Reversal of Diet-induced Hepatic Steatosis by Peripheral CB1 Receptor Blockade in Mice is p53/miRNA-22/SIRT1/PPARα Dependent

Shahar Azar, Shiran Udi, Adi Drori, Rivka Hadar, Alina Nemirovski, Kiran V. Vemuri, Maya Miller, Dana Sherill-Rofe, Yhara Arad, Devorah Gur-Wahnon, Xiaoling Li, Alexandros Makriyannis, Danny Ben-Zvi, Yuval Tabach, Iddo Z. Ben-Dov, and Joseph Tam

Inventory of Supplemental Material:

The following Supplemental Figures and Tables provide additional information supporting the role of hepatic CB₁R in the pathogenesis of obesity-induced hepatic steatosis:

Supplementary Figure 1. AM6545 neither binds to nor activates PPARα.

Supplementary Figure 2. Peripheral CB₁R blockade improves the HFD-induced metabolic abnormalities in both WT and PPAR $\alpha^{-/-}$ obese mice.

Supplementary Figure 3. Pharmacological blockade or genetic deletion of CB₁R in the liver affects the eCB levels.

Supplementary Figure 4. Peripheral CB₁R blockade improves the HFD-induced metabolic abnormalities in both WT and LSIRT1^{-/-} obese mice.

Supplementary Figure 5. Analysis of miR-22 conservation across 113 species.

Supplementary Figure 6. miR-22 inhibitor and mimic-miR-22 alter miR-22 expression in HepG2 cells.

Supplementary Figure 7. miR-22 expression in hepatocytes is regulated by CB_1R , but not by CB_2R . **Supplementary Figure 8.** Differential hepatic expression profiles of PPAR α and SIRT1 in humans with NAFLD.

Supplementary Table 1. Unfiltered and filtered coevolved genes with CNR1.

Supplementary Table 2. Enrichment analysis of 100 coevolved genes with CNR1 employing GeneAnalytics tool.

Supplementary Table 3. Elevated expression of hepatic microRNAs induced by AM6545 treatment. **Supplementary Table 4.** Reduced expression of hepatic microRNAs induced by AM6545 treatment. **Supplementary Table 5.** Primers list.

Supplementary Figure 1. AM6545 neither binds to nor activates PPARa. (a) Competitive *in vitro* ligand binding assay for PPARa with AM6545 using a PPARa LanthaScreen TR-FRET assay, demonstrating that AM6545 did not affect the binding of the FluormoneTM Pan-PPAR Green tracer to recombinant PPARa-LBD. For comparison, GW7645, an agonist for PPARa, bound the PPARa-LBD and displaced the tracer at a nanomolar range. (b) Effect of various doses of AM6545 on PPARa activation. GW590735, a selective PPARa agonist, but not AM6545, dose-dependently increased the activity of PPARa. (c) AM6545 was not able to modulate the agonist-dependent increased activity of PPARa. Data represent the mean \pm SEM from three independent experiments.

Supplementary Figure 2. Peripheral CB₁R blockade improves the HFD-induced metabolic abnormalities in both WT and PPAR $\alpha^{-/-}$ obese mice. Male six-week-old PPAR $\alpha^{-/-}$ and their littermate control mice were fed a HFD for 14 weeks and then treated with AM6545 (10 mg/kg, ip) for 7 days. AM6545 reduced the body weight (a) without affecting fasting glucose levels (b), but significantly reduced serum insulin levels (c) and improved glucose tolerance (d, e) without affecting insulin sensitivity (f, g) in both mouse strains. AM6545 was equally effective in reducing the HFDinduced hyperleptinemia (h) and in increasing the HFD-induced hypoadiponectinemia (i) in WT and PPAR $\alpha^{-/-}$ obese mice. Data represent the mean ± SEM from 5-7 mice per group. *P<0.05 relative to the Veh-treated group from the same strain.

