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1. Search strategy   

Table S1. Search strategy for each database, number of results, and execution date.  

 

Database Query Results Upper limit 

PubMed ("Fas-Associated Death Domain Protein"[MH] OR ("Fas-

Associated Death Domain Protein"[ALL]) OR 

"FADD"[ALL]) AND (“head”[MH] OR “head”[ALL] OR 

“neck”[MH] OR “neck”[ALL] OR "mouth"[MH] OR 

"mouth"[ALL] OR "oral"[ALL] OR "pharynx”[MH] OR 

pharyn*[ALL] OR oropharyn*[ALL] OR 

nasopharyn*[ALL] OR hypopharyn*[ALL] OR 

"larynx”[MH] OR laryn*[ALL] OR "nose”[MH] OR 

“nose”[ALL] OR “nasal”[ALL]) AND ("carcinoma, 

squamous cell"[MH] OR "carcinoma"[ALL] OR "Head and 

Neck Neoplasms"[MH] OR neoplas*[ALL] OR 

“cancer”[ALL]) 

96 February, 

2020 

Embase ('Fas associated death domain protein'/exp OR ('fass' N4 

'associated' N4 'death' N4 'domain') OR 'FADD') AND 

('head'/exp OR 'head' OR 'neck'/exp OR 'neck' OR 

'mouth'/exp OR 'mouth' OR 'oral' OR 'pharynx'/exp OR 

'pharyn*' OR 'oropharyn*' OR 'nasopharyn*' OR 

'hypopharyn*' OR 'larynx'/exp OR 'laryn*' OR 'nose'/exp OR 

'nose' OR 'nasal') AND ('squamous cell carcinoma'/exp OR 

'carcinoma' OR 'head and neck cancer'/exp OR 'cancer' OR 

'neoplas*') 

184 February, 

2020 

Web of 

Science 

TS=(FADD OR “Fas associated death domain protein”) 

AND TS=(head OR neck OR mouth OR oral OR pharyn* 

OR oropharyn* OR nasopharyn* OR hypopharyn* OR 

laryn* OR nose OR nasal) AND TS=(“squamous cell 

carcinoma” OR neoplas* or cancer) 

149 February, 

2020 

Scopus TITLE-ABS-KEY((“FADD” OR “Fas associated death 

domain protein”) AND ("head" OR "neck" OR "mouth" OR 

"oral" OR "pharyn*" OR "oropharyn*" OR "nasopharyn*" 

OR "hypopharyn*" OR "laryn*" OR "nose" OR "nasal") 

AND (“squamous cell carcinoma” OR “neoplas*” or 

“cancer”)) 

119 February, 

2020 

Total 548 
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Table S2. Characteristics of the analyzed studies (n=13). 

Study Year Country Language 
Alteration analyzed 

(sample size) 
Tumor site 

(n, subsites) 
Sex, 
M/F 

Age. 
years 

Tobacco Alcohol 
recruitmen

t 
period 

therapy 

Follow-
up, 

months 

Study 
design 

Outcome 
(estimate) 

Data 
Source 

Funding 
Conflict of 

interest 
Methods 

Anti-FADD 
antibody 

IHC 
pattern 

IHQ Cutoff, % 
FADD+, 

% 

Gibcus et al. 2007 Multicentric: 

Netherlands 

(3 Centers) 

Spain  

(1 Center) 

English FADD  

overexpression 

(140 cases; missing 34) 

pFADD 

overexpression 

(133 cases; missing 41 ) 

Larynx 

(NR) 

135/ 

39 

 

Median: 

64 

Range: 

34-89 

NR NR NR Sx, Rt <60 O,R,L OS  

DSS  

(HR) 

survival analysis: 

univariate Cox 

regression 

analysis 

Government 

and University 

grants 

 

 

NR IHQ (o) 

clone A66-2, 

monoclonal 

1:100  

 

(p) 

Ser194 

pFADD 

Polyclonal 

1:25 

mixed 

nuclear 

cytoplasmic 

NR (o) 

44.28 

 

(p) 

