Behjati, 2018). Appropriate

UMI thresholds for background contamination were determined using EmptyDrops (Lun et al., 2019) by calculating the likelihood that

barcodes selected at UMI thresholds between 30 and 100 UMIs per barcode represent cells and selected the UMI threshold in which

the distribution of likelihood most closely approximated a uniform distribution. An array-specific ‘soup’ profile was generated among

barcodes below the UMI threshold. To calculate estimated per-cell contamination fractions, wemanually selected genes observed to

be bimodally expressed across cells, which suggests that these genes are predominantly expressed in a single cell type, but are

observed at low-levels in other cell types for which endogenous expression would not be expected. For each array, individual tran-

scripts were sequentially removed from each single-cell transcriptome until the probability of subsequent transcripts being soup-

derived was less than 0.5 to generate a background-corrected UMI matrix for each Seq-Well S3 array.

Doublet Removal
Doublet removal was performed for each array individually using DoubletFinder (McGinnis et al., 2019). For each array, the expected

doublet rate was estimated based on the cell loading density. A total of 20,000 cells were loaded to a loaded Seq-Well device con-

taining 85,000wells, which resulted in an expected doublet rate of 2.37%. For each array, pseudo-doublets were generated using the

following parameter values in DoubletFinder: proportion.artificial = 0.25 and proportion.NN = 0.01. Cells were identified as doublets

based on their rank order in the distribution of the proportion of artificial nearest neighbors (pANN) by selecting the pANN value for the

cell at the expected doublet percentile and used the corresponding pANN value as a threshold to remove additional cells with pANN

greater than or equal to this value.

Analysis of Combined Skin Dataset
Variable gene identification and dimensionality reduction to identify 38 cell type clusters across 49,373 cells using Louvain clustering

(resolution = 1.75). Cluster-defining genes were identified within each cluster by performing aWilcox test in Seurat (Satija et al., 2015)

and used to identify cell types. An initial round of dimensionality reduction and cluster identification was performed among cell types

used in subsequent analysis (i.e. T cells, myeloid cells, B and plasma cells, endothelial cells, fibroblasts, and keratinocytes). Based on
Immunity 53, 878–894.e1–e7, October 13, 2020 e5
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the initial sub-clustering results for each cell type, sub-clusters defined by residual contamination not corrected for by SoupX

background correction and doublet filtering were removed. In total, 11,099 cells from sub-clusters defined by residual contamination

were removed: 1,471 from the T cell sub-analysis, 497 from the myeloid sub-analysis, 2,444 from the endothelial sub-analysis, 2,512

from the fibroblast sub-analysis, and 4,175 from the keratinocyte sub-analysis.

After this stringent quality control filtering step, a total of 38,274 cells were included in downstream analysis of the atlas of skin

inflammation. Variable gene identification and identified 5,897 genes as variably expressed. UMAP dimensionality reductionwas per-

formed among 5,897 variably expressed and a total of 35 cell type clusters were identified using Louvain clustering (Resolution = 1.5)

in Scanpy (Wolf et al., 2018). Hierarchical clustering was performed across 35 cell type clusters using a gene set composed of the top

25 cluster-defining genes from each cluster. Average gene expression values within each across the 522 unique cluster-defining

genes was used to perform hierarchical clustering. A dendrogram was generated to display the similarity of clusters, and the

observed relationships were used to inform rational combination of related cell type clusters for combined analysis. Cell type assign-

ments were assigned through a combination of literature-based assessment of expression signatures and manual curation. Valida-

tion of cell type manual identification based on the combination of literature and manual curation was performed by automated cell

type classification using SingleR (Aran et al., 2019). Here, 38,274 cells were classified using the blueprint encode reference dataset,

and ell types assigned by SingleR were compared to the manually assigned cell type classifications.

Identification of T cell Sub-Clusters
Among the 4,943 T cells identified in the total dataset, 5,574 variable genes were identified and used to construct a force-directed

graph and to perform Louvain clustering (resolution = 0.8). Cell type identities for nine T cell sub-clusters were established by exam-

ining the expression of knownmarker genes corresponding to CD4+ T helper and CD8+ T cell subsets. Further, T cell signatures were

compared to previously identified signatures in SaVant (Lopez et al., 2017). To further define variation, additional sub-analyses were

performed among both CD8+ T cells and NK-Cytotoxic cells to generate separate UMAP dimensionality reduction using a total of 5

principal components calculated across variable genes using Seurat. For CD8+ T cells, sub-clustering was performed using a res-

olution of 0.3, while a resolution of 0.6 was used for sub-clustering analysis for NK-Cytotoxic T cells.

T cell Receptor Detection and Clonal Expansion
The detection rates for TCR a and b (Constant, V and J genes) were examined among CD4+ T cells from experiments performed on

PBMCs using the Seq-Well v1, Seq-Well S3 protocol and 10x v2. Specifically, detection of constant genes (e.g. TRAC and TRBC2)

and variable genes (e.g. TRAV/TRBV) was determined by non-zero values for either genes for a and b constant genes or any TRAV/

TRBV gene, respectively. Detection rates in PBMCs were calculated across multiple sequencing depths: <5,000, 5,000-25,000, 25-

000-100,000, and > 100,000 aligned reads per cell.

The rate of TCRdetection was identified across 2,908 T cells obtained fromhuman skin biopsies. Conservation of V gene sequence

was used as a proxy for clonal expansion among skin T cells. V gene usage for each T cell was established by identified the V gene

(TRAV or TRBV) with the highest expression level. The distribution of TRAV and TRBV genes within each sample to identify potential

clonal expansions. The gini coefficient and the Shannon divergencewere calculated for TRAV and TRBV sequenceswithin each sam-

ple to identify over-represented TRAV/TRBV sequences.

Identification of Myeloid Heterogeneity
Sub-analysis was performed among myeloid populations (i.e. dendritic cells, macrophages, mast cells, and Langerhans cells)

identified in global analysis of 38,274 total cells. Using a combined dataset of 5,010 myeloid cells, variable gene identification and

dimensionality reduction was performed in Scanpy. A force-directed graph was constructed across 6,599 variable genes and Lou-

vain clustering (resolution = 0.80) was performed, and we obtained 10 sub-clusters of myeloid cells.

To understand differences in Langerhans cells in normal skin, differential expression analysis was performed within each cluster of

Langerhans cells. Differential expression was performed between Langerhans cells from Myeloid cluster 8 between normal and

leprosy skin biopsies. Gene-set enrichment analysis was performed among genes upregulated in Langerhan’s cells from leprosy

samples in comparison to signatures contained in the MSigDb database.

UMAP dimensionality reduction and Louvain clustering (resolution = 0.45) were performed among 951 dendritic cells. Cluster-

defining genes were identified within each of 5 sub-groupings of dendritic cells by performing a Wilcox test in Seurat. Comparisons

to published signatures of dendritic cell phenotypes were performed to understand how dendritic cells related to previous findings

(Dutertre et al., 2019; Villani et al., 2017). Specifically, expression scores were generated using the top 10 genes using the AddMo-

duleScore function in Seurat. Significance of cluster enrichment was determined by performing 1,000 permutations in which cell and

signature score identifiers were randomly re-assigned.

Identification of Endothelial Heterogeneity
Sub-analysis was performed across 8,571 endothelial cells identified in the global analysis to generate a force-directed graph and

Louvain clustering (resolution = 0.6) using 5,082 variable genes. Genes enriched in each of 9 endothelial sub-cluster were identified

using a Wilcox test in Seurat. For each addressin gene examined, the distribution of cells with non-zero expression was examined in

each of the endothelial cells.
e6 Immunity 53, 878–894.e1–e7, October 13, 2020
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Identification of Fibroblast Heterogeneity
Sub-analysis was performed across 7,237 fibroblasts identified in global analysis. UMAP dimensionality reduction using 4,825 var-

iable genes and Louvain clustering (resolution = 0.6) were performed. Enrichment analysis was performed using aWilcox test to iden-

tify cluster-defining genes for each of 10 fibroblasts sub-clusters. For each fibroblast sub-cluster, the fractional composition of cells

from each sample and condition was examined.

Enrichment of Immune and Stromal Populations by Condition
To understand enrichment of specific cell types in a given condition, the proportional composition of a given cell subset was calcu-

lated with each skin biopsy. For example, the proportion of T cell subsets obtained from each of 19 skin biopsies was determined as

the number of cells of a given sub-type divided by the total number of T cells obtained from that biopsy. To assess significance of

enrichment within a given inflammatory skin condition, comparisons were performed in two ways: (1) a Mann-Whitney U test was

used to examine differences in the proportion of individual cell subsets between biopsies of a given condition and all other samples;

and (2) a Mann-Whitney U test was performed between proportions from biopsies of a given condition and those obtained from

normal skin. Specifically, we calculated enrichments for those conditions for which at least 2 biopsies were obtained, i.e. acne (n-

4), leprosy (n=4), granuloma annulare (n=2), and psoriasis (n=5). No comparisons of enrichment were performed for the single alo-

pecia areata biopsy. We performed tests of enrichment within each of the following subsets: T cells, myeloid cells, dendritic cells,

fibroblasts and endothelial cells.

Pseudo-temporal Reconstruction of Epidermal Keratinocytes
Diffusion analysis was performed across all keratinocytes and hair follicle cells using the Diffmap function in Scanpy (Wolf et al.,

2018), which implements a method for diffusion pseudotime reconstruction (Haghverdi et al., 2015). Pseudo-temporal analysis

was performed within normal keratinocyte separately, using the basal keratinocyte population as the origin of the pseudo-temporal

ordering. Differential expression analysis between normal and psoriatic keratinocytes was performed in Seurat using a Wilcox rank-

sum test across all keratinocytes and among basal, differentiating, and terminal keratinocytes.

