Supplemental Online Content

Hayashi H, Takiguchi Y, Minami H, et al. Site-specific and targeted therapy based on molecular profiling by next-generation sequencing for cancer of unknown primary site: a nonrandomized phase 2 clinical trial. *JAMA Oncol*. Published online October 15, 2020. doi:10.1001/jamaoncol.2020.4643

eMethods

eTable 1. Gene List for RNA Sequencing
eTable 2. The results of validation study about tumor classification
eTable 3. The example of prior probability for ERBB2 gene alteration
eTable4. Details of Poststudy Cancer Therapy
eTable5. Adverse Events of Any Grade in at Least 10% of Patients (n = 97)
eFigure. Patient Disposition

This supplemental material has been provided by the authors to give readers additional information about their work.

eMethods

Molecular Assay Procedures

Macrodissection of FFPE samples was performed to select a cancer region, which was marked by a pathologist after paraffin removal. DNA and RNA were extracted and purified from the samples with the use of an Allprep DNA/RNA FFPE Kit (Qiagen, Valencia, CA). The quality and quantity of the DNA and RNA were verified with a PicoGreen dsDNA Assay Kit (Life Technologies, Foster City, CA) and RiboGreen RNA Assay Kit (Life Technologies). The extracted DNA and RNA were stored at -80° C until analysis.

For DNA sequencing, 20 ng of DNA were subjected to multiplex PCR (polymerase chain reaction) amplification with the use of an Ion AmpliSeq Library Kit 2.0 (Thermo Fisher Scientific, Waltham, MA) and Ion AmpliSeq Cancer Hotspot Panel v2 (Thermo Fisher Scientific). Construction and purification of libraries were performed as described.¹ Pooled libraries were sequenced with an Ion Torrent PGM instrument (Thermo Fisher Scientific) and with the use of an Ion PGM Hi-Q Chef Kit (Thermo Fisher Scientific) and Ion 316 v2 Chip Kit (Thermo Fisher Scientific). DNA sequencing data were accessed through Torrent Suite v.5.0.2 software. Reads were aligned with the hg19 human reference genome, and variants were called with the use of Variant Caller ver 5.0.2. and then processed as described previously.¹⁻³

For RNA sequencing, PCR primers were designed with the use of Ion AmpliSeq Designer (Life Technologies). The genes subjected to RNA sequencing are listed in eTable 1. An Ion AmpliSeq RNA Library Kit (Thermo Fisher Scientific) was used for RNA library construction from 10 ng of total RNA. Pooled libraries were sequenced with an Ion Torrent PGM instrument and with the use of an Ion PGM Hi-Q Chef Kit and Ion 316 v2 Chip Kit. Relative expression (raw read number/total read number) of each gene was calculated for normalization.

Data Analysis

On the basis of the gene expression profiles of 130 CUP patients analyzed in our previous,⁴ we selected marker genes that were significantly expressed in CUP with predicted tissue of origin based on the classification using Bayesian posteriori probability maximization method.⁴

To predict the tissue of origin, we used a weighted voting algorithm, in which each weight value was calculated as the signal-to-noise ratio.⁵ Briefly, the signal-to-noise statistic (S_x) is calculated as $S_x = (\mu class0 - \mu class1) / (\sigma class0 + \sigma class1)$, where μ is the mean value and σ is the standard deviation for each class. In this scheme, the

algorithm can also be used to find the decision boundaries between the class means as $b_x = (\mu_{class0} + \mu_{class1})/2$ for each gene. To predict the class of a test sample γ , each gene x in the predictive gene set has a vote based on the expression in this sample (g_x^{γ}) and b_x : $V_x = S_x (g_x^{\gamma} - b_x)$ and the final vote for class 0 or 1 is sign $(\sum_x V_x)$.