Supplementary Figure 3. Pharmacological blockade or genetic deletion of CB1R in the liver affects the eCB levels. Male six-week-old C57B1/6 and LCB1^{-/-} mice were fed a HFD for 14 weeks. Then, C57B1/6 mice were treated with AM6545 (10 mg/kg, i.p.) for 7 days. AM6545 did not affect the hepatic levels of 2-AG (**a**); however, it significantly increased the AEA (**b**), AA (**c**), OEA (**d**), and PEA (**e**) levels. Similarly, genetic deletion of hepatic CB1R did not alter the hepatic 2-AG levels (**f**); however, significant elevations in the hepatic levels of AEA (**g**), AA (**h**), OEA (**i**), and PEA (**j**) were found in LCB1^{-/-} mice fed a HFD vs. a STD. Note that AM6545 is not an inhibitor of both FAAH (**k**) or MAGL (**l**), compared to their potent inhibitors, URB597 and JZL184, respectively. Data represent the mean \pm SEM from 4-6 mice per group. *P<0.05 relative to the Veh-treated or the wild-type group.

Supplementary Figure 4. Peripheral CB₁R blockade improves the HFD-induced metabolic abnormalities in both WT and LSIRT1^{-/-} obese mice. Male six-week-old liver-specific SIRT1 knockout (LSIRT1^{-/-}) mice and their littermate control mice were fed a HFD for 14 weeks and then treated with AM6545 (10 mg/kg, ip) for 7 days. AM6545 reduced the body weight (a), hyperleptinemia (b), fasting glucose (c), and serum insulin levels (d), and improved glucose tolerance (e, f) without affecting insulin sensitivity (g, h) in both mouse strains. Data represent the mean \pm SEM from 4-15 mice per group. *P<0.05 relative to the Veh-treated group from the same strain.

Supplementary Figure 5. Analysis of miR-22 conservation across 113 species from Ensembl

(doi.org/10.1093/nar/gkz966). miR-22 is highly and medium conserved across most vertebrates.

Supplementary Figure 6. miR-22 inhibitor and mimic-miR-22 alter miR-22 expression in HepG2 cells. (a) Transient-transfected hepatocytes with a miR-22 inhibitor reduced the endogenous expression of miR-22. (b) Transient-transfected hepatocytes with a mimic-miR-22 increased the endogenous expression of miR-22. Data represent the mean \pm SEM from three independent experiments. *P<0.05 relative to the untransfected cells.

Supplementary Figure 7. miR-22 expression in hepatocytes is regulated by CB₁R, but not by CB₂R. HepG2 cells incubated with the CB₁R agonist, HU-210 (100 nM) (**a**), and with the CB₂R agonist, HU-308 (100 nM) (**b**) for 24 hours. HU-210 increased miR-22 expression, whereas HU-308 did not alter its expression in these cells. Data represent the mean \pm SEM. *P<0.05 relative to Vehicle-treated group.

Supplementary Figure 8. Differential hepatic expression profiles of SIRT1, and PPAR α in humans with NAFLD. PPAR α and SIRT1 mRNA expression levels of control and NASH samples in Ahrens et al. 2013 (**a**), and Haas et al. 2019 (**b**). In Ahrens et al. 2013, control samples were obtained from exclusion of liver malignancy during oncological surgery. From Haas et al. 2019, control samples were collected from patients without NASH, w/wo T2D. Mann Whitney U test was applied for Gene level comparison of SIRT1 and PPAR between control and NASH samples. *P<0.05 (Mann Whitney U test).