Differentiation trajectories were constructed for keratinocytes from normal and psoriatic skin biopsies using Scorpius as

implemented in dyno (Saelens et al., 2019). Correlation of gene expression patterns with pseudo-temporal order were examined

separately for keratinocyte populations from each sample. Here, linear regression was performed between pseudo-time values

and gene expression values for normal and psoriatic keratinocytes. Differential pseudo-time correlation analysis was performed be-

tween normal and psoriatic keratinocytes for 2 normal skin samples and 5 psoriasis samples. The difference in average pseudo-time

correlation between psoriatic and normal keratinocytes was calculated to identify genes that are uniquely involved in the develop-

ment of psoriatic keratinocytes. Reference immuohistochemical staining for KRT14 and FLG was obtained from the Human Protein

Atlas (KRT14: https://www.proteinatlas.org/ENSG00000186847-KRT14/tissue/skin+1#img and https://www.proteinatlas.org/

ENSG00000143631-FLG/tissue/skin+2#img).

Keratinocyte Cytokine-Response Profiles
Among both normal and psoriatic keratinocytes, cytokine response scores were generated using a series of reference datasets that

were previously generated from in vitro experiments in which cultured keratinocytes were stimulated with cytokines, individually or in

combination (IL-17A, IL17-A + TNF-a, TNF-a, IFN-a, IL-4, IL-13, and IFN-g). Expression signature were generated relative an unsti-

mulated control population of keratinocytes. For each cytokine condition, the top 100 differentially expressed genes were used to

generate a cytokine response score across both psoriatic and normal keratinocytes in Seurat. The distribution of cytokine response

scores were examined across basal, differentiating, and terminal keratinocytes between normal and psoriatic keratinocytes.

ADDITIONAL RESOURCES

An extensive protocol is included as part of the supplementary materials along with an itemized cost-model for Seq-Well S3. These

are also available on Shalek lab website: http://shaleklab.com/resource/seq-well/.
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Figure S1. Second-Strand Synthesis Overview, related to Figure 1 

A. Illustration of the second strand synthesis procedure: (1) mRNA is captured via poly-T priming 

of poly-adenylated mRNA; (2) First strand synthesis is performed to generate single-stranded 

cDNA template on bead-bound sequences; (3) Successful template switching: The use of 

enzymes with terminal transferase activity generates a 3’ overhang of 3 cytosines. Template 

switching utilizes this overhang to append the SMART sequence to both ends of the cDNA 

molecule during first strand synthesis. Failed Template Switching: If template switching fails, this 

results in loss of previously primed and reverse transcribed mRNA molecules; (4) mRNA template 

is chemically denatured using 0.1M NaOH; (5) Second strand synthesis is performed using a 

random-octamer with the SMART sequence in the 5’ orientation; and, (6) Following second strand 

synthesis, PCR amplification, library preparation and sequencing are performed to generate data. 

B. Scatterplots show the relationship between transcript detection (y-axis) and number of aligned 

reads per cell (x-axis) for a series of optimization experiments using HEK293 and NIH-3T3 cell 

lines. 

C. Scatterplots show the relationship between transcript detection (y-axis) and the number of 

aligned reads per cell (x-axis) for a series of optimization experiments using PBMCs.  

D. Scatterplots that illustrate the relationship between number of transcripts detected (y-axis) and 

number of aligned reads per cell (x-axis) between Seq-Well V1 and Seq-Well S3 in species mixing 

experiments using HEK293 and NIH-3T3 cells.  

E. Scatterplots that illustrate the relationship between number of transcripts detected (y-axis) and 

number of aligned reads per cell (x-axis) between Seq-Well V1 and Seq-Well S3 in a series of 

optimization experiment using human PBMCs.  

F. Histograms that show the fraction of transcripts uniquely mapped to the human genome for 

each cell for Seq-Well V1. Colors indicate species classification for cells with at least 90% purity 

of human (blue) or mouse (red) mapping. 

G. Histograms that show the fraction of transcripts uniquely mapped to the human genome for 

each cell for Seq-Well S3. Colors indicate species classification for cells with at least 90% purity 

of human (blue) or mouse (red) mapping.



Figure S2. 
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Figure S2. PBMC Methods Comparisons, related to Figure 1 

A. Top: Scatterplot showing differences in per-cell transcript capture (y-axis) as a function of 

aligned reads per cell (x-axis) between 10x Genomics v2 (10x v3, grey) and Seq-Well S3 (black). 

Red line indicates uniform line where transcripts per cell and aligned reads would be equivalent. 

Bottom: Scatterplot shows the differences in per-cell gene detection (y-axis) as a function of 

aligned reads per cell (x-axis) between 10x v2 (grey) and Seq-Well S3 (black).  

B. UMAP plots showing detected cell-types among PBMCs using 10X v2 (left) and Seq-Well S3 

(right).  

C. Stacked barplots show the proportion of cell types recovered using Seq-Well S3 (left) and 10X 

v2 (right).  

D. Top: Boxplots (median +- quartiles) showing the distribution of per cell gene detection from 

10X v2 (left) and Seq-Well S3 (right). Bottom: Boxplots (median +/- quartiles) showing the 

distribution of per cell- transcript capture from 10X v2 (left) and Seq-Well S3 (right). 

E. Scatterplots showing a comparison of gene detection frequencies between Seq-Well S3 (y-

axis) and 10x v2 (x-axis) for each cell type.  

F. Scatterplots showing the difference in gene detection between Seq-Well S3 and 10X v2 (y-axis) 

as a function of average normalized expression (log(scaled UMI + 1)) (x-axis).  

G. Scatterplots showing a comparison of gene detection frequencies among sorted CD4+ T cells 

between (Left) Seq-well S3 (y-axis) and 10x v2 (x-axis), (Middle) Seq-Well S3 (y-axis) and Smart-

Seq2 (x-axis), and (Right) 10x v2 (y-axis) and Smart-Seq2 (x-axis).  

H. Violin plots (boxplots median +- quartiles) showing the distribution of per-cell transcript capture 

for Seq-well S3 (blue; n = 1,485), 10x v2 (red; n = 2995), and Smart-Seq2 (black, n = 382). *** P-

values < 1.0 x10-10. 

I. Scatterplot showing the relationship between aligned reads and genes detected per cell 

between Seq-Well S3 (blue), 10x v2 (red) and Smart-Seq2 (black) in sorted PBMC CD4+ T cells. 
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Figure S3. Seq-Well S3 vs 10x v3 3’ PBMC Methods Comparisons, related to Figure 1 

A. UMAP plots for 7,891 PBMCs from 10x Genomics v3 (left) and 2,682 PBMCs from Seq-Well 

S3 (right).  

B. Stacked barplots showing the distribution of recovered cell types between 10x Genomics v3 

and Seq-Well S3.  

C. Top: Boxplots (median +- quartiles) showing the distribution of per cell gene detection from 

10X v3 (left) and Seq-Well S3 (right). Bottom: Boxplots (median +/- quartiles) showing the 

distribution of per cell-gene detection from 10X v3 (left) and Seq-Well S3 (right). 

D. Scatterplots showing a comparison of gene detection frequencies between Seq-Well S3 (y-

axis) and 10x v3 (x-axis) for each cell type.  

E. Scatterplots showing the difference in gene detection between Seq-Well S3 and 10X v3 (y-

axis) as a function of average expression (counts) (x-axis).  

  



UMAP 1

Figure S4. 
A

tS
N

E 
2

tSNE 1

E F

C

D

0

6

VSMC
B cells

Fibroblasts

Hair Follicle

Keratinocytes

Myeloid

Plasma

Mast cells

Melanocytes

Sebocyte

Schwann

T Cells

Venules

38,274 Cells

Fibroblasts

Keratinocytes

Venules

B cell
Fibroblast−1
Fibroblast−2
Fibroblast−3
Fibroblast−4
Fibroblast−5
Fibroblast−6
HairFollicle
Keratinocyte−1
Keratinocyte−2
Keratinocyte−3
Keratinocyte−4
Keratinocyte−5
Keratinocyte−6
Keratinocyte−7
Keratinocyte−8
Langerhans
Lymphatic

Mast−1
Mast−2
Melanocyte
Myeloid−1
Myeloid−2
Plasma
Schwann
Sebocyte
T cell−1
T cell−2
T cell−3
Venule−1
Venule−2
Venule−3
Venule−4
Venule−5
VSMC−1

U
M

AP
 2

5 10 15 20 25 30
Height

Fibroblast−6
Fibroblast−1
Fibroblast−2

Fibroblast−5
Fibroblast−3
Fibroblast−4

Melanocyte
Venule−3

Venule−5
Venule−1
Venule−2

VSMC
Lymphatic
Schwann

Mast−1
Mast−2
Myeloid−1
Myeloid−2

B cell
Langerhans

T cell−1
T cell−2
T cell−3

Sebocyte
Plasma

Venule−4
Keratinocyte−8

Keratinocyte−6
Keratinocyte−7

Keratinocyte−5
Keratinocyte−4
Keratinocyte−1
Keratinocyte−2

HairFollicle
Keratinocyte−3

B

log10(Genes)log10(UMIs)log10(Reads)

B Cells

Fibroblasts

Hair Follicle

Keratinocytes

Langerhans

Lymphatic

Mast Cells

Melanocytes

Myeloid

Plasma

Schwann

Sebocyte

T Cells

VSMC

Acne 1 Acne 2 Acne 3 Acne 4

Alopecia GA 1 GA 2

Leprosy 1 Leprosy 2 Leprosy 3 Leprosy 4

Psoriasis 1 Psoriasis 2 Psoriasis 3 Psoriasis 4 Psoriasis 5

Lymphatic

Langerhans

Venule

VSMC

T cells

B cells

Mast cells

Melanocytes

Schwann

Myeloid

Lymphatics
Sebocytes

Langerhans

Plasma

Hair Follicle

MS4A1
BANK1
LY9
IGKC
IRF8
COL1A1
DCN
COL1A2
LUM
MMP2
SOX9
KRT17
KRT6B
LPHN3
KRT5
S100A9
SFN
S100A8
KRT16
LY6D
FCGBP
HLA−DQB2
CD207
CD1A
S100B
CCL21
MMRN1
LYVE1
TFF3
FLT4
TPSAB1
CPA3
CTSG
KIT
HPGD
DCT
TYRP1
PMEL
MLANA
TYR
LYZ
PLEK
IFI30
IL1B
HLA−DQA1
IGJ
IGHA1
IGHG1
IGHM
SCN7A
CDH19
NRXN1
PLP1
COL28A1
DCD
MUCL1
SCGB2A2
AZGP1
PRR4
TRBC2
SPOCK2
CD3D
CD2
PTPRC
SELE
CD93
DARC
VWF
PLVAP
MYH11
RGS5
ACTA2
TAGLN
MYL9