45.86 

Haili et al.  2010 China 

 

 

 

Chinese FADD overexpression 

(40 cases) 

Larynx 

(glottis 30, 

supraglottis 10) 

37/3 Mean: 

61.7 

Range: 

41-85 

NR NR 2004-2005 Sx ≤60 O,R,L OS  

N status 

stage 

histological 

grade 

(OR) 

Clinocpathological 

characteristics: raw 

NR NR IHQ NR, 

Polyclonal 

cytoplasmic NR 80.00 

Paprinjumrune et al. 2010 Japan 

 

 

English FADD amplification 

(30 cases) 

FADD overexpression 

(60 cases) 

Oral cavity 

(tongue60) 

(a) 

20/10 

 

(o) 

39/21 

 

 

(a) 

Mean: 

55.56 

Range: 

26-84 

 

(o) 

Mean: 

56.78 

Range: 

23-84 

 

NR NR NR Sx <60 O,R,L DDS  

(HR) 

N status 

Stage 

histological 

grade 

(OR) 

survival analysis: 

estimated from  

Kaplan-Meier curves  

 

Clinocpathological 

characteristics: raw 

NR NR 

(a)  

rt-PCR 

 

(o) 

 IHQ 

NR, 

Monoclonal 

1:40 

mixed 

nuclear 

cytoplasmic 

29.2 

(based on 

 tertiles) 

(a): 

43.33 

 

(o): 

66.66 

Schrijvers et al. 2012 Multicentric: 

Netherlands 

(>10 Centers) 

 

 

English FADD  

overexpression 

(92 cases) 

pFADD 

overexpression 

(92 cases) 

Larynx 

(glottis 92) 

82/10 Median: 

65.0 

 

Range: 

40-86 

+65 

-4 

missing 

23 

+50 

-25 

missing 

17 

1997-2004 Rt 60 O,R,L OS 

LR 

(HR) 

survival analysis: 

LR:multivariate Cox 

regression 

Analysis 

(adjousted for FADD 

and pFADD 

overexpression) 

 

OS:univariate Cox 

regression 

analysis 

NR None IHQ (o): 

clone A66-2, 

monoclonal 

1:100  

 

(p): 

NR, 

1:25 

(o) 

cytoplasmic 

 

(p) 

nuclear 

(o) 

NR 

 

(p) 

71.0 

(based on  

curve analyses) 

(o) 

22.82 

 

(p): 

67.39 

Rasamny et al. 2012 USA 

 

 

 

English FADD  

overexpression 

(222 cases) 

 

HNSCC 

(Oral cavity 82, 

Orophatynx 33, 

Hypopharynx16  

Supraglottis 57, 

Glottis 27,  

sinus 7) 

168/ 

54 

Mean:  

57.9 

+185 

-37 

+124 

-72 

 

1990-1999 Sx <240 O,R,L OS 

DSS 

DFS 

(HR) 

T status 

N status 

stage 

(OR) 

survival analysis: 

multivariate Cox 

regression 

Analysis 

(OS adjusted for 

alcohol, site, N status, 

stage and cyclinD1; 

DDS: alcohol, site, TN 

status, stage and cyclinD1;  

DFS: site, Nstatus, 

stage and cyclinD1) 

 

Clinicopathological 

characteristics: raw 

None None IHQ clone A66-2, 

monoclonal 

1:100  

mixed 

nuclear 

cytoplasmic 

based on  

intensity 

26.12 

Fan et al. 2013 USA 

 

 

English FADD 

Overexpression 

(197 cases, missing 7; 

survival data derived 

from N+ patients, 97 

cases) 

 

HNSCC 

(oral cavity, 

larynx, 

oropharynx, 

n=NR) 

130/ 

74 

NR NR NR NR Sx ≤96 O,R,L OS 

DFS 

(HR) 

N status 

(OR) 

Survival analysis: 

estimated from  

Kaplan-Meier curves  

 

Clinocpathological 

characteristics: raw 

Government 

and University 

grants 

 

None IHQ clone H181, 

polyclonal 

1:500 

cytoplasmic N status: ≥10 

 