Unfiltered 100 coevolved	Filtered 53 coevolved
genes with CNR1	genes with CNR1
MC2R	MC2R
MC5R	CNR2
CNR2	PTAFR
MC3R	TGFB3
MC4R	GPR1
LPAR1	FN1
PTAFR	ACKR4
TGFB3	GPR85
TGFB2	LGI2
GPR12	RXFP3
OXGR1	CDH2
GPR6	MDGA2
GPR1	LRRN3
FN1	OLFM1
ACKR4	MTNR1A
LPAR3	NETO1
GPR183	LRP12
GPR85	СДН6
LGI2	NR3C1
S1PR5	FRS2
P2RY1	P2RY14
RXFP3	ETV6
CDH2	NRP1
MDGA2	EDNRA
LRRN3	LCORL
CDH4	ITGA11
LGI1	BOC
OLFM1	OR51E1
MTNR1A	RHO
NETO1	МҮВРС1
MDGA1	CADM2
OLFM3	SEMA3C
GPR3	ADGRB3
LRP12	IL1RAPL1
СДН6	OIT3
NETO2	GPR63
NR3C1	KRT8
LPAR2	DSP
FRS2	CHST1
CDH11	LRRC3B
CDH10	MID1
P2RY14	PDGFRA
ETV6	KRT17
CDH12	ADCYAP1R1

Supplementary Table 1. Unfiltered and filtered coevolved genes with CNR1

LRRN1	GPR139
NRP1	PALLD
EDNRA	PPARA
INHBA	OR52B2
LCORL	SRPX
OLFM2	GRB10
ITGA11	PROKR2
CDH9	MC1R
BOC	CCDC88A
LPAR4	
OR51E1	
CDH8	
CXCR4	
RHO	
MYBPC1	
EDNRB	
P2RY10	
P2RY4	
CADM2	
LGI3	
SEMA3C	
ADGRB3	
IL1RAPL1	
NRP2	
LRFN5	
OIT3	
GPR63	
KRT8	
SIPR1	
DSP	
GPR37	
CDH20	
CHST1	
LRRC3B	
MID1	
PDGFRA	
CDH18	
CDH1	
KRT17	
KRT19	
TGFB1	
SEMA3D	
CDH7	
ADCYAP1R1	
NCAM1	
GPR139	
P2RY6	
PALLD	

DCBLD2
PPARA
OR52B2
SRPX
GRB10
PROKR2
MC1R
CCDC88A

	Name	GeneAnalytics Score*	P-value (calculated with hypergeometric test)	Matched genes
	Breast Cancer	14.31	6.9x10 ⁻⁷	BOC, CDH1, CDH11, CDH2, CXCR4, EDNRA, ETV6, FN1, INHBA, KRT17, KRT19, KRT8, MDGA1, MID1, MYBPC1, NR3C1, NRP1, NRP2, PDGFRA, TGFB1, TGFB2, TGFB3
Discosso	Body Mass Index Quantitative Trait Locus 11 (Termed as Obesity & Energy Metabolism)	10.41	1.2x10 ⁻⁵	CNR2, EDNRA, FN1, GPR183, MC1R, MC2R, MC3R, MC4R, MC5R, MID1, NR3C1, PALLD, PPARA, SEMA3C, TGFB1
Diseases	Heart Disease (including Dilated Cardiomyopathy, Heart Disease, Arrhythmogenic Right Ventricular Cardiomyopathy)	8.36	1.4x10 ⁻⁷	CDH2, DSP, EDNRA, EDNRB, FN1, MYBPC1, PPARA, TGFB1, TGFB2, TGFB3, CXCR4, ITGA11
	Liver Disease	3.64	1.7x10 ⁻³	KRT19, KRT8, PPARA, TGFB1
	Peptide Ligand-binding Receptors	94.24	6.2x10 ⁻²⁹	ACKR4, GPR1, ADCYAP1R1, CNR2, GPR12, MC4R, EDNRB, GPR85, GPR183, GPR3, GPR6, GPR37, CXCR4, EDNRA, LPAR2, GPR63, MC1R, LPAR4, MTNR1A, LPAR3, LPAR1, MC3R, MC5R, P2RY6, MC2R, P2RY10, NR3C1, P2RY4, OXGR1, P2RY1, PTAFR, S1PR5, S1PR1, PROKR2, RHO, P2RY14, RXFP3
Pathways	Signaling By GPCR	49.68	3.0x10 ⁻¹⁵	BOC, ACKR4, ADCYAP1R1, CNR2, INHBA, GRB10, CDH1, MC4R, EDNRB, GPR183, GPR37, CXCR4, EDNRA, LPAR2, FRS2, FN1, MC1R, OR52B2, LPAR4, MTNR1A, NCAM1, LPAR3, LRP12, LPAR1, MC3R, MC5R, P2RY6, MC2R, P2RY10, NR3C1, NRP1, P2RY4, PDGFRA, OXGR1, P2RY1, NRP2, OR51E1, PTAFR, S1PR5, S1PR1, PROKR2, RHO, P2RY14, RXFP3, TGFB1
	Developmental Biology	20.1	1.1x10 ⁻⁶	BOC, CDH4, KRT17, LGI2, GRB10, KRT19, LGI3, DSP, KRT8, LGI1, FRS2, FN1, NCAM1, CDH2, NRP1, PDGFRA, NRP2, PPARA, TGFB1