A validation test was performed to estimate the accuracy (true classification rate) of the classification procedure with the gene data about 16 cancer types from TCGA data set. RNASeqV2 data for those cancer types were downloaded from TCGA Data Portal upon request to the Data Coordinating Center (DCC). As a result, the average yielded a value of 85.0% (5,428/6389) as a validated estimate of accuracy as shown in eTable2.

We also used Bayesian inference in order to estimate the tissue of origin based on the gene alteration. The posterior probability was calculated with the following formula based on the mutation rate found in cBioPortal database.

$$P(\text{Ori}|\text{mut}) = \frac{P(\text{mut}|\text{Ori})*P(\text{Ori})}{\sum_{\text{ori}} P(\text{mut}|\text{Ori})*P(\text{Ori})}$$

P(mut|Ori) was calculated based on the number of patients with corresponding genetic alteration divided by the number of patients analyzed for each cancer type. These numbers were based on studies summarized by cBioPortal (https://www.cbioportal.org/), such as LUAD (n=230, TCGA, Nature 2014), Lung SCC (n=178, TCGA, Nature 2012), COAD (n=74, Genentech, Nature 2012 & n=138, MSKCC, Genome Biol 2014).⁶⁻¹⁷ P(Ori) was the number of new cancer cases from Cancer statistics, 2014

(https://acsjournals.onlinelibrary.wiley.com/doi/10.3322/caac.21208). P(Ori|mut) was calculated for male and for female, respectively. The example about the calculation of prior probability for ERBB2 was shown in eTable3.

When the gene alteration was found for those genes, including *KRAS*, *EGFR*, *HER2* and *KIT*, based on the DNA sequencing result, the prior probability was applied for the patient together with the estimation based on the gene expression based on RNA-Seq profiles. Tissue from the study patients was classified with the rule, and the resulting prediction (the class with the highest posteriori probability) was reported to the treating physician.

References

- 1. Takeda M, Sakai K, Terashima M, et al. Clinical application of amplicon-based next-generation sequencing to therapeutic decision making in lung cancer. *Ann Oncol.* 2015;26(12):2477-2482.
- 2. Sakai K, Takeda H, Nishijima N, et al. Targeted DNA and RNA sequencing of fine-needle biopsy FFPE specimens in patients with unresectable hepatocellular carcinoma treated with sorafenib. *Oncotarget*. 2015;6(25):21636-21644.
- Takeda M, Sakai K, Okamoto K, et al. Genome sequencing for nonsmall-cell lung cancer identifies a basis for nintedanib sensitivity. *Ann Oncol.* 2016;27(4):748-750.
- Hayashi H, Kurata T, Takiguchi Y, et al. Randomized Phase II Trial Comparing Site-Specific Treatment Based on Gene Expression Profiling With Carboplatin and Paclitaxel for Patients With Cancer of Unknown Primary Site. *J Clin Oncol.* 2019;37(7):570-579.
- Yanagisawa K, Tomida S, Shimada Y, Yatabe Y, Mitsudomi T, Takahashi T. A 25signal proteomic signature and outcome for patients with resected non-small-cell lung cancer. *J Natl Cancer Inst.* 2007;99(11):858-867.
- 6. Cancer Genome Atlas Research N. Comprehensive molecular characterization of urothelial bladder carcinoma. *Nature*. 2014;507(7492):315-322.
- 7. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. *Nature*. 2012;490(7418):61-70.
- 8. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. *Nature*. 2012;487(7407):330-337.
- 9. Cancer Genome Atlas Research N. Comprehensive molecular characterization of clear cell renal cell carcinoma. *Nature*. 2013;499(7456):43-49.
- Schulze K, Imbeaud S, Letouze E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. *Nat Genet.* 2015;47(5):505-511.
- 11. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. *Nature*. 2014;511(7511):543-550.
- 12. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. *Nature*. 2011;474(7353):609-615.
- 13. Biankin AV, Waddell N, Kassahn KS, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. *Nature*. 2012;491(7424):399-405.
- 14. Cancer Genome Atlas Research N. The Molecular Taxonomy of Primary Prostate Cancer. *Cell.* 2015;163(4):1011-1025.