OS, DFS: 

based on cell 

count and  

intensity  

Nstatus: 

87.31 

  

OS,DFS: 

52.57  
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Table S2. Characteristics of analyzed studies (n=13) (continuation). 
Pattje et al. 2013 Netherlands English FADD 

Overexpression 

(177 cases) 

 

HNSCC 

(Oral  

cavity 100, 

Oropharynx 30, 

Hypopharynx 8, 

Larynx 39) 

114/ 

63 

Median: 

59 

Range:  

24-90 

NR NR 1993-2003 Sx, Rt 36-60 O,R,L T status 

N status 

margins 

extracapsu- 

lar spread 

(OR) 

Clinocpathological 

characteristics: raw 

NR NR IHQ clone  

clone A66-2, 

monoclonal 

1:100  

 

cytoplasmic based on 

intensity 

55.93 

Ribeiro et al. 2014 Portugal English FADD amplification 

(30 cases) 

Oral cavity 

(Tongue 13, 

 floor of 

mouth12, 

buccal  

mucosa 4, 

palate 1) 

26/4 Median: 

63 

Range:  

37-84 

+20 

-10 

NR 2010-2012 Sx, Rt,Ct NR O,R stage 

(OR) 

Clinocpathological 

characteristics: raw 

University 

grants 

  

Two authors served 

as manufacturers of 

MLPA probemixes 

MLPA       66.66 

Li et al. 2014 China English FADD overexpression 

(248 cases) 

Nasopharynx 

248 

187/ 

61 

Median: 

47.5 

Range:  

17-83 

NR NR NR Sx 10-125 O,R,L OS 

(HR) 

N status 

stage 

(OR) 

Survival analysis: 

multivariate Cox 

regression 

Analysis 

(OS adjusted for N 

status, stage, histologic 

grade, age, sex and 

treatment) 

 

Clinocpathological 

characteristics: raw 

Government 

grants 

None IHQ clone H181, 

polyclonal 

1:500 

mixed 

nuclear 

cytoplasmic 

based on cell 

count and 

intensity  

63.7 

van Kempen et al. 2015 Netherlands English FADD 

amplification 

(164 cases) 

Oral cavity 164 98/66 Median: 

61.0 

Range:  

23-90 

+83 

-81 

 

+88 

-76 

1997-2011 Sx, Rt ≤60 O,R,L N status 

stage 

(OR) 

Clinocpathological 

characteristics: raw 

Government 

grants 

Two authors served 

as developpers of 

the MLPA system   

 

MLPA       12.19 

Chien et al. 2016 Taiwan English FADD amplification 

(339 cases) 

FADD overexpression 

(339 cases) 

Oral cavity 

(Buccal 

mucosa 155,  

Tongue 104,  

other 80) 

339/0 Mean:  

50.38 

Range: 

26-82 

+290 

-49 

 

+181 

-158 

1999-2011 Sx,Rt,Ct <168 O,R,L OS 

DFS 

(HR) 

T status 

N status 

histological 

grade 

extracapsu- 

lar spread 

skin, bone, 

perineural, 

vascular 

and 

lymphatic 

invasion. 

(ORs) 

Survival analysis: 

univariate Cox 

regression 

analysis 

 

Clinocpathological 

characteristics: raw 

Government 

and Hospital 

grants 

 

None (a)  

rt-PCR 

 

(o)  

IHQ 

clone H181, 

polyclonal 

1:500 

mixed 

nuclear 

cytoplasmic 

based on  

Intensity 

(a) 

20.35 

 

(o) 

56.93 

Watchers et al.  2017 Netherlands English FADD  

overexpression 

(58 cases; missing 2) 

pFADD 

overexpression 

(60 cases) 

Larynx 

(supraglottis 

60) 

44/16 Median:  

62.0 

Range:  

33-96 

NR NR 1990-2008 Rt ≤169 O, R, L OS 

LR 

N status 

Stage 

Sex 

survival analysis: 

univariate Cox 

regression 

analysis 

 