Supplementary Table 2. Enrichment analysis of 100 coevolved genes with *CNR1* employing GeneAnalytics tool

* The score for diseases and pathways is calculated in two different ways, and can be review at: <u>http://geneanalytics.genecards.org/user-guide/#1986</u>

									Sirt	1						
miRBase 14	miRBase 22	Accession	log2FC	pval	diana_microt	elmmo	miranda	pictar	pita	targetscan	diana_microt	elmmo	miranda	pictar	pita	targetscan
mmu-miR-223	mmu- miR-223- 3p	MIMAT0000665	3.44	0.00		0.12			-3.56	-0.03			-0.18			
mmu-miR-363	mmu- miR-363- 3p	MIMAT0000708	7.89	0.00											-1.48	
mmu-miR- 106b*	mmu- miR- 106b-3p	MIMAT0004582	2.8	0.00												
mmu-miR-410	mmu- miR-410- 3p	MIMAT0001091	7.4	0.00					1.28		0.75	0.42	-0.11		2.44	
mmu-miR-15b	mmu- miR-15b- 5p	MIMAT0000124	2.09	0.00	0.46				-3.21	-0.07					-2.63	
mmu-miR- 369-3p	mmu- miR-369- 3p	MIMAT0003186	6.89	0.00		0.05			-2.09	-0.02	0.80	0.29	-0.89	15.16	-2.88	-0.09
mmu-miR-326	mmu- miR-326- 3p	MIMAT0000559	2.52	0.00					-2.50	-0.01	0.48	0.23			-4.63	
mmu-miR- 376c	mmu- miR- 376c-3p	MIMAT0003183	4.44	0.00					-0.13	-0.03	0.54				-2.53	
mmu-miR- 409-3p	mmu- miR-409- 3p	MIMAT0001090	3.51	0.00					-1.81		0.74				-1.96	
mmu-miR- 654-3p	mmu- miR-654- 3p	MIMAT0004898	3.36	0.00					-1.73						1.49	
mmu-miR- 487b	mmu- miR- 487b-3p	MIMAT0003184	4.36	0.00					-5.54						-6.00	
mmu-miR-495	mmu- miR-495- 3p	MIMAT0003456	6.32	0.00					6.67		0.81	0.12	-0.35		-0.44	-0.01
mmu-miR-451	mmu- miR- 451a	MIMAT0001632	1.71	0.00					-1.97							
mmu-miR-486	mmu- miR- 486a-5p	MIMAT0003130	1.96	0.00						-0.01						

Supplementary Table 3. Elevated expression of hepatic microRNAs induced by AM6545 treatment.