- 15. Cancer Genome Atlas Research N. Comprehensive molecular characterization of gastric adenocarcinoma. *Nature*. 2014;513(7517):202-209.
- 16. Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature*. 2015;517(7536):576-582.
- 17. Cancer Genome Atlas Research N. Comprehensive genomic characterization of squamous cell lung cancers. *Nature*. 2012;489(7417):519-525.

eTable1. Gene List for RNA Sequencing

GENE	ID=DHRS2	GENE	ID=ORM1	GENE_	ID=ADAP1	GENE	ID=FGF19	GENE_	ID=OMD	GENE_	ID=TG
GENE	ID=KRT17	GENE_	ID=NAPSA	GENE_	ID=ADCY2	GENE	ID=FGF3	GENE_	ID=OR51E2	GENE_	ID=TIMM8A
GENE	ID=KRT7	GENE	ID=NKX2-1	GENE_	ID=ADIPOQ	GENE	ID=FGF9	GENE	ID=PAEP	GENE_	ID=TIMP4
GENE	ID=S100A2	GENE	ID=SCGB1A1	GENE	ID=ADRA1B	GENE	ID=FKBP11	GENE	ID=PAPOLG	GENE_	ID=TMPRSS3
GENE	ID=SDC1	GENE	ID=SFTPA2	GENE	ID=AKAP6	GENE	ID=FOLH1	GENE	ID=PART1	GENE_	ID=TPO
GENE	ID=UPK3A	GENE	ID=SFTPB	GENE_	ID=AMD1	GENE	ID=FOLH1B	GENE	ID=PAX4	GENE_	ID=TRAFD1
GENE	ID=EFHD1	GENE	ID=SFTPC	GENE_	ID=ARHGAP6	GENE	ID=G6PC	GENE_	ID=PCNXL2	GENE_	ID=TRIM9
GENE	ID=ERBB2	GENE_	ID=LRMP	GENE_	ID=ASTN2	GENE	ID=GAL3ST1	GENE_	ID=PDLIM5	GENE_	ID=TRPM8
GENE	ID=ESR1	GENE	ID=MS4A1	GENE_	ID=ATP10B	GENE	ID=GAP43	GENE_	ID=PDZK1	GENE_	ID=TRPV6
GENE	ID=GATA3	GENE	ID=PAX8	GENE_	ID=ATP2C1	GENE	ID=GATA2	GENE	ID=PGM3	GENE_	ID=TSHR
GENE	ID=MUCL1	GENE	ID=RGS13	GENE	ID=ATP6V1G2	GENE	ID=GFAP	GENE	ID=PHF1	GENE_	ID=TTR
GENE	_ID=PIP	GENE	ID=EMX2	GENE_	ID=BAALC	GENE	ID=GJB5	GENE	ID=PLEK2	GENE_	ID=TTTY14
GENE	ID=SERPINB4	GENE	ID=FBXO21	GENE_	ID=BAAT	GENE	ID=GPM6A	GENE_	ID=PLIN1	GENE_	ID=TXNL4A
GENE	ID=CDH17	GENE	ID=FOLR1	GENE_	ID=BCAN	GENE	ID=GPM6B	GENE_	ID=PLP1	GENE_	ID=VIL1
GENE	ID=CDX1	GENE	ID=KLHDC8A	GENE_	ID=BHMT	GENE	ID=GPR135	GENE_	ID=PMF1	GENE_	ID=ZC3HAV1
GENE	ID=CDX2	GENE	ID=KLK8	GENE_	ID=BPIFA1	GENE	ID=GPX2	GENE_	ID=PMP2	GENE_	ID=ZNF365
GENE	ID=CEACAM5	GENE	ID=MEIS1	GENE_	ID=C10orf57	GENE	ID=GRIA3	GENE	ID=PRR15L	GENE_	ID=ZNF395
GENE	ID=EPS8L3	GENE	ID=WT1	GENE_	ID=C14orf105	GENE	ID=HBD	GENE	ID=PRR4		
GENE	ID=GUCA2A	GENE	ID=CELA3A	GENE_	ID=C19orf21	GENE	ID=HNF1B	GENE	ID=RAB3B		