Clinocpathological 

characteristics: raw 

Government 

grants 

None IHQ (o) 

clone  A66-2, 

monoclonal 

1:100 

 

(p) 

Ser194 

pFADD, 

Polyclonal 

1:25 

(o) 

mixed 

nuclear 

cytoplasmic 

 

(p) 

nuclear 

(o): 

Intensity 

 

(p) 

based on cell 

count and 

intensity 

(o) 

33.33 

 

(p) 

71.66 

Noorlag et al. 2017 Netherlands English FADD overexpression 

(154 cases; missing 4) 

 

Oral cavity 

(tongue 93, 

 floor of  

mouth 65) 

97/61 Mean:  

62.8 

Range:  

23-90 

+83 

-75 

+76 

-82 

2004-2010 Sx, Rt,Ct 12 O,R,L N status Clinocpathological 

characteristics: raw 

Government 

grants 

NR IHQ clone556402, 

monoclonal 

1:100 

cytoplasmic based on  

intensity 

19.48 

IHC, immunohistochemistry; rt-PCR, real-time polymerase chain reaction; CGH, comparative genomic hybridization; MLPA, multiplex ligation probe amplification; Sx, surgery; Rt, radiotherapy; CT, chemotherapy; (a),  FADD gene amplification; (o)  FADD  overexpression;  (p) pFADD overexpression; N/A, not available. 
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3. Qualitative analysis 

3.1. Figure S1. Graphic representation of the risk of bias (QUIPS tool) 

 

A summary table of review authors' judgements for each risk of bias domain for each study using Quality in 

Prognosis Studies (QUIPS) tool. An overall rating was obtained based on weaknesses in critical domains(*).   

Green, low risk of potential bias; yellow, moderate; red, high.  
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3.2. Figure S2. Porcentual quantification of the risk of bias  

 

A plot of the porcentual quantification of the risk of potential bias across studies for each risk of bias domain, assessed with the QUIPS tool. An 

overall rating was obtained based on weaknesses in critical domains(*). Green, low risk of potential bias; yellow, moderate; red, high. 

Moderate risk of biasLow risk of bias High risk of bias

Study participation

Study attrition

Prognostic factor measurement*

Outcome measurement

Study confounding*

Statistical analysis and reporting

Overall risk of bias

0% 25% 50% 75% 100%
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3.3 List S1. Explanation of risk of bias across studies for each domain 

Domain 1 - Study participation. The risk of this bias was high in 15.39% of the reviewed 

studies, moderate in 46.15%, and low in 35.46% (Fig. S2,3). The potential biases were 

the inadequate description of patient characteristics (age, sex, anatomical subsites, 

tobacco and/or alcohol consumption).  

Domain 2 - Study attrition. The risk of this bias was moderate in 7.69% of the studies, 

and low in 92.31% (Fig. S2,3), most frequently due to insufficient or no data on the 

follow-up period. Although the overall score for this domain was considered optimal for 

all studies, none described any attempt to gather information on patients who dropped out 

or on their characteristics. This is essential to ensure that the participants not lost to 

follow-up adequately represent the study sample. 

Domain 3 - Prognostic factor measurement. The bias risk was high in 30.77% of the 

studies, moderate in 7.69%, and low in 61.54% (Fig. S2,3). The most frequent biases 

were due to insufficient information on the immunohistochemical technique or on scoring 

system for measuring FADD expression levels. More important limitations such as 

FADD expression not measured in a similar way for all outcomes or the application of 

inappropriate cutoff points (e.g., use of optimized cutoff points based on data analysis, 

which can introduce strong biases in research studies) were also present. 

Domain 4 - Outcome measurement. The risk of this bias was high in 30.77% of the 

studies, and low in 62.23% (Fig. S2,3). The potential biases were the non-definition of 

survival endpoints (essential due to the lack of international consensus on survival 

endpoints) and the failure to report the classification system used (e.g., the AJCC/UICC 

TNM staging systems and/or editions, subject to periodic changes).  