mmu-miR-744	mmu- miR-744-	MIMAT0004187	2.19	0.00					- 15.65							
	5p															
mmu-miR-197	NA	NA	3.13	0.00												
mmu-miR-93*	mmu- miR-93- 3p	MIMAT0004636	3.38	0.00		0.08				-0.05						
mmu-miR-598	mmu- miR-598- 3p	MIMAT0004942	3.7	0.00					-1.34		0.49				-0.65	
mmu-miR-431	mmu- miR-431- 5p	MIMAT0001418	3.21	0.00					-5.52	-0.01						
mmu-miR- 376a	mmu- miR- 376a-3p	MIMAT0000740	5.64	0.00												
mmu-miR- 323-3p	mmu- miR-323- 3p	MIMAT0000551	5.56	0.00							0.83	0.23	-0.38	8.55	-2.38	-0.03
mmu-miR-10b	mmu- miR-10b- 5p	MIMAT0000208	2.64	0.00		0.14		1.68	-0.20	-0.15						
mmu-miR-18a	mmu- miR-18a- 5p	MIMAT0000528	1.64	0.00	0.56	0.07	-0.20		-6.02	-0.08						
mmu-miR-505	mmu- miR-505- 3p	MIMAT0003513	2.66	0.00					-3.67						-2.97	
mmu-miR-23a	mmu- miR-23a- 3p	MIMAT0000532	1.4	0.00					0.24		0.55	0.43	-0.22	7.02	-7.00	-0.04
mmu-miR-652	mmu- miR-652- 3p	MIMAT0003711	1.54	0.00	0.60				-9.25							
mmu-miR-150	mmu- miR-150- 5p	MIMAT0000160	1.68	0.00												
mmu-miR- 151-5p	mmu- miR-151- 5p	MIMAT0004536	1.47	0.01					-1.82							
mmu-miR- 339-5p	mmu- miR-339- 5p	MIMAT0000584	1.57	0.01					-3.34							
mmu-miR-9	mmu- miR-9-5p	MIMAT0000142	5.48	0.01		0.85		12.48	-2.17	-0.25	0.96	0.91	-1.18	8.38	-4.71	-0.36
mmu-miR-28*	mmu- miR-28a- 3p	MIMAT0004661	1.73	0.01												

mmu_miP_	mmu	MIM A T0000571	2 33	0.01					2 34							
221 2-	miD 221	WIIWIA10000371	2.55	0.01					2.34							
ээт-эр	IIIK-551-															
	3p															
mmu-miR-	mmu-	MIMAT0003454	1.43	0.01												
423-3p	miR-423-															
	3p															
mmu-miR-	mmu-	MIMAT0004583	2.96	0.01		0.00	-0.73			-0.02			-0.12			
130h*	miR-		0													
1000	120h 5n															
'D	1300-3p) (D () T00002120	2.00	0.01						0.02	0.04					0.11
mmu-mik-	mmu-	MIMA10003129	2.99	0.01						-0.02	0.84					-0.11
485*	m1R-485-															
	3р															
mmu-miR-	mmu-	MIMAT0000230	1.33	0.01					-8.33	-0.05					-6.70	
199a-3p	miR-															
•	199a-3p															
mmu_miR_	mmu_	MIMAT0001342	2 22	0.01												
175*	miP 425	111111110001342	2.22	0.01												
423	1111K-423-															
15.404	зр	NO (100000107	1.07	0.01		0.00			5.50	0.07	0.55		0.00		2.12	0.14
mmu-miR-484	mmu-	MIMA1000312/	1.27	0.01		0.08			-5.50	-0.07	0.55		-0.80		-3.12	-0.14
	miR-484															
mmu-miR-	mmu-	MIMAT0000154	1.29	0.01												
142-5p	miR-															
-	142a-5p															
mmu-miR-	mmu-	MIMAT0004667	1.32	0.01						-0.05						
199h	miR-		1102	0.01						0100						
1))0	100h 3n															
	1990-3p	MIN A TOOOO1 45	4.50	0.01		0.22			2.72		0.72	0.92	0.25	5 70	2.20	
mmu-mik-	mmu-	MIMA10000145	4.59	0.01		0.33			-2.73		0.72	0.85	-0.25	5.78	-2.29	
133a	miR-															
	133a-3p															
mmu-miR-	mmu-	MIMAT0000387	3.4	0.02		0.11	-0.38		-5.60						-4.89	
130b	miR-															
	130b-3p															
mmu-miR-	mmu-	MIMAT0000556	1.55	0.02					-9.22		0.53					
324-3n	miR-324-															
021.0p	3n															
mmu_miP_1//	mmu	MIMAT0000156	1 31	0.02		0.52		17.36	0.67	0.00			0.57		2.54	
11111u-1111X-144	miD 144	willwirx10000130	1.31	0.02		0.52		17.50	-0.07	-0.09			-0.57		-2.34	
	1111K-144-															
	3p			0.05		0.15				0.1-	0.51					
mmu-miR-27a	mmu-	MIMAT0000537	1.11	0.02		0.62		16.13	-7.82	-0.17	0.51				-3.44	
	miR-27a-															
	3р															
mmu-miR-128	mmu-	MIMAT0000140	1.6	0.02		0.53		13.93	-5.48	-0.09	0.77	0.53	-0.73	4.45	-5.98	-0.20
	miR-128-		-													
	3n															
mmu_miR_411	mmu.	MIMAT0004747	3.1/	0.02											-1.68	
111111-1111X-411	miP_{11}	MIMIAT000+/4/	5.14	0.02											-1.00	
	5m															
	эр		2.61	0.02												
mmu-miR-	mmu-	MIMAT0005443	2.61	0.03												
181a-2*	miR-			1	1			1				1	1	1		