M
elanocyte

Fibro
Schwann
VSM

C
Endo
Lym

phatic
B H

airFollicle
KC T M

ast
Langerhans
M

yeloid
Plasm

a
Sebocyte

Endothelial cells
Melanocytes
Fibroblasts
Epithelial cells
Keratinocytes
B−cells
Adipocytes
CD4+ T−cells
CD8+ T−cells
DC
Macrophages
Myocytes
Chondrocytes
NK cells
Eosinophils
Erythrocytes
Mesangial cells
Neutrophils
Neurons
Pericytes
Skeletal muscle
Smooth muscle
HSC
MonocytesM

elanocyte
Fibro
Schwann
VSM

C
Endo
Lym

phatic
B H

airFollicle
KC T M

ast
Langerhans
M

yeloid
Plasm

a
Sebocyte

Endothelial cells
Melanocytes
Fibroblasts
Epithelial cells
Keratinocytes
B−cells
Adipocytes
CD4+ T−cells
CD8+ T−cells
DC
Macrophages
Myocytes
Chondrocytes
NK cells
Eosinophils
Erythrocytes
Mesangial cells
Neutrophils
Neurons
Pericytes
Skeletal muscle
Smooth muscle
HSC
Monocytes

Blueprint Encode C
ell Types

Assigned Cell Type

Percentage of Assigned Cell Type

Normal 1 Normal 2 Normal 3

Alopecia and GA

Acne

Leprosy

Psoriasis

Normal

Gene Expression
Level

0 100

�
��

�� �

� ��� �
�� � �� � �� � ���� �

�
� ���

3 4 5 6

�

� ��� � �
��� �� �

� �� � � ��
�� �� � �� �� � � ��

� � �� ��� ��� � �� �� � �� ��� � ���

�� � �� � � �� �� ���� ��

�� �� � �

�� � �� � �� � ���� �

��
�� �� � � �� ��� �� � ����� ���� � �� � �� �� �� �� �� �� �� �� �� � � � ��� ����� �

�� ��� �� � ��� �� �� �� �� � �

3 4 5 6

�� � ��� � ��
� �� � �� �� �

� �� � �� � � ��� � � ��� � �� � �� �� �� ��� � ��� �� �� �

� � �� � ��� � � � �� �� � �� �� �� ��� � �� � �

�� ���� �� �� � �� �
��� ���� �� � �� ��� �� ��

��� �� ��� � �� � � �� � �� � ���� �� ��� ��� �� �

� ��� �� � �

�
� � �� � �� � ���� �

�� � � �� � �� �� �� ��� ��� �� � � ����� � ���� �� � ��� � ��� ��� ��� ���
�� ��� ��� �� ��� �� ��� � ��� � ���� �� �� � �� � ��� � � ��� ��

3 4 5 6



Figure S4. Overview of Samples, related to Figure 2 

A. UMAP plot for 38,274 cells colored by 35 cell type clusters. 

B. Comparison of cell-type classification to results obtained using SingleR. Color corresponds to 

the percentage of manually classified cells types (columns) assigned to cell-type references 

contained in the Blueprint Encode dataset (rows).  

C. Dendrogram of hierarchical clustering shows similarity of cell type clusters among top 25 

cluster-defining genes.  

D. Heatmap showing the relative expression of cell-type defining gene signatures across 38,274 

cells (Table S4).  

E. t-SNE plots for each of the nineteen skin biopsies colored by generic cell type. 

F. Violin plots show the distribution of per-cell quality metrics displayed in UMAP embedding of 

38,274 cells colored by colored generic cell-type classification.   
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Figure S5. Immune Cell Heterogeneity, related to Figures 3 and 4 

A. (Top) Force-directed graph of 4,943 T cells colored by T cell sub-cluster. (Bottom) Heatmap of 

gene-set enrichment scores based on comparison of T cell phenotypic sub-clusters to a curated 

list of reference signatures in the Savant database. 

B. Sub-grouping results for CD8 T cells (top) (Table S7) and cytotoxic cells (bottom) (Table S8). 

For each analysis, t-SNE plots colored by inflammatory skin condition (top-left) and sub-cluster 

(bottom-left) are shown. For each clusters, heatmaps show gene expression patterns across T 

and NK cells sub-types (right).  

C. (Top) Detection rates for TCR genes for PBMCs in Seq-Well v1, 10x v2. and Seq-Well S3. 

(Bottom) Detection frequency of TCR V-J (e.g. TRAV/J and TRBV/J) genes in CD4+ T cells from 

peripheral blood between Seq-Well S3 (y-axis) and 10x v2 (x-axis). Colors correspond to TRAJ 

(red), TRAV (green), TRBJ (blue), and TRBV (purple) genes.  

D. (Left) Force-directed graph of 5,010 myeloid cells colored by myeloid sub-clusters (Louvain 

resolution = 0.6). (Right) Force-directed graph of 5,010 myeloid cells colored by myeloid 

phenotypes. 

E. Heatmap of gene-set enrichment scores based on comparison of myeloid phenotypic sub-

clusters to a curated list of reference signatures in the Savant database.  

F. Heatmap showing average signature score across 5 dermal DC populations based on dendritic 

cell signatures from Villani et al. Science 2017. 

G. Heatmap showing average signature score across 5 dermal DC populations based on 

signatures from et al. Immunity 2019.  

H. (Left) UMAP plot for 951 dendritic cells from human skin colored by inflammatory skin condition. 

(Right) Stacked barplot showing composition of dendritic cells within each of nine skin biopsies 

by DC sub-cluster.  

I. UMAP plots colored by normalized expression levels for DC sub-grouping-defining genes.  
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Figure S6. Keratinocyte Differentiation Trajectories, related to Figure 6 

A. Heatmaps showing enrichment of genes along pseudo-temporal trajectories for keratinocytes 

from 2 normal skin biopsies and 5 psoriatic keratinocyte biopsies.  

B. Plots showing the expression of trajectory-defining genes for 2 normal and 5 psoriatic biopsies. 

C. Scatterplot showing the relationship between differential expression between psoriatic and 

normal keratinocyte (y-axis) and differential pseudotime correlation (x-axis). Genes highlighted in 

red have differential correlation values greater than 0.4 or less than -0.4. Gene names highlighted 

in red are genes examined through in situ staining shown in Figure 5H.  

D. Violin plots showing localization of cytokine response signatures in basal, differentiating and 
terminal keratinocytes across 2 normal and 5 psoriatic biopsies. P-values from T-tests showing 
differences in cytokine signature scores for basal, differentiating and terminal keratinocytes 
between normal and psoriatic keratinocytes. 
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 Membrane Preparation 
1. Carefully place a pre-cut (22 x 66 mm) polycarbonate membrane onto a glass slide

using a gloved finger and tweezers to separate the membrane and paper.
Note 1: Make certain the shiny side of the polycarbonate membrane is facing up to be in
contact with the oxygen plasma and eventually the surface of the array.
Note 2: Discard any membranes that have creases or other large-scale imperfections.

2. Place membranes onto a shelf in the plasma cleaner.
Note 1: Shelves are not provided, but any piece of glass will do.
Note 2 (optional): If you have two shelves, place membranes on the bottom shelf to
reduce risk of them flying after vacuum is removed.

3. Close the plasma cleaner door, then turn on the main power and pump switch. To
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form a vacuum, ensure that the 3-way valve lever is at the 9:00 position as shown below 
and that the door is completely shut. 

4. Allow vacuum to form for 2-3 minutes. Once the vacuum has formed, simultaneously
turn the valve to 12:00 while turning the power to the Hi setting (shown below).
Note: The plasma should be a bright pink. If not, adjust the air valve to increase or
decrease the amount of oxygen entering the chamber.
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5. Treat membranes with plasma for 5-7 minutes.
Note: We treat membranes for 7 minutes, but treatment times can vary.

6. Critical – After treatment, in the following order: (1) turn the RF level valve from HIGH to
OFF, (2) turn the air valve from the 12:00 position to the 9:00 position, and (3) then turn
off the power followed by turning off the vacuum.  Then slowly open the valve until air can
be heard entering the chamber (approximate valve position shown below).  Leave until
door opens (~5 min).

7. Remove slides (with membranes) from the plasma clean and transfer to a 4-well dish.
Note 1: If membranes have slightly folded over, slowly flip the membrane back using
needle nose tweezers.
Note 2: If membranes have blown off the slide entirely, repeat above procedure to
ensure you know which side was exposed to plasma.
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8. Using a P1000 pipette, gently hydrate one end of the membrane with a single drop of
1xPBS so that it adheres to the slide before dispensing the entire volume. Once the
membrane is hydrated, continuing add 1xPBS until you reach 5 mL (use either a
serological pipette or P1000 pipette to complete hydration).

9. Remove any air bubbles underneath the membrane using wafer forceps or a pipette tip.

10. Membranes are now functionalized and ready for use.
Note 1: Membranes solvated with 1xPBS should be used within 48 hours.
Note 2: If transporting solvated membranes (e.g. between buildings), remove all but ~1
mL of 1xPBS to prevent membranes from flipping within the dish.
Note 3: Alternatively, membranes initially solvated in 1xPBS can be dried and stored for
4 weeks at room temperature. To dry them out, carefully remove membranes, keeping
them on their glass slides, from the 1xPBS solution, transfer the membranes to the
benchtop, cover them with a tip box, and let them dry for 15-20 minutes. As the
membranes dry they’ll become opaque which is normal.
Note 4: Before use the membranes should be rehydrated with 5 mL of 1xPBS. Drying out
membranes is helpful when traveling or when running seq-well in a laboratory without
access to a plasma cleaner.