GENE	ID=KRT20	GENE	ID=CLPS	GENE_	ID=C1orf61	GENE	ID=HOXB13	GENE	ID=RDH11		
GENE	ID=LGALS4	GENE	ID=CPA1	GENE_	ID=C2	GENE	ID=HS3ST3A1	GENE	ID=RNF43		
GENE	ID=PIGR	GENE	ID=CPA2	GENE	ID=C7orf63	GENE	ID=HSD3B2	GENE	ID=RUFY3		
GENE	ID=SLC26A3	GENE	ID=CPB1	GENE	ID=CALB2	GENE	ID=IBSP	GENE	ID=RUNX1		
GENE	ID=TMPRSS4	GENE	ID=CTRB2	GENE	ID=CDH6	GENE	ID=KANSL1L	GENE	ID=RUNX2		
GENE	ID=CAPN14	GENE	ID=GCG	GENE	ID=CDK18	GENE	ID=KCND2	GENE	ID=SATB2		
GENE	ID=GJB6	GENE	ID=GP2	GENE	ID=CDK19	GENE	ID=KCNJ16	GENE	ID=SCN1A		
GENE	ID=KRT4	GENE	ID=PRSS1	GENE	ID=CEACAM1	GENE	ID=KCNN2	GENE	ID=SERPINB3		
GENE	ID=LY6K	GENE	ID=REG1A	GENE	ID=CHGB	GENE	ID=LPHN3	GENE	ID=SFRP2		
GENE	ID=DAPK1	GENE	ID=REG1B	GENE_	ID=CKM	GENE	_ID=LPP	GENE	ID=SFTPD		
GENE	ID=LRP2	GENE	ID=CELA3B	GENE_	ID=COL10A1	GENE	ID=MALT1	GENE_	ID=SIM2		
GENE	ID=MYBPC1	GENE	ID=ACPP	GENE_	ID=CTNND2	GENE	ID=MAP4K2	GENE_	ID=SLC16A4		
GENE	ID=HEPH	GENE	ID=KLK2	GENE_	ID=CUL3	GENE	ID=MAU2	GENE_	ID=SLC17A1		
GENE	ID=MT3	GENE	ID=KLK3	GENE_	ID=CWH43	GENE	ID=MB	GENE_	ID=SLC17A3		
GENE	ID=TKTL1	GENE	ID=COMP	GENE_	ID=DCLK2	GENE	ID=MIA3	GENE	ID=SLC22A2		
GENE	ID=KRT14	GENE	ID=FBN1	GENE_	ID=DLK1	GENE	ID=MLC1	GENE_	ID=SLC25A37		
GENE	ID=KRT6B	GENE	ID=DSG3	GENE_	ID=DLL3	GENE	ID=MMP13	GENE_	ID=SLC30A4		
GENE	ID=S100A7	GENE	ID=GBP6	GENE_	ID=DNAJB12	GENE	ID=MRPS18C	GENE_	ID=SLC3A1		
GENE	ID=SPRR1A	GENE	ID=KRT5	GENE	ID=DTNA	GENE	ID=MS4A3	GENE	ID=SLC44A1		
GENE	ID=CDH16	GENE	ID=KRT6A	GENE	ID=EGLN3	GENE	ID=MSMB	GENE	ID=SORD		
GENE	ID=FXYD2	GENE	ID=SPRR1B	GENE	ID=ELAC2	GENE	ID=MYH2	GENE	ID=SOX2		
GENE	ID=NAT8	GENE	ID=SPRR3	GENE	ID=ENO3	GENE	ID=MYO1D	GENE	ID=SPAG8		
GENE	ID=APOC3	GENE	ID=CTSE	GENE	ID=ENPEP	GENE	ID=NCAN	GENE	ID=SPDEF		
GENE	ID=C6	GENE	ID=GKN1	GENE	ID=ENPP1	GENE	ID=NOVA1	GENE	ID=SPRY4		
GENE	ID=CRP	GENE	ID=LIPF	GENE	ID=ESM1	GENE	ID=NPDC1	GENE	ID=ST8SIA3		
GENE	ID=FGA	GENE	ID=PGC	GENE	ID=FAM120A	GENE	ID=NPY	GENE	ID=STMN4		
GENE	ID=FGB	GENE	ID=SPINK1	GENE	ID=FAM66D	GENE	ID=NPY2R	GENE	ID=TCL6		
GENE	ID=FGG	GENE	ID=TFF1	GENE	ID=FBXL8	GENE	ID=NR1H4	GENE	ID=TEF		
GENE	ID=HP	GENE	ID=TFF2	GENE	ID=FERMT1	GENE	ID=OAZ3	GENE	ID=TFF3		