	181a-2-														
	3p														
mmu-miR-328	mmu-	MIMAT0000565	1.35	0.03					-2.65	-0.02					
	miR-328-														
	3p														
mmu-miR-	mmu-	MIMAT0000518	2.31	0.03	0.47		-0.20		-1.37	-0.12	0.54	0.02	-0.19	-4.32	-0.12
196a	miR-														
	196a-5p														
mmu-miR-92a	mmu-	MIMAT0000539	1.02	0.03										-6.78	
	miR-92a-														
	3р														
mmu-miR-	mmu-	MIMAT0004186	4.19	0.04		0.11	-0.16		-4.44					-1.23	
301b	miR-														
	301b-3p														
mmu-miR-379	mmu-	MIMAT0000743	2.47	0.04					-2.20						
	miR-379-														
	5p														
mmu-miR-25	mmu-	MIMAT0000652	0.95	0.04										-4.89	
	miR-25-														
	3р														
mmu-miR-374	mmu-	MIMAT0003727	1.06	0.05							0.60		-0.17	0.58	
	miR-														
	374b-5p														
mmu-miR-127	mmu-	MIMAT0000139	1.72	0.05											
	miR-127-														
	3p														
mmu-miR-	mmu-	MIMAT0004525	2.99	0.05											
99b*	miR-99b-														
	3p					ļ		ļ				ļ			
mmu-miR-320	mmu-	MIMAT0000666	1.51	0.05					-3.39		0.48				
	miR-320-														
	3p	1													

					Pparα Sirt1											
miRBase	miRBase	Accession	log2FC	pval	diana_microt	elmmo	miranda	pictar	pita	targetscan	diana_microt	elmmo	miranda	pictar	pita	targetscan
mmu-miR-	mmu-	MIMAT0000238	-6.17	0.00					-3.07							
205	miR- 205-5p															
mmu-miR- 802	mmu- miR- 802-5p	MIMAT0004188	-1.79	0.00					-3.40	-0.01	0.70				1.17	
mmu-miR- 203	mmu- miR- 203-3p	MIMAT0000236	-1.87	0.00		0.17			-0.88			0.17			-1.39	
mmu-miR- 497	mmu- miR- 497a-5p	MIMAT0003453	-1.8	0.00						-0.05						
mmu-miR- 29b	mmu- miR- 29b-3p	MIMAT0000127	-1.47	0.00		0.33			-3.91	-0.07	0.55	0.69	-0.20		3.17	-0.10
mmu-miR- 195	mmu- miR- 195a-5p	MIMAT0000225	-1.79	0.00	0.50				-0.08	-0.06					-3.83	
mmu-miR- 214*	mmu- miR- 214-5p	MIMAT0004664	-4.19	0.00						-0.12						
mmu-miR- 99a	mmu- miR-99a- 5p	MIMAT0000131	-1.39	0.00					-3.94	-0.34						
mmu-miR- 148a*	mmu- miR- 148a-5p	MIMAT0004617	-3.11	0.00		0.21					0.82	0.24				
mmu-miR- 143	mmu- miR- 143-3p	MIMAT0000247	-1.24	0.01					-6.40						-4.03	
mmu-miR- 378	mmu- miR- 378a-3p	MIMAT0003151	-1.13	0.01						-0.05						
mmu-let- 7c	mmu-let- 7c-5p	MIMAT0000523	-1.11	0.01		0.87	-0.12	14.68	-5.87	-0.18			-0.13			
mmu-miR- 149	mmu- miR- 149-5p	MIMAT0000159	-1.44	0.01					-5.73	-0.02	0.55				-4.16	
mmu-miR- 193	mmu- miR- 193a-3p	MIMAT0000223	-1.27	0.01					-0.79	-0.03						