Domain 5 - Study confounding. The risk of this bias was high in 76.92% of the studies, 

moderate in 15.39%,  and low in 7.69% (Fig. S2,3), finding the highest risk of potential 

bias in this domain. The most frequent potential biases were the failure to consider 

confounders in the study design or to measure all potential confounders (essentially 

tobacco and alcohol use). Although in some cases multivariable analyses were performed 

adjusting for potential confounders, no study provided a priori clear definitions of these 

factors considered or subsequently discussed them or the biological mechanisms by 

which they might influence the impact of FADD alterations on study variables. 

Domain 6 - Statistical analysis and reporting. The risk of this bias was considered to be 

high in 38.46% of the reviewed articles, moderate in 30.77%, and low in 30.77% (Fig. 

S2,3). The most frequent biases were selective outcome reporting and the lack of essential 

information to determine whether analyses (e.g., Kaplan-Meier curves, confidence 

intervals and number of events in each arm). Most serious potential biases detected were 

inappropriate statistical analyses, erroneous data reporting and the use of odds ratios for 

analyzing time-to-event outcomes. 

Overall quality. It was acceptable and varied among the domains under consideration. 

According to the scoring system - based on weaknesses in critical domains-  only 3 

studies harbored a higher overall risk of bias (Haili et al. 2010; Fan et al. 2013; van 

Kempen et al. 2015)  (Fig. S2,3). 
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4. Meta-analysis on the association between FADD and overall survival 

4.1 FADD alterations and overall survival 

Figure S3. Forest plot graphically representing the stratified analysis of the 

association between FADD alterations and overall survival in patients with 

HNSCC. 

 

 

 

HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio; CI, 

confidence intervals. Random-effects model, inverse-variance weighting (based 

on the DerSimonian and Laird method). A HR > 1 suggests that FADD alterations 

are associated with poor overall survival. Diamonds indicate the pooled HRs with 

their corresponding 95% CIs.  

 

 

 

NOTE: Weights are from random effects analysis

.

.

.

Overall  (I-squared = 74.3%, p = 0.000)

FADD amplification

Gibcus et al.

pFADD overexpression

Subtotal  (I-squared = 46.9%, p = 0.152)

Li et al.

Chien et al.

Fan et al.

Rasamny et al.

FADD overexpression

Gibcus et al.

Subtotal  (I-squared = .%, p = .)

Subtotal  (I-squared = 0.0%, p = 0.496)

Watchers et al.

study

Chien et al.

Schrijvers et al.

Watchers et al.

Schrijvers et al.

2007

2014

2016

2013

2012

2007

2017
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2016

2012

2017

2012

1.45 (1.16, 1.81)
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1.39 (1.03, 1.86)

1.44 (0.70, 2.99)

1.94 (1.20, 3.16)

1.62 (0.98, 2.68)

1.53 (1.10, 2.12)

1.52 (1.28, 1.81)

1.19 (0.83, 1.71)

HR (95% CI)

1.53 (1.10, 2.12)

1.94 (0.67, 5.65)

0.99 (0.98, 1.01)

1.12 (0.49, 2.55)

100.00

9.01

29.72

7.47

12.45

5.86

%

9.05

8.75

11.84

58.45

11.21

Weight

11.84

3.38

16.02

4.95

1.45 (1.16, 1.81)
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1.14 (0.82, 1.56)
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1.39 (1.03, 1.86)
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9.01
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7.47

12.45

5.86

%

9.05

8.75

11.84

58.45

11.21

Weight

11.84

3.38

16.02

4.95
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1.2 .5 1 2 5
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4.2 FADD overexpression and overall survival by geographical area 

Figure S4. Forest plot graphically representing the subgroup meta-analysis by 

geographical area (Asian vs Non Asian) of the association between FADD 

overexpression and overall survival in patients with HNSCC. 

 

 

 

HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio; CI, 

confidence intervals. Random-effects model, inverse-variance weighting (based 

on the DerSimonian and Laird method). A HR > 1 suggests that FADD alterations 

are associated with poor overall survival. Diamonds indicate the pooled HRs with 

their corresponding 95% CIs.  

 

 

 

 

 

NOTE: Weights are from random effects analysis

.