EXPERIMENTAL NOTES 
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Bead Loading 

1. Aspirate storage solution and solvate each array with 5 mL of bead loading buffer (BLB;
See Appendix D: Buffers Guide).

2. Place array(s) under vacuum with rotation (50 RPM) for 10 minutes to remove air
bubbles in wells. Note: Rotation is optional

3. Aliquot ~110,000 beads from stock into a 1.5 mL tube and spin on a tabletop centrifuge
for 15 seconds to form a pellet.

4. Aspirate storage buffer and wash beads twice in 500 uL of BLB.

5. Pellet beads, aspirate BLB, and resuspend beads in 200 uL of BLB.
Note: For each array, it’s recommended to load ~110,000 beads.

6. Before loading beads, thoroughly aspirate BLB from the dish containing the array(s),
being careful not to aspirate or dry the PDMS surface of the array(s).
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7. Using a P200 pipette, apply 200 uL containing 110,000 beads, in a drop-wise fashion, to
the surface of each array (see image below and Bead Loading Diagram on page 10).

8. Allow the arrays to sit for 5 minutes, rocking them intermittently in the x & y direction.
Pro-Tip: This step can be extended to 10 minutes to allow the beads more time to settle.
However, make sure to monitor the surface of the array so that it doesn’t dry out.

9. Thoroughly wash array(s) to remove excess beads from the surface. For each wash:
1. Position each array so that it sits in the center of the 4-well dish.
2. Dispense 500 uL of BLB in the upper right corner of each array and 500 uL in the

bottom right corner of each array. Be careful not to directly pipette onto the
microwells, as it can dislodge beads.

3. Using wafer forceps or a pipette tip, push each array against the left side of the 4-
well dish to create a capillary flow; this will help remove beads from the surface.

4. Aspirate the liquid, reposition each array, and repeat on the other side.

10. Repeat step 9 as necessary. Periodically examine the array(s) under microscope to
confirm that no loose beads are present on the surface, as this will interfere with
membrane attachment. Usually it takes 4 washes/side to thoroughly remove excess
beads (this depends on your original loading density).
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11. Once excess beads have been removed from the surface, solvate each array with 5 mL
of BLB and proceed to cell loading.

Notes: 
1. If continuing to cell loading immediately (i.e., within 6 hours), loaded arrays

should be stored in 5 mL of BLB.
2. If you are not going to use the arrays on the day they’re loaded, remove the BLB

buffer, rinse the arrays once with 5 mL of 1xPBS, and then solvate the arrays with
5 mL of quenching buffer. Arrays can be stored in quenching buffer for 10 days
(See Appendix D: Buffers Guide).

EXPERIMENTAL NOTES 
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 Bead Loading Diagrams 
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Cell Loading (Without Imaging) 
If you want to image cells in the array, please refer to Appendix F 

1. At this point, your array should be loaded with beads and sitting in 5 mL of BLB.

2. Obtain the cell or tissue sample and prepare a single cell suspension using an optimized
protocol for tissue dissociation.

3. While preparing your single-cell suspension, aspirate the BLB from each array (or
quenching buffer) and rinse the array twice in 5 mL of 1xPBS to bring the solution in the
four-well dish to physiological pH.

4. After the second wash, aspirate the 1xPBS and soak the loaded array in 5 mL of RPMI +
10% (RP-10) FBS for 5 minutes.
Note 1: This step is performed to mitigate non-specific adhesion of cells to primary amines
on the top surface of the array.
Note 2: Any supplemented media can be used in place of RP-10.

5. After obtaining a single-cell suspension, count cells using a hemocytometer and make a
new solution of 10,000-15,000 cells in 200 uL of RP-10.
Note 1: You can use your preferred media for prepping the cell loading solution.
Note 2: Be sure to not use automated cell counters, particularly following tissue
dissociation. This can provide an inaccurate cell count, compromising the experiment.

6. Thoroughly aspirate the RP-10/supplemented media (to ensure the array will not move
during cell loading).

7. Center your array in the well and then apply the cell loading solution onto the surface in
a dropwise fashion (similar to how beads were applied in the previous section).

8. Allow cells to settle for 10 minutes, intermittently rock the array in the x & y direction.

9. Wash array 4x with 5 mL of 1xPBS to remove the serum. For each wash, gently rock
the array in the x & y direction, and then aspirate the 1xPBS. Once you have aspirated
the 1xPBS out of the dish, gently tilt the 4-well dish toward you and aspirate directly off
the bottom border of the array; this will help to completely remove the excess serum on
the surface of the array
Note:  These washes are critical to remove excess serum which can interfere with

successful membrane attachment. 

10. Aspirate the final 1xPBS wash and replace with 5 mL of RPMI media without FBS.
Note: You can use any media here as long as it does not contain serum.

EXPERIMENTAL NOTES 
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Membrane Sealing
1. Gather the following materials before sealing the array(s):

● Array loaded with beads and cells (See Bead/Cell Loading)
● Pre-treated membrane (See Membrane Preparation)
● Wafer forceps (or P1000 pipette tip)
● Paper towels
● Agilent clamp
● Clean microscope slides

2. Use the wafer forceps to transfer the array from media to the lid of a 4-well dish, being
careful to ensure that the array is not tilted.



Seq-Well Master Protocol 

13 

3. Once the array is positioned on the lid of a 4-well dish, carefully aspirate excess liquid
from around the edge of the array and the exposed surface of the glass slide. (Note: Be
careful not to aspirate directly from the PDMS surface).

4. Using wafer forceps or a pipette tip, remove a pre-treated membrane from the 4-well dish.

5. Gently dab away moisture from the glass slide on the paper towel until the membrane
does not spontaneously change position on the glass slide.

6. Carefully position the membrane on the center of the microscope slide, leaving a small
membrane overhang (2-3 mm) beyond the edge of slide.

7. Holding the membrane in your left hand, invert the microscope slide so that the
treated surface of the membrane is facing down.

EXPERIMETNAL NOTES 
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8. Place the overhang of the membrane in contact with the PDMS surface of the array just
beyond the boundary of the microwells.

9. Using a clean slide held in your right hand, firmly hold down the overhang of the
membrane against the PDMS surface of the array.

10. Critical Step: While maintaining pressure with your right hand to hold the membrane in
place, gently apply the membrane.
Note 1: For optimal results, use only the weight of the slide to apply the membrane with
the left hand.
Note 2: Attempts to manually seal the microwell device using excess pressure result in a
‘squeegee’ effect, effectively removing moisture from the membrane while fixing
membrane creases in place.
Note 3: As you apply the membrane you should see a fluid interface form and expand as
direct, uniform contact between the slide and the array will naturally remove some of the
media as the membrane is applied.
Note 4: You can use either your left or right hand for membrane-sealing (most people use
their dominant hand to apply the membrane). Please practice this step before the actual
experiment to figure out which hand you’re most comfortable with.

11. After applying the membrane, carefully pry the array and membrane from the surface of
the lid and transfer to an Agilent clamp.

12. After transferring the sealed array to the clamp, place a glass slide on top of the sealed
array.
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13. Close the clamp and tighten to the point of resistance, then place it in a 37C incubator
for 30-40 minutes.
Note: This time is flexible and depends on the incubator. If you want to decrease this
incubation time, please optimize on cell lines before proceeding with precious samples.

14. Repeat membrane-sealing protocol procedure if running multiple arrays.

EXPERIMETNAL NOTES
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Cell Lysis & Hybridization 
1. Remove the clamp from the incubator, and then remove the array from the Agilent

clamp. (Note: At this point, the glass slide will be attached to the array and membrane).

2. Submerge the array, with top slide still attached, in 5 mL of complete lysis buffer (See
Appendix D: Buffers Guide).

3. Gently rock the array in lysis buffer until the top glass slide spontaneously detaches.
Note 1: Do not pry the top slide off as this can reverse membrane sealing. The time
necessary for detachment of the top slide varies (10 seconds – 10 minutes).
Note 2: If the top slide does not release after 10 minutes, gently pry the top slide off using
wafer forceps or a pipette tip. Just be careful.

4. Once the top slide has detached, place the arrays on a horizontal rotator for 20 minutes
at 50-60 rpm.

5. After 20 minutes, remove the lysis buffer and wash each array with 5 mL of hybridization
Buffer (See Appendix C: Buffers Guide).
Note 1: Use a separate waste container for lysis buffer because guanidine
thiocyanate can react with bleach in TC traps to create cyanide gas.
Note 2: The hybridization buffer used to wash the array post-lysis may contain trace
amounts of guanidine thiocyanate and should, therefore, be disposed of in the lysis
buffer waste container.

6. Aspirate hybridization buffer and add another 5 mL of hybridization buffer to each array
and rotate for 40 minutes at 50-60 rpm.

7. While the arrays are rocking in hybridization buffer, prepare RT master mix. (See Reverse
Transcription & Exonuclease Digestion)

 EXPERIMENTAL NOTES 
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Bead Removal Method 1 
1. After the arrays have rocked in hybridization buffer for 40 minutes, carefully peel back

each membrane using fine-tipped tweezers.

2. Place array into a 50 mL conical containing 30-40 mL of Wash 1 solution.

3. Holding the array above the 50mL conical (shown below), repeatedly dispense
approximately 1 mL of Wash 1 solution from the conical across the surface of the array to
dislodge beads (See Appendix D: Buffers Guide).
Note: Vigorously dispense Wash 1 buffer to remove beads.

4. Repeat these 10 times, periodically checking to see if beads are dislodging.

5. After repeatedly rinsing the array from top to bottom, use a clean glass slide to gently
scrape the array to remove any beads that remain in the array.
Note: At this point it is possible to visually inspect the array to assess bead removal.