Supplementary Table 4. Reduced expression of hepatic microRNAs induced by AM6545 treatment.

mmu-miR-	mmu- miR-30e-	MIMAT0000248	-1.05	0.02					0.46		0.58	0.93	-0.91	1.09	-6.66	-0.25
500	5p															
mmu-miR- 872	mmu- miR- 872-5p	MIMAT0004934	-2.17	0.02	0.67	0.05	-0.22		-6.44	-0.12	0.46				-4.24	
mmu-miR- 192	mmu- miR- 192-5p	MIMAT0000517	-1.02	0.02					-1.93							
mmu-miR- 30c-2*	mmu- miR-30c- 2-3p	MIMAT0005438	-1.83	0.02						-0.06						
mmu-miR- 455*	mmu- miR- 455-5p	MIMAT0003485	-1.44	0.03					-0.08	-0.18		0.07			-3.41	
mmu-miR- 22	mmu- miR-22- 3p	MIMAT0000531	-0.93	0.03	0.66	0.28	-0.33	11.96	-7.80	-0.22	0.82	0.44	-1.20	4.99	-10.24	-0.55
mmu-miR- 29c	mmu- miR-29c- 3p	MIMAT0000536	-1.01	0.03		0.33			-2.31	-0.07	0.54	0.69	-0.20		4.11	-0.10
mmu-miR- 187	mmu- miR- 187-3p	MIMAT0000216	-1.76	0.03					-7.30							
mmu-miR- 148a	mmu- miR- 148a-3p	MIMAT0000516	-0.91	0.04		0.04			-2.82	-0.14						
mmu-miR- 30a	mmu- miR-30a- 5p	MIMAT0000128	-0.9	0.04					1.86		0.55	0.93	-0.92	1.09	-5.56	-0.22
mmu-miR- 7a	mmu- miR-7a- 5p	MIMAT0000677	-1.27	0.04					-6.17	-0.11	0.50		-0.15		-6.30	
mmu-miR- 101a*	mmu- miR- 101a-5p	MIMAT0004526	-1.65	0.04						-0.01	0.73		-1.25			-0.18
mmu-miR- 345-3p	mmu- miR- 345-3p	MIMAT0004656	-2.33	0.04		0.06			-5.74	-0.08						-0.07
mmu-miR- 31	mmu- miR-31- 5p	MIMAT0000538	-1.02	0.04			-0.40		-7.60		0.95	0.24			-9.60	
mmu-miR- 22*	mmu- miR-22- 5p	MIMAT0004629	-1.07	0.04	0.49						0.69					
mmu-miR- 107	mmu- miR- 107-3p	MIMAT0000647	-0.98	0.04					-7.69	-0.01					-7.43	-0.14

mmu-miR- 122	mmu- miR- 122-5n	MIMAT0000246	-0.87	0.05			-9.54				
mmu-miR- 378*	mmu- miR- 378a-5p	MIMAT0000742	-1.25	0.05			-6.00	-0.02			-0.08

Supplementary Table 5. Primers list.