.

Overall  (I-squared = 0.0%, p = 0.496)

Watchers et al.

study

Gibcus et al.

Asian

Fan et al.

Li et al.

Schrijvers et al.

Subtotal  (I-squared = 52.9%, p = 0.145)

Rasamny et al.

Non-Asian

Subtotal  (I-squared = 0.0%, p = 0.517)

Chien et al.

2017

year

2007

2013

2014

2012

2012

2016

1.52 (1.28, 1.81)

1.19 (0.83, 1.71)

HR (95% CI)

1.74 (1.07, 2.83)

1.44 (0.70, 2.99)

2.27 (1.26, 4.10)

1.94 (0.67, 5.65)

1.66 (1.05, 2.63)

1.94 (1.20, 3.16)

1.51 (1.20, 1.90)

1.39 (1.03, 1.86)

100.00

23.02

Weight

12.72
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4.3 FADD overexpression and overall survival by affected site 

Figure S5. Forest plot graphically representing the subgroup meta-analysis by 

affected site (larynx, oral cavity, nasopharynx and head and neck mixed squamous 

cell carcinomas) of the association between FADD overexpression and overall 

survival in patients with HNSCC. 

 

 

 

HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio; CI, 

confidence intervals. Random-effects model, inverse-variance weighting (based 

on the DerSimonian and Laird method). A HR > 1 suggests that FADD alterations 

are associated with poor overall survival. Diamonds indicate the pooled HRs with 

their corresponding 95% CIs.  
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4.4 FADD overexpression and overall survival by anti-FADD antibody 

Figure S6. Forest plot graphically representing the subgroup meta-analysis by 

anti-FADD antibody (A66-2 vs. H181 clones) of the association between FADD 

overexpression and overall survival in patients with HNSCC. 

 

 

 

HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio; CI, 

confidence intervals. Random-effects model, inverse-variance weighting (based 

on the DerSimonian and Laird method). A HR > 1 suggests that FADD alterations 

are associated with poor overall survival. Diamonds indicate the pooled HRs with 

their corresponding 95% CIs.  
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4.5 FADD overexpression and overall survival by immunostaining pattern   

Figure S7. Forest plot graphically representing the subgroup meta-analysis by 

immunostaining pattern (mixed nuclear-cytoplasmic vs. cytoplasmic) of the 

association between FADD overexpression and overall survival in patients with 

HNSCC. 

 

 

 

HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio; CI, 

confidence intervals. Random-effects model, inverse-variance weighting (based 

on the DerSimonian and Laird method). A HR > 1 suggests that FADD alterations 

are associated with poor overall survival. Diamonds indicate the pooled HRs with 

their corresponding 95% CIs.  
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4.6 Effect of sex on the association between FADD and overall survival.  

Figure S8. Bubble plot graphically representing the univariable meta-regression 

analysis of the potential effect of sex (% of males) on the association between 

FADD and overall survival among patients with HNSCC. 

 

 

 

HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio. The red line 

exhibits the fitted regression line together with blue circles representing the 

estimates from each individual study, sized according to the precision of each 

estimate (the inverse of its within-study variance). 
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4.7 Effect of age on the association between FADD and overall survival 

Figure S9. Bubble plot graphically representing the univariable meta-regression 

analysis of the potential effect of age (mean age of patients, expressed in years) on 

the association between FADD and overall survival among patients with HNSCC. 

 

 

 

HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio. The red line 

exhibits the fitted regression line together with blue circles representing the 

estimates from each individual study, sized according to the precision of each 

estimate (the inverse of its within-study variance). 
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4.8 Effect of clinical stage on the association between FADD and overall 

survival 

Figure S10. Bubble plot graphically representing the univariable meta-regression 

analysis of the potential effect of clinical stage (% of stage III/IV patients) on the 

association between FADD and overall survival among patients with HNSCC. 