6. Once you are satisfied with bead removal, place the empty array back in the 4-well disk,
cap the 50 mL conical, and pellet beads for 5 minutes at 1000xg.
Note 1: You can visually inspect the success of your bead removal by looking at the arrays
under a light microscope.
Note 2: Where possible, use a swinging bucket centrifuge to collect beads. The use of a
fixed-rotor centrifuge can lead to the formation of a bead pellet on the elbow rather than
the bottom of the conical tube, which can lead to inefficient recovery.

7. After centrifugation, aspirate all but ~1 mL of excess Wash Buffer, collect the beads using
a P1000 pipette, and transfer beads suspended in wash buffer to a separate 1.5 mL
eppendorf tube for each array.
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Reverse Transcription & Exonuclease Digestion 
Reverse Transcription (RT) 
1. Prepare the following RT mastermix during the hybridization step:

40 uL H2O 
40 uL Maxima 5X RT Buffer 
80 uL 30% PEG8K 
20 uL 10 mM dNTPs (Clontech) 
  5 uL RNase Inhibitor (Lucigen) 
  5 uL 100 uM Template Switch Oligo 
10 uL Maxima H-RT 

Note: Add the Maxima H-RT enzyme to the mastermix immediately before adding to beads. 

2. Centrifuge eppendorf tubes containing collected beads for 1 minute at 1000xg.

3. Remove supernatant and resuspend in 250 uL of 1X Maxima RT Buffer and centrifuge
beads for 1 minute at 1000xg.

4. Aspirate 1X Maxima RT Buffer and resuspend beads in 200 uL of the RT mastermix.

5. Incubate at room temperature for 30 minutes with end-over-end rotation. After 30 minutes,
incubate at 52C for 90 minutes with end-over-end rotation.
Note: The reverse transcription reaction can proceed overnight, if necessary.

7. Following the RT reaction, wash beads once with 500 uL of TE-SDS, and twice with
500 uL of TE-Tween (TE-TW). Following Reverse Transcription, beads can be stored
at 4C in TE-TW.

Exonuclease I Treatment 
1. Prepare the following Exonuclease I Mix:

20 uL 10x ExoI Buffer 
170 uL H2O 
10 uL ExoI 

2. Centrifuge beads for 1 minute at 1000xg and aspirate the TE-TW solution.

3. Resuspend in 500 uL of 10 mM Tris-HCl pH 8.0.

4. Centrifuge beads again, remove supernatant and resuspend beads in 200 uL of
exonuclease I mix.

5. Incubate at 37C for 50 minutes with end-over-end rotation.

6. Wash the beads once with 500 uL of TE-SDS, twice with 500 uL TE-TW.
Beads can be stored at 4C in TE-TW.
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Second Strand Synthesis & PCR
Second Strand Synthesis (Beginning after 2nd wash of TE-TW after Exo treatment) 

1. Prepare the following 2nd strand synthesis mix:
40 uL Maxima 5X RT Buffer 
80 uL 30% PEG8000 
20 uL 10 mM dNTPs (Clontech) 
2 uL   1 mM dN-SMRT oligo 
5 uL   Klenow Enzyme 
53 uL H2O 

Note: Add the Klenow enzyme immediately before adding to beads. 

2. After aspiration of 2nd TE-TW wash, resuspend beads in 500 uL 0.1 M NaOH.
Note: Make the 0.1 M NaOH solution fresh each time you perform second strand
synthesis.

3. Rotate tube for 5 min at room temp, then spin (800xg for 1 minute) and aspirate
supernatant.

4. Wash once with 500 uL of TE-TW, and once with 500 uL 1xTE

5. Resuspend beads in 200 uL 2nd strand synthesis reaction and rotate end-over-end at
37C for 1 hr.

6. Wash beads twice with 500 uL TE-Tween and once with 500 uL TE

7. Proceed directly with the PCR protocol.

PCR (Whole Transcriptome Amplification (WTA)) 
1. Prepare the following PCR mastermix:

25 uL  2X KAPA HiFi Hotstart Readymix 
14.6 uL H2O 
0.4 uL 100 uM SMART PCR Primer 
40 uL per reaction 

2. Wash beads once with 500 uL of water, pellet beads, remove supernatant and
resuspend in 500 uL of water.
Note 1: If you do not want to count the beads then after the 500 uL water wash in step 2,
resuspend the beads in 240 uL of water and proceed to step 6.
Note 2: If you choose this path, prepare mastermix for 24 PCR reactions for each array
being processed.
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3. Mix well (do not vortex) to evenly resuspend beads and transfer 20 uL of beads to a
separate 1.5 mL tube to count the beads.
Note: Don’t vortex beads as this can result in bead fragmentation.

4. Pellet the small aliquot of beads, aspirate the supernatant, and resuspend in 20 uL of
bead counting solution (10% PEG, 2.5 M NaCl).
Note: The bead counting solution aids in even dispersion of beads across a
hemocytometer.

5. Count the beads using a hemocytometer.

6. Add 40 uL of PCR mastermix per reaction to 96-well plate.

7. Add 1,500 – 2,000 beads per reaction in 10 uL of water for a total volume of 50 uL per
PCR reaction, making certain to PCR the entire array.

8. Use the following cycling conditions to perform whole-transcriptome amplification:
Start:
95C 3 minutes 
4 Cycles: 
98C 20 seconds 
65C 45 seconds 
72C 3 minutes 
9-12 Cycles:
98C 20 seconds 
67C 20 seconds 
72C 3 minutes 
Final Extension:
72C 5 minutes 
4 C Infinite hold 

Note: The total number of PCR cycles necessary for amplification depends on the cell 
type used. 
● 13 cycles are optimal for cell lines or larger cells (e.g. macrophages)
● 16 cycles are optimal for primary cells

EXPERIMENTAL NOTES 
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Purification of PCR products and analysis on the BioAnalyzer or Agilent TapeStation 
1. Pool PCR products from between 6 and 8 PCR reactions in a 1.5 mL microcentrifuge tube

so that you have 10-12,000 beads/1.5 mL microcentrifuge tube.

2. Purify PCR products using Ampure SPRI beads and the following protocol:
Note: Please refer to the Ampure SPRI bead official protocol for more details.
A. Spri at 0.6x volumetric ratio.
B. Allow the tubes to sit on the tube-rack off the magnet for 5 minutes, and then place

the rack on the magnet for 5 minutes.
C. Perform 3 washes with 80% ethanol.

Note: At each wash step rotate each tube 180 degrees 6 times to allow beads
to pass through the ethanol solution to the opposite side of the tube.

D. After the third wash, remove the 80% ethanol wash solution. Further, use a P200
with fresh tips to remove any residual ethanol and allow beads to dry for 10-15
minutes. (Note: Beads will have a cracked appearance once dry). Remove the
rack from the magnet, elute dried beads in 100 uL, place the rack on the magnet
and then transfer the 100 uL supernatant which contains eluted DNA to a new 1.5
mL microcentrifuge tube or 96-well plate.

E. Spri the 100 uL at 1.0x volumetric ratio and repeat steps b and c
F. After the third wash, allow the beads to dry for 15 minutes, remove the rack from

the magnetic, elute the beads in 15 uL, place the rack back on the magnet and
then transfer the 15 uL to a new 1.5 mL microcentrifuge tube or 96-well plate.

3. Run a BioAnalyzer High Sensitivity Chip or Agilent D5000 High Sensitivity Screentape
according to the manufacturer’s instructions.
Use 1 uL of the purified cDNA sample as input.
● Your WTA library should be fairly smooth, with an average bp size of 0.7-2 kbps.

4. Proceed to library preparation or store the WTA product at 4C (short-term) or -20C
(long-term).

EXPERIMENTAL NOTES 
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Library Preparation
Tagmentation of cDNA with Nextera XT 
1. Ensure your thermocyclers are setup for Tagmentation (step 5) & PCR (step 9).

2. For each sample, combine 1000 pg of purified cDNA with water in a total volume of 5 uL.
It’s ideal to dilute your PCR product in a separate tube/plate so that you can add 5 uL of
that for tagmentation.
Example: For 1000 pg reactions, dilute PCR product, in a new plate, to 200 pg/uL, then
you can add 5 uL of this to a reaction tube for a 1000 pg reaction.
Note 1: We typically perform Nextera reactions in duplicate for WTA product from each
pool of 6-8 PCR reactions. For example, if you recover 3 pools/array, you would run a
total of 6 nextera reactions.
Note 2: These volumes can be reduced by half to reduce reagent costs, if desired.

3. To each tube, add 11 uL of Nextera TD buffer, then 4 uL of ATM buffer (the total
volume of the reaction is now 20 uL).

4. Mix by pipetting ~5 times. Centrifuge plate at 1000x g for 10-15 seconds.

5. Incubate at 55C for 5 minutes.

6. Add 5 uL of Neutralization Buffer. Mix by pipetting ~5 times.  Note: Bubbles are normal.

7. Incubate at room temperature for 5 minutes.

8. Add to each PCR tube:
15 uL Nextera PCR mix
  8 uL H2O 
  1 uL 10 uM New-P5-SMART PCR hybrid oligo 
  1 uL 10uM Nextera N7XX oligo  

9. After sealing and centrifuging (1 minute at 1000xg) the PCR plate, run the
following PCR program:
Start:
72C 3 minutes 
95C 30 seconds 
12 cycles: 
95C 10 seconds 
55C 30 seconds 
72C 30 seconds 
Final Extension: 
72C 5 minutes 
4C Infinite hold 
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Purification of PCR products and analysis on the BioAnalyzer or Agilent TapeStation 
1. Pool PCR products from between 6 and 8 PCR reactions in a 1.5 mL microcentrifuge tube

so that you have 10-12,000 beads/1.5 mL microcentrifuge tube.

2. Purify PCR products using Ampure SPRI beads and the following protocol:
Note: Please refer to the Ampure SPRI bead official protocol for more details.
A. Spri at 0.6x volumetric ratio.
B. Allow the tubes to sit on the tube-rack off the magnet for 5 minutes, and then place

the rack on the magnet for 5 minutes.
C. Perform 3 washes with 80% ethanol.