Gene	Forward primer
	Reverse primer
hSIRT1	5' GCGGGAATCCAAAGGATAAT 3'
	5' CTGTTGCAAAGGAACCATGA 3'
hβ-ACTIN	5' TCCCTGGAGAAGAGCTACGA 3'
	5' AGCACTGTGTTGGCGTACAG 3'
hGAPDH	5' AATCCCATCACCATCTTCCA 3'
	5' TGGACTCCACGACGTACTCA 3'
hPPARa	5' CATTACGGAGTCCACGCGT 3'
	5' ACCAGCTTGAGTCGAATCGTT 3'
hACAA2	5' CTGCTCCGAGGTGTGTTTGTA 3'
	5' GGCAGCAAATTCAGACAAGTCA 3'
hDECR1	5' CTATGCTGAGACTGGTTCAGGT 3'
	5' CCAGACGGCTAAAGGCACC 3'
hDECR2	5' TCCTTCAACGCCTTCAAGACC 3'
	5' GGTGGCAGTGATGTTCACGAT 3'
hMLYCD	5' ACGTCCGGGAAATGAATGGG 3'
	5' GTAACCCGTTCTAGGTTCAGGA 3'
hHADH_B	5' CTGTCCAGACCAAAACGAAGAA 3'
	5' CGATGCAACAAACCCGTAAGC 3'
hCORT	5' GCCTCCTGACTTTCCTCGC 3'
	5' GGGCTTCCTCTCCTATGAGGG 3'

hCPT2	5' CATACAAGCTACATTTCGGGACC 3'
	5' AGCCCGGAGTGTCTTCAGAA 3'
hPri-MIR-22	5' GCTGAGCCGCAGTAGTTCTT 3'
	5' GGCAGAGGGCAACAGTTCTT 3'
hp21	5' TGAGCCGCGACTGTGATG 3'
	5' GTCTCGGTGACAAAGTCGAGGTT 3'
hBAX	5' GCTGTTGGGCTGGATCCAAG 3'
	5' TCAGCCCATCTTCTTCCAGA 3'
hPUMA	5' GGAGACAAGAGGAGCAG 3'
	5' CTGGGTAAGGGCAGGAGT 3'
hPPARa_SG	Qiagen QuantiTect Primer Assay-
	QT00017451
mSirt1	5' ATGACGCTGTGGCAGATTGTT 3'
	5' CCGCAAGGCGAGCATAGAT 3'
mβ-Actin	5'GGCTGTATTCCCCTCCATCG 3'
	5' CCAGTTGGTAACAATGCCATGT 3'
mGapdh	5' AGGTCGGTGTGAACGGATTTG 3'
	5' TGTAGACCATGTAGTTGAGGTCA 3'
mPpara	5' TACTGCCGTTTTCACAAGTGC 3'
	5' AGGTCGTGTTCACAGGTAAGA 3'
mAcaa2	5' ATGTGCGCTTCGGAACCAAA 3'
	5' CAAGGCGTATCTGTCACAGTC 3'
mDecr1	5' GATCCGGGTCCTCAGAGGTTT 3'
	5' ATCAGGTGGTAGCATAGGCTT 3'

mDecr2	5' CACGGCTGCTAAGAAGTTGGT 3'
	5' AGCTGCACAGTTAATGAGGATG 3'
mMlycD	5' GCACGTCCGGGAAATGAAC 3'
	5' GCCTCACACTCGCTGATCTT 3'
mHadh_B	5' ACTACATCAAAATGGGCTCTCAG 3'
	5' AGCAGAAATGGAATGCGGACC 3'
mCort	5' GAGCGGCCTTCTGACTTTCC 3'
	5' GGGCTTTTTATCCAGGTGTGG 3'
mCpt2	5' CAGCACAGCATCGTACCCA 3'
	5' TCCCAATGCCGTTCTCAAAAT 3'
mPri-miR-22	5' GCTGAGCCGCAGTAGTTCTTC 3'
	5' GCAGAGGGCAACAGTTCTTCAA 3'
mPpara_SG	Qiagen QuantiTect Primer Assay-
	QT00137984