ID	BLCA	BRCA	COAD	KDNY	LIHC	LUAD	ov	PAAD	PRAD	DLBCL	Germ	SARC	SC_all	CESC	HNSC	LUSC
BLCA	217	42	0	4	0	1	0	2	0	0	2	12	9	7	2	0
BRCA	3	964	0	0	0	1	0	0	7	0	0	3	16	7	9	0
COAD	11	3	496	0	1	2	0	3	0	0	26	4	10	9	0	1
KDNY	0	0	0	854	2	0	1	0	0	0	2	1	15	14	0	1
LIHC	0	8	0	11	311	19	0	0	0	0	9	1	2	0	0	2
LUAD	4	1	0	0	0	503	1	0	0	0	2	3	141	6	0	135
OV	3	6	0	2	1	1	197	1	0	0	2	46	19	15	1	3
PAAD	0	14	2	0	1	1	1	103	0	0	6	17	3	2	0	1
PRAD	1	0	0	0	0	0	0	0	461	0	0	0	0	0	0	0
DLBCL	8	32	0	1	1	2	0	4	0	46	5	8	6	1	1	4
Germ	14	9	4	1	2	13	60	1	0	1	97	15	60	12	16	32
SARC	7	42	1	3	0	0	0	3	0	0	0	93	5	2	3	0
SC_all	79	39	1	0	0	3	0	0	0	0	3	1	1086	173	507	406
NA	0	1	0	1	0	0	0	0	0	0	2	11	0	0	0	0
total	347	1161	504	877	319	546	260	117	468	47	156	215	1372	248	539	585
ID	BLCA	BRCA	COAD	KDNY	LIHC	LUAD	ov	PAAD	PRAD	DLBCL	Germ	SARC	SC_all	CESC	HNSC	LUSC
CESC	66	7	0	0	0	1	0	1	0	0	0	0	259	143	89	27
HNSC	30	43	1	0	0	0	0	0	0	0	0	1	501	29	414	58
LUSC	1	0	0	0	0	11	0	0	0	0	0	0	277	0	4	273
NA	0	8	0	0	0	0	0	0	0	0	0	0	1	1	0	0

eTable2: The results of validation study about tumor classification.

Each column corresponds to the cancer type being analyzed, and each row represents the number of cases for each cancer type as estimated cancer of origin.

In the case of BRCA, 964 out of 1161 samples (83%) were correctly predicted as samples with breast cancer.