Note: At each wash step rotate each tube 180 degrees 6 times to allow beads
to pass through the ethanol solution to the opposite side of the tube.

D. After the third wash, remove the 80% ethanol wash solution. Further, use a P200
with fresh tips to remove any residual ethanol and allow beads to dry for 10-15
minutes. (Note: Beads will have a cracked appearance once dry). Remove the
rack from the magnet, elute dried beads in 100 uL, place the rack on the magnet
and then transfer the 100 uL supernatant which contains eluted DNA to a new 1.5
mL microcentrifuge tube or 96-well plate.

E. Spri the 100 uL at 1.0x volumetric ratio and repeat steps b and c
F. After the third wash, allow the beads to dry for 15 minutes, remove the rack from

the magnetic, elute the beads in 15 uL, place the rack back on the magnet and
then transfer the 15 uL to a new 1.5 mL microcentrifuge tube or 96-well plate.

3. Run a BioAnalyzer High Sensitivity Chip or Agilent D1000 High Sensitivity Screentape
according to the manufacturer’s instructions.
• Use 1 uL of the purified cDNA sample as input.
• Your tagmented library should be fairly smooth, with an average bp size of 400-800

bp.
• Smaller-sized libraries might have more polyA reads
• Larger libraries may have lower sequence cluster density and cluster quality.

Note: We have successfully sequenced libraries from 400-800bp. 

5. Proceed to sequencing.
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Sequencing 
Once your sequencing library has passed the proper quality controls, you’re ready to proceed to 
sequencing. For a detailed loading protocol, please consult the Illumina website for a step-by-
step manual. (https://support.illumina.com/downloads.html) 

NextSeq500 – Shalek Lab protocol 
1. Make a 5 uL library pool at 4 nM as input for denaturation.
2. To this 5 uL library, add 5 uL of 0.2 N NaOH (make this solution fresh).
3. Flick to mix, then spin down and let tube sit for 5 minutes at room temperature.
4. After 5 minutes, add 5 uL of 0.2 M Tris-HCl pH 7.5.
5. Add 985 uL of HT1 Buffer to make a 1 mL, 20 pM library (solution 1).
6. In a new tube (solution 2), add 165 uL of solution 1 and dilute to 1.5 mL with HT1 buffer

to make a 2.2 pM solution – this is the recommended loading concentration.
Note: Optimal loading concentration is 1.8-2.5 pM

7. Follow Illumina’s guide for loading a NextSeq500 Kit

 Sequencing specifications for the MiSeq or NextSeq: 
Read 1: 20 bp * 
Read 2: 50 bp  

Read 1 Index: 8 bp ← only necessary if you are multiplexing samples 
Custom Read 1 primer 

 Sequencing specifications for the Nova-Seq: 
Read 1: 20 bp * 
Read 2: 50-80 bp  
Read 1 Index: 8 bp 
Read 2 Index: 8 bp (optional, but recommended) 
Custom Read 1 primer 

Note 1: If you’re loading on a Nova-Seq you’ll want to use dual-indexing to mitigate 
index switching. 
Note 2: Read 1 can sometimes be 21 base pairs; this depends on the company and 
bead lot you are ordering from. Please consult with your bead provider to determine which read 
length to use. 

NextSeq 500: 
(http://support.illumina.com/content/dam/illumina-support/documents/documentation/system_documentation/nextseq/nextseq-
custom-primers-guide-15057456-01.pdf) 
(Follow Illumina’s guide for custom primers) 
MiSeq: 
(http://support.illumina.com/content/dam/illumina-support/documents/documentation/system_documentation/miseq/miseq-system-
custom-primers-guide-15041638-01.pdf)
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Appendix A: Array Synthesis 
Day 0: Pouring PDMS Arrays 
Note: If you need to mount your master, please refer to appendix F 
1. Combine Sylgard crosslinker with Sylgard base at a 1:10 ratio and mix vigorously for 5

minutes to create a PDMS master mix.

2. Once mixing is complete, put your PDMS master mix under vacuum for 20 minutes to
remove any air bubbles.

3. Use a 10 mL syringe to inject 6-10 mL of PDMS master mix into molds with mounted
PDMS masters.

4. Incubate at 70C for 2.5 hours.

Day 1: Array Functionalization Part 1 
Note: For this section, make all solutions fresh! 

1. Remove excess PDMS from edges of the glass slide.

2. Use scotch tape to remove excess PDMS from the surface of the array and the glass
slide.
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3. Place clean arrays into a metal slide basket

4. Rinse arrays in 100% ethanol for 5 minutes, then let dry at room temperature (RT) for 15
minutes.

5. Plasma treat arrays on high for 5-7 minutes.
Note 1: Adjust the air valve so that the plasma is pink.

6. Following plasma treatment, immediately submerge arrays in 350 mL of 0.05% APTES
in 95% ethanol for 15 minutes.

7. Spin dry arrays (500 RPM for 1 minute).
Note: Our rotor model is TX-10000 75003017 (Thermo) with a rotor radius of 209 mm.
500 RPM on this instrument is ~ 60xg.
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8. Incubate at room temperature for 10 minutes.

9. Submerge in 300 mL of acetone and rock until all bubbles are out of the wells; this
typically takes approximately 5 minutes.

10. Place in 350 mL of 0.2% PDITC/10% pyridine/90% DMF solution in a glass chamber (or
polypropylene tip box) for 2 hours at room temperature.
Note: While this is rocking, prepare your chitosan solution (See Appendix D)

11. After the PDITC soak, wash arrays briefly in two boxes of 300 mL DMF.
Note: For each brief wash, simply dunk the arrays in the solution 5-10 times and then

transfer to the new solution. 

12. Dunk and wash the arrays in 300 mL of acetone.

13. Move to a fresh 350 mL of acetone and rock for 20 minutes.

14. Spin dry arrays (500 RPM for 1 minute).

15. Place arrays at 70C for 2 hours.

16. Remove from oven and let sit at room temperature for 20 minutes.

17. Submerge arrays in 350 mL of 0.2% chitosan solution (pH 6.0-6.1; See Appendix D) and
incubate at 37C for 1.5 hours.
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18. Wash arrays 4x in separate 300 mL distilled water baths.

19. Submerge in 350 mL of 20 ug/mL aspartic acid, 2 M NaCl, and 100 mM sodium
carbonate solution (pH 10.0)

20. Place in vacuum chamber and apply house vacuum.
Note: You should see bubbles form indicating the solvation of wells.

21. Place vacuum chamber (still connected to house vacuum) on a rocker and rock (50-70
RPM) overnight at room temperature.

Day 2: Array Functionalization – Part 2 
1. The following morning, remove arrays from vacuum and rotate at 50-60 RPM for 3 hours

at room temperature.

2. Place arrays at 4C and soak 24 hours before use.
Note: Arrays can be stored in the aspartic acid solution for 3 months at 4C.

EXPERIMENTAL NOTES 
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Appendix B: Synthesis Protocol Checklist 
Date: 
Synthesizer: 
Number of Arrays: 
Start time: 
End time: 
Before you start: 
1. Pull the PDITC from the fridge (this takes ~1hr to come to room temperature)

2. Make certain you have enough boxes for the various incubations

3. Clean a 1L bottle, add stir bar, and dissolve 1 gram of chitosan in 500mL of DI water

Step 1: Plasma treatment of the arrays
1. Soak the arrays in 300mL of 95% ethanol for 5 minutes (50 rpm)

2. Dry the arrays for 5 minutes @ 500 rpm (60xg)

3. Plasma treat two trays at a time

A. Form seal for 3 minutes
B. Plasma treat for 5-7 minutes.

C. What color was the plasma? (circle one):

No Color  Light purple Light pink 

D. While the arrays are being treated, prep the APTES solution

APTES Solution: 180uL of APTES stock in 350mL of 95% ethanol

4. Proceed with protocol

Step 2: PDITC Soak
***Autoclave the chitosan solution after starting the PDITC incubation

1. Volume of PDITC solution you’re prepping:      liters (Standard: 350 mL)  

2. Mass of PDITC added:    grams (Standard: 0.72 

grams)

3. Volume of pyridine added:      liters (Standard: 35 mL) 

4. Length of incubation:         hours (Standard: 2 hours) 

5. Number of DMF washes:       (Standard: 2 washes) 

6. Number of acetone washes: (Standard: 1 wash, and then transfer 

to new acetone box for a 20-minute soak)

7. Proceed with protocol
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Step 3: Oven incubation and chitosan preparation 

1. After 20-minute soak, remove arrays from acetone and spin down (1 min. @ 500 rpm)

2. Length of 70C incubation:   hrs (Standard: 2 hrs) 

3. Chitosan protocol checklist: Did you… (Y / N responses)

A. Autoclave chitosan (40-minute sterilization, 20-minute drying):

B. Let solution come to room temperature (can also do this @ 4C):

C. Calibrate the pH Meter with appropriate buffers:

D. Add 4 mL of glacial acetic acid (solution should be on stir plate):

E. Let solution stand for 5 minutes:

F. Add 50 mL of 5 M NaCl:

G. Titrate with 5 M NaOH:

H. Achieve pH of 6.0 – 6.1:

I. Remember, it is critical to make certain the you achieve a pH of 6.0 – 6.1 and

that it holds. Parts A-H should be completed before the completion of the 2 hr 70C

incubation.

4. Length of room temperature incubation: minutes (Standard: 20 

minutes)

A. Second check of chitosan pH:

5. Length of chitosan incubation:  (Standard: 1.5 hrs) 

A. Temperature = 37C, Rotation = 70 rpm

Step 4: In-well functionalization 
1. Number of DI water rinses:   (Standard: 4) 

2. pH of aspartic acid solution:       (Standard: pH 10) 

3. Length of overnight incubation:   (Standard: 12-16 hrs) 

4. Day 2: length of room temperature incubation @ 50 rpm:  (Standard: 4 hrs) 

Array Lot: <Your initials>_<Synthesis Date>_<Box Number> 
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Appendix C: Master Mounting Protocol 

1. Mix and degas PDMS in normal 1:10 ratio

2. While PDMS degases, use sandpaper to gently score back of silicon master and base
plate to improve adhesion.  Careful – silicon masters are brittle.