 

 

 

HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio. The red line 

exhibits the fitted regression line together with blue circles representing the 

estimates from each individual study, sized according to the precision of each 

estimate (the inverse of its within-study variance). 
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4.9 Effect of follow up period on the association between FADD and overall 

survival 

Figure S11. Bubble plot graphically representing the univariable meta-regression 

analysis of the potential effect of follow up period (expressed In months) on the 

association between FADD and overall survival among patients with HNSCC. 

 

 

 

HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio. The red line 

exhibits the fitted regression line together with blue circles representing the 

estimates from each individual study, sized according to the precision of each 

estimate (the inverse of its within-study variance). 
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5. Meta-analysis on the association between FADD alterations and disease-

specific survival 

Figure S12. Forest plot graphically representing the stratified analysis of the 

association between FADD alterations and disease-specific survival in patients 

with HNSCC. 

 

 

 

HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio; CI, 

confidence intervals. Random-effects model, inverse-variance weighting (based 

on the DerSimonian and Laird method). A HR > 1 suggests that FADD alterations 

are associated with poor disease-specific survival. Diamonds indicate the pooled 

HRs with their corresponding 95% CIs.  
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6. Meta-analysis on the association between FADD alterations and disease-

free survival 

Figure S13. Forest plot graphically representing the stratified analysis of the 

association between FADD alterations and disease-free survival in patients with 

HNSCC. 

 

 

 

HNSCC, head and neck squamous cell carcinoma; HR, hazard ratio; CI, 

confidence intervals. Random-effects model, inverse-variance weighting (based 

on the DerSimonian and Laird method). A HR > 1 suggests that FADD alterations 

are associated with poor disease-free survival. Diamonds indicate the pooled HRs 

with their corresponding 95% CIs.  
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7. Meta-analysis on the association between FADD alterations and T status 

Figure S14. Forest plot graphically representing the stratified analysis of the 

association between FADD alterations and T status (T3/T4 vs. T1/T2) in patients 

with HNSCC. 

 

 

 

HNSCC, head and neck squamous cell carcinoma; OR, odds ratio; CI, confidence 

intervals. Random-effects model, inverse-variance weighting (based on the 

DerSimonian and Laird method). A OR > 1 suggests that FADD alterations are 

associated with a higher T status. Diamonds indicate the pooled ORs with their 

corresponding 95% CIs.  
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8. Meta-analysis on the association between FADD alterations and N status  

8.1 Galbraith plot of the association between FADD alterations and N status 

Figure S15. Galbraith plot of the association between FADD alterations and N 

status in HNSCC, constructed to examine the contributions of individual studies 

to the heterogeneity metrics and identify outliers. It contains additional 

information, allowing the identification of studies (data not showed in Figure 4 

due to graphic purposes). 

 

 

 

OR, odds ratio; SE, standard error. The vertical axis represents the observed effect 

sizes standardized by their corresponding standard errors (y=logOR/SE[logOR]) 

against precision on the horizontal axis (x=1/SE[logOR]). The regression diagonal 

line is projected from the origin (0,0), and the approximate 95% confidence 

intervals run between the two intermittent parallel lines at ±2 units above and 

below the regression line. The studies inside this 95% confidence region were 

represented as green (FADD overexpression), brown (pFADD overexpression) 

and purple (FADD amplification) circles. The study below the confidence limits 

was identified as a significant outlier (Haili et al. 2010, depicted as a red circle), 

contributing disproportionately to the observed heterogeneity.  
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8.2 Sensitivity analysis with the omission of the identified outlier.  

Figure S16. Forest plot graphically representing the stratified analysis of the 

association between FADD alterations and N status (positive vs. negative) in 

patients with HNSCC, with the omission of the outlier (Haili et al. 2010) 

identified in the previous figure (S14). 

 

 

 

HNSCC, head and neck squamous cell carcinoma; OR, odds ratio; CI, confidence 

intervals. Random-effects model, inverse-variance weighting (based on the 

DerSimonian and Laird method). A OR > 1 suggests that FADD alterations are 

associated with a higher T status. Diamonds indicate the pooled ORs with their 

corresponding 95% CIs.  
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9. Meta-analysis on the association between FADD alterations and clinical 

stage 

Figure S17. Forest plot graphically