				0	②:male		③:female			
ID	Origin	Sample no.	Mut. no.	P(mut ori) ¹⁾	P _m (ori) ²⁾	①×②	P _f (ori) ³⁾	①×③	P _m (ori mut)	P _f (ori mut)
BLCA	Bladder	127	4	3.1%	56,390	1,776	18,300	576	15%	2%
BRCA	Breast	482	65	13.5%	2,360	318	232,670	31,377	3%	83%
COAD	Colon	212	5	2.4%	48,450	1,143	48,380	1,141	10%	3%
KIRC	Kidney	415	0	0.3%	39,140	116	24,780	74	1%	0%
LIHC	Liver	196	1	0.5%	24,600	126	8,590	44	1%	0%
LUAD	Lung	230	6	2.6%	46,400	1,210	43,284	1,129	10%	3%
OV	Ovarian	316	4	1.3%	NA	NA	21,980	278	NA	1%
PAAD	Panc	90	1	1.1%	23,530	261	22,890	254	2%	1%
PRAD	Prostate	302	3	1.0%	233,000	2,315	NA	NA	20%	NA
STAD	Stomach	287	36	12.5%	13,730	1,722	8,490	1,065	15%	3%
LMH	Lymphoma	48	0	0.0%	38,270	0	32,530	0	0%	0%
GERM	Germ cell	156	0	0.0%	8,820	0			0%	
SARC	Sarcoma	1484	0	0.0%	6,550	0	5,470	0	0%	0%
CE	Cervical	36	2	5.6%	NA	NA	12,360	687	NA	2%
ESO	Eso	126	15	11.9%	14,660	1,745	3,510	418	15%	1%
HN	Head_Neck	302	9	3.0%		0		0	0%	0%
LUSC	Lung	178	5	2.8%	29,000	815	27,053	760	7%	2%
	Total				584,900	11,548	510,287	37,803	100%	100%

eTable3: The example of prior probability for *ERBB2* gene alteration

	Site-Specific Therapy
	(<i>n</i> = 97)
Subsequent radiotherapy, n (%)	20 (20.6%)
Subsequent systemic therapy, ^a n (%)	56 (57.7%) ^b
Chemotherapy	
Platinum agent	26 (26.8%)
Taxane	25 (25.8%)°
Gemcitabine	14 (14.4%)
5-Fluorouracil	11 (11.3%)
Anthracycline	5 (5.2%)
Topoisomerase inhibitor	11 (11.3%)
Vinca alkaloid	2 (2.1%)
Other ^c	9 (9.3%)
Molecularly targeted agents	
VEGF inhibitor	8 (8.2%)
EGFR-TKI	1 (1.0%)
Endocrine therapy	1 (1.0%)
Immunotherapy	8 (8.2%)
Experimental therapy	4 (4.1%)

eTable4. Details of Poststudy Cancer Therapy

^aPatients may have received more than one type of subsequent therapy.

^bNumber of patients who received at least one line of systemic therapy.

^cIncludes eribulin, trifluridine/tipiracil, cyclophosphamide, pemetrexed, and trabectedin. Abbreviations: VEGF, vascular endothelial growth factor; EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor.

	All C	Grades	Grade ≥3		
Adverse Event	No.	%	No.	%	
Nonhematologic				•	
AST increased	48	49.5	6	6.2	
Anorexia	46	47.4	7	7.2	
ALT increased	43	44.3	6	6.2	
Nausea	41	42.3	6	6.2	
Fatigue	36	37.1	5	5.2	
Constipation	29	29.9	0	0	
Creatinine increased	25	25.8	1	1.0	
Sensory neuropathy	24	24.7	1	1.0	
Fever	21	21.6	1	1.0	
Diarrhea	19	19.6	4	4.1	
Alopecia	19	19.6	1	1.0	
Hematologic					
WBC decreased	53	54.6	21	21.6	
Neutrophil decreased	58	59.8	27	27.8	
Thrombocytopenia	63	64.9	11	11.3	
Anemia	62	63.9	15	15.5	

eTable 5. Adverse Events of Any Grade in at Least 10% of Patients (n = 97)

Adverse events are defined according to MedDRA preferred terms. Abbreviations:

AST, aspartate aminotransferase; ALT, alanine aminotransferase; WBC, white blood cell.

eFigure1. Patient Disposition