3. Wash back of master and base plate with 95% ethanol until no more dust is removed
when wiping surface clean with paper towel.

4. Use gloved finger to spread vacuum grease on bottom of BasePlate2 around square
holes where the nanowell arrays will be cast.  You want a relatively thick layer, even on
skinny parts between array holes, to make sure there is a seal between master and plate.

5. Carefully lower BasePlate2 onto the array side of the master making sure to not touch
the array area with any of the greased surface.  4 array masters should fit into the 4 square
holes.  Gently slide plate against master to center the arrays.

6. Place Base Plate 1 on paper towels to catch PDMS running off plate.

7. Pour ~30 mL of mixed PDMS in center of Base Plate 1.

8. Place master/BasePlate2 sandwich on top of the PDMS.

9. Gently apply pressure in the center of the master while making circular motions to push
PDMS out from between layers.  You want to see PDMS coming out of all sides to ensure
a complete coat.

10. Screw 6/32 screws into respective holes on base plate very gently.  Too much pressure
too fast may crack master.  Do not fully tighten.  Do your best to make screws even – look
at width of crack between base plates on all sides and make equal.

11. Place both top plates on top.

12. Screw 10/24 screws into their holes just enough such that they catch.  Again, do not fully
tighten.

13. Place in 90C oven for 3 hours.

14. May need to do one dummy round of arrays to remove any PDMS or grease that got
onto the nanowell features.



Seq-Well Master Protocol 

32 

Appendix D: Buffers Guide 

CellCover10 
Reagents 
● CellCover (Anacyte Art. No. 800-125)
● FBS (Thermo Fisher Scientific Cat. No. 10437028)
● Sodium Carbonate (Sigma Cat. No. 223530-500G)
Working Concentrations
● 10% FBS
● 100 mM Sodium Carbonate

Bead Loading Buffer 
Reagents 
● Sodium Carbonate (Sigma Cat No. 223530-500G)
● BSA (Sigma Cat No. A9418-100G)
● Water (Thermo Fisher Scientific Cat No. 10977023)
Quick Preparation Guide (50 mL)

1. 2.5 mL 2 M Sodium Carbonate
2. 42.5 mL H2O
3. Add 5 mL BSA (100 mg/mL)
4. Titrate with glacial acetic acid to achieve a pH of 10.0

Working Concentrations 
● 100 mM Sodium Carbonate
● 10% BSA

Complete Lysis Buffer 
Reagents 
● Pre-lysis buffer
● 10% Sarkosyl (Sigma Cat No. L7414)
● 100% 2-Mercaptoethanol (Sigma Cat No. M3148-25ML)
Quick Preparation Guide (50 mL)

1. 47.25 mL Pre-Lysis Buffer
2. 250 uL 10% Sarkosyl
3. 500 uL BME

Working Concentrations 
● 5 M Guanidine Thiocyanate
● 1 mM EDTA
● 0.50% Sarkosyl
● 1.0% BME
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Hybridization Buffer 
Reagents 
● 5 M NaCl (Thermo Fisher Scientific Cat No. 24740011)
● 1x PBS (Thermo Fisher Scientific Cat No. 10010023)
● 8% (v/v) PEG8000 (Sigma Cat No. 83271-500ML-F)
Quick Preparation Guide (50 mL)

1. 20 mL 5 M NaCl
2. 26 mL of PBS
3. 4 mL PEG8000

Working Concentrations 
● 2 M NaCl

Wash Buffer 
Reagents 
● 5 M NaCl (Thermo Fisher Scientific Cat No. 24740011)
● 1 M MgCl2 (Sigma Cat No.63069-100ML)
● 1 M Tris-HCl pH 8.0 (Thermo Fisher Scientific Cat No. 15568025)
● Water (Thermo Fisher Scientific Cat No. 10977023)
● 8% (v/v) PEG8000 (Sigma Cat No. 83271-500ML-F)
Quick Preparation Guide (50 mL)

1. 20 mL 5 M NaCl
2. 150 uL 1 M MgCl2
3. 1 mL 1 M Tris-HCl pH 8.0
4. 24.85 mL H2O
5. 4 mL PEG8000

 Working Concentrations 
● 2 M NaCl
● 3 mM MgCl2
● 20 mM Tris-HCl pH 8.0

Array Quenching Buffers 
Reagents 
● Sodium Carbonate (Sigma Cat No. 223530-500G)
● 1 M Tris-HCl pH 8.0 (Thermo Fisher Scientific Cat No. 15568025)
● Water (Thermo Fisher Scientific Cat No. 10977023)
Quick Preparation Guide (50 mL)

1. 2.5 mL 2	M	Sodium Carbonate
2. 500 uL 1 M Tris-HCl pH 8.0
3. 47 mL H2O

Working Concentrations 
● 100 mM Sodium Carbonate
● 10 mM Tris-HCl pH 8.0
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0.2% Chitosan Solution 
Reagents 
● Chitosan (Sigma Cat No. C3646-100G)
● Water (Thermo Fisher Scientific Cat No. 10977023)
Quick Preparation Guide

1. Add 1 gram of chitosan to 500 mL of DI water
2. Autoclave solution (40 minutes sterilization, 20 minutes dry)
3. Allow chitosan solution to come to room temperature, and then add 2-3 mL of glacial acetic

acid.
Note: The chitosan will not start dissolving until the pH is acidic, and even then it will not 
fully dissolve. This is ok. 

4. Add 50 mL 5 M NaCl, then titrate the chitosan solution with NaOH to bring the pH to
6.2. 

TE - Tween Storage Solution 
● 10 mM Tris pH 8.0 + 1 mM EDTA
● 0.01% Tween-20
Quick Preparation Guide (50 mL)

1. 49.95 mL H2O
2. 5 uL Tween-20

TE - SDS Solution 
● 10 mM Tris pH 8.0 + 1 mM EDTA
● 0.5% SDS
Quick Preparation Guide (50 mL)

1. 49.75 mL H2O
2. 250 uL SDS
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Appendix E: Bead Removal Method 2 (“Spin-Out”) 

1. Remove membrane and place array into an empty 50 mL conical tube.

2. Ensure that the array is angled within the tube as shown below.
Note: The array might move around at this point, which isn’t something to worry about.

3. Add 48-50 mL of Wash 1 solution (See Buffers Guide)

4. Place the insert so the array is secured angled as shown in the image below.

5. Secure the lid and seal with parafilm, if necessary.

6. Put the sealed conical in a centrifuge, making certain the PDMS surface of the array is
facing away from the rotor arm (See Diagram Below).

7. Centrifuge at 2000 x g for 5 minutes to remove the beads.

8. At this point you should see a small, but visible, pellet of beads at the bottom of the tube.

9. Aspirate 5 - 10 mL of Wash 1 solution to enable easier removal of the array.

10. Remove the array and carefully position it over the top of the 50 mL tube.

11. Repeatedly wash any remaining beads from the surface of the array over the surface of
the 50 mL falcon tube using 1 mL of Wash 1 remaining in the tube.

12. Spin again at 2000 x g for 5 minutes to pellet beads.

13. Aspirate all wash 1 solution except for ~ 1mL.
Note: Be careful to not disturb the pellet of beads.

14. Transfer beads to a 1.5 mL centrifuge tube and proceed to reverse transcription.
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Appendix F: Imaging in Array 
1. When pre-imaging cells, cells should be loaded first as beads will obstruct view of many

cells and beads autofluorescence can interfere with the signal.

2. Obtain a cell or tissue sample and prepare a single cell suspension using your preferred
protocol.

3. Count cells using a hemocytometer and resuspend 10,000 cells in 200 uL of cold
CellCover (Anacyte).

4. Incubate cells in at 4C for 1 hour.

5. After the cells have been fixed, perform antibody staining at 4C.
Note: Some epitopes may no longer be available as a result of the fixation process.

6. Wash cells twice with 1x PBS, resuspend in 200 uL of CellCover10 buffer (pH 10 + 10%
FBS; See Appendix D: Buffers Guide), and place on ice.
Note: CellCover != CellCover10.

7. Obtain empty functionalized array(s), aspirate storage solution and soak each array in 5
mL of CellCover10 buffer (See Appendix D: Buffers Guide).

8. Aspirate media and load your fixed cells onto each array in a dropwise format.

9. Gently rock the array(s) in the x & y direction for 5 minutes.

10. Wash each array twice with 5 mL of CellCover10 (pH 10 + 10% FBS), then solvate each
them in 5 mL of CellCover (No FBS).

11. Place a lift slip on each array, then image with a microscope.

12. After imaging, wash each array in 5 mL of CellCover10 media.

13. Immediately load beads using the bead loading protocol provided above.
Note: In the protocol provided above, beads are washed and loaded in BLB. When
loading cells first, you will replace BLB with CellCover10 for all steps. After beads are loaded and
sufficiently washed, you will wash the array 4x with CellCover10 without FBS and solvate arrays
in CellCover.

14. Proceed with membrane sealing.
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Appendix G: Shopping List 
Device Manufacturing 
Equipment 

• Dow Corning Sylgard 184 Silicone Encapsulant Clear 0.5 kg kit (Part No. 184 SIL
ELAST KIT 0.5 PG)

• Protolabs Custom Array Molding Plates (Please refer to www.shaleklab.com/seq-well
o Make out of aluminum and make sure to tap holes only on base plateBasePlate1

v3.1 (Bottom plate you mount the wafer to)
• BasePlate2 v3.1 (Divider for arrays)
• TopPlate1 v3.1 (Plate that holds the glass slides)
• TopPlate2 v3.1 (Top plate)
• 45 micron Silicon Master Wafer Size (Please refer to www.shaleklab.com/seq-well)
• Master, pre-silanized – (FlowJem, Inc. Toronto, Canada)
• Corning 72x25 Microscope Slides (Corning Life Sciences Cat. No. 2947)
• 6/32 ¼” Hex Screws
• 5/8” Hex 10/24 Screws
• Hex Screwdriver
• Vacuum grease
• 80 grit sandpaper
• 95% ethanol in spray bottle

Array Functionalization 
Equipment 

• Plasma Oven (Harrick Plasma PDC-001-HP)
• 2x 30-slide rack slotted (VWR Cat No. 25461-014)
• 16x20 cm staining dish (VWR Cat No. 25461-018)
• Vacuum Desiccator (VWR Cat No. 24988-164)
• Sterile 4-well dishes (Thermo Fisher Scientific Cat No. 267061)

Reagents 
• 200 proof ethanol (VWR Cat No. 89125-188)
• (3-Aminopropyl)triethoxysilane (Sigma Cat No. A3648)
• Acetone (Avantor Product No. 2440-10)
• p-Phenylene Diisothiocyanate (PDITC) (Sigma Cat No. 258555-5G)
• Pyridine (Sigma 270970-1L)
• Dimethylformamide (DMF) (Sigma Cat No. 227056-1L)
• Chitosan (Sigma Cat No. C3646-100G)
• Poly(L-glutamic) acid sodium solution (Sigma Cat No. P4761-100MG)
• 5M NaCl (Sigma Cat No. S6546-1L)
• Sodium Carbonate (Sigma Cat No. S2127-500G)
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Buffer Reagents 
Bead Loading Buffer 

• Sodium Carbonate (Sigma Cat No. 223530-500G)
• BSA (Sigma Cat No. A9418-100G)
• Water (Thermo Fisher Scientific Cat No. 10977023)

Complete Lysis 
• Guanidine Thiocyanate, (Sigma Cat No. AM9422)
• 0.5 M EDTA (Thermo Fisher Scientific Cat No. 15575020)
• Water (Thermo Fisher Scientific Cat No. 10977023)
• 10% Sarkosyl (Sigma Cat No. L7414)
• 100% 2-Mercaptoethanol (Sigma Cat No. M3148-25ML)

Hybridization Buffer 
• 5 M NaCl (Thermo Fisher Scientific Cat No. 24740011)
• 1x PBS (Thermo Fisher Scientific Cat No. 10010023)
• PEG-8K (50%) (Fisher Scientific Cat No. BP337-100ML)

Wash Buffer 
• 5 M NaCl (Thermo Fisher Scientific Cat No. 24740011)
• 1 M MgCl2 (Sigma Cat No.63069-100ML)
• 1 M Tris-HCl pH 8.0 (Thermo Fisher Scientific Cat No. 15568025)
• Water (Thermo Fisher Scientific Cat No. 10977023)

Array Quenching Buffer 
• Sodium Carbonate (Sigma Cat No. 223530-500G)
• 1 M Tris-HCl pH 8.0 (Thermo Fisher Scientific Cat No. 15568025)
• Water (Thermo Fisher Scientific Cat No. 10977023)

RT Reagents 
• UltraPure Distilled Water (Thermo Fisher Scientific Cat No. 10977023)
• Maxima 5x RT Buffer/Maxima H-RT (Thermo Fisher Scientific Cat No. EPO0753)
• 20% Ficoll PM-400 (Sigma Cat No. F5415-50mL)
• 10 mM dNTPs (New England BioLabs Cat No. N0447L)
• RNAse Inhibitor (Thermo Fisher Scientific Cat No. AM2696)
• Template Switching Oligo (Order from IDT)

Exonuclease Reagents 
• Exonuclease I (E. coli) (New England Biolabs Cat No. M0293S)

Second Strand Synthesis Reagents 
• Maxima 5x RT Buffer/Maxima H-RT (Thermo Fisher Scientific Cat No. EPO0753)
• 10 mM dNTPs (New England BioLabs Cat No. N0447L)
• dN-SMART Oligo (Order from IDT)
• UltraPure Distilled Water (Thermo Fisher Scientific Cat No. 10977023)
• Klenow Exo- (New England BioLabs Cat No. M0212S)
• 30% PEG8000 (Sigma-Aldrich 89510-1KG-F)
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 PCR Reagents 
• IS PCR Primer (Order from IDT)
• KAPA HiFi Hotstart Readymix PCR Kit (Kapa Biosystems Cat No. KK-2602)

Nextera Reagents 
• Nextera XT DNA Library Preparation Kit (96 samples) (Illumina FC-131-1096)
• New-P5-SMART PCR Hybrid Oligo (Order from IDT)
• Nextera N70X Oligo (Order from Illumina)

Operating Equipment 
• Polycarbonate (PCTE) 0.01 micron 62x22 mm precut membranes, 100 count (Sterlitech

Custom Order)
• mRNA Capture Beads (Chemgenes Cat No. MACOSKO-2011-10)
• Lifter Slips, 25x60mm (Electron Microscopy Science Cat No. 72186-60)
• Agilent Clamps (Agilent Technologies Cat No. G2534A)

Sequences 

Barcoded Bead SeqB: 
5’–Bead–Linker--TTTTTTTAAGCAGTGGTATCAACGCAGAGTAC- 
JJJJJJJJJJJJNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT--3’ 

 Template Switching Oligo (TSO): 
AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG 

dN-Smart Randomer (dN-SMRT): 
AAGCAGTGGTATCAACGCAGAGTGANNNGGNNNB 

Smart PCR Primer (TSO_PCR): 
AAGCAGTGGTATCAACGCAGAGT 

 New-P5-SMART PCR Hybrid Oligo (P5-TSO_Hybrid): 
AATGATACGGCGACCACCGAGATCTACACGCCTGTC- 
CGCGGAAGCAGTGGTATCAACGCAGAGT*A*C 

 Custom Read 1 Primer (Read_1_Custom_SeqB): 
GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC 



 
 
 
Seq-Well Cost Object Breakdown (Non-discounted prices were used in this cost model) 
    

Array Synthesis Cost (USD) Per Array (USD) Part Number 
PDMS 109.23 1.37 184 SIL 
ProtoLabs Mounts 1100.84 11.01 Protolabs Quote 
Silicon Wafer 1070 10.70 FlowJem Quote 
Corning Microscope slides 320 0.22 Cat no. 2947 
Chitosan  156 0.05 C3646-100G 
APTES (100mL) 73.7 0.00 A3648-100ML 
Acetone 180.06 1.80 2440-10 
PDITC 116 1.29 258555-5G 
Pyridine 190 0.45 270970-1L 
DMF 321 2.82 319937-4L 
L-Aspartic Acid 29 0.03 A9256-100G 
5M NaCl 51.2 0.49 S6546-1L 
Sodium Carbonate 57.2 0.00 S2127-500G 

 
Total (per 

array) 30.22  
    

Bead Synthesis Cost (USD) Per Array (USD) Part Number 

Bead Synthesis 4500 45 
Macosko-

Chemgenes 

 
Total (per 

array) 45.00  
    

Loading Buffers Cost (USD) Per Array (USD) Part Number 
Sodium Carbonate 54.1 0.01 S2127-500G 
BSA 641 0.01 A9418-100G 
Water 185 0.37 10977023 
Guanidine Thiocyanate 284 0.01 AM9422 
0.5M EDTA 81.25 0.01 15575020 
10% sarkosyl 117 0.01 L7414-10ML 
100% BME 80.6 0.01 M3148-250ML 
5M NaCL 51.2 0.01 S6546-1L 
1xPBS 196 0.98 10010049 
1M Mg2Cl 119 0.01 63069-100ML 
1M Tris-HCl pH 8.0 69.8 0.1 15568025 

 
Total (per 

array) 46.53  
    

Downstream Processing Cost (USD) Per Array (USD) Part Number 
RT    

Maxima RT Buffer (5X) 680 17.00 EPO0753 
PEG8K 105 0.01 F5415-50ML 



 

10 mM dNTP 250 1.25 N0447L 
RNAse Inhibitor 448 4.48 AM2696 
TSO  IDT Quote 0.01 IDT quote 
Second Strand    
Klenow  244 6.10 M0212M 
10 mM dNTP 250 1.25 N0447L 

PCR    
Exonuclease digestion  281 0.75 M0293L 
ISPCR IDT Quote 0.01 IDT quote 
KAPA HIFI  640.5 61.00 KK-2602 

Nextera  0.00  
Nextera XT library prep kit 3270 96.18 FC-131-1096 
P5 hybrid olgio IDT Quote 0.01 IDT quote 
Nextera N7XX primer IDT Quote 0.01 IDT quote 

Sequencing QC    
Tape Station - D5000 
screentapes 527 25.00 5067-5592 
Tape Station - D5000 Reagents 179 8.50 5067-5593 

 
Total (per 

array) 221.56  
    
    

Sequencing    
Nextseq 500 kit 1570  Illumina quote 
QC librarys (WTA and NTA)    
*Assume we load 2 arrays/run    
    

Seq-Well S^3 Protocol Steps 
Costs per 
array 

10x V3 3' Protocol Steps 
(BMC) Costs per array 

Array Synthesis 30.22 Setup Costs 1235 
Bead Synthesis 45.00 Price per sample 2100 
Loading Buffers 46.53 Sequencing  3010 
Downstream Processing 221.56     
Sequencing 785.00     
        

Seq-Well Pipeline Costs 
Costs per 
array 10x V3 3'  Pipeline Costs Costs per array 

Pre-Seq Costs (w/ synthesis) 343.31 Pre-Seq Costs (w/ setup) 3335 
Pre-Seq Costs (w/o synthesis) 313.09 Pre-Seq Costs (w/o setup) 2100 
Total Costs (w/ synthesis) 1128.31 Total Costs (w/ setup) 6345 
Total Costs (w/o synthesis) 1098.09 Total Costs (w/o setup) 5110 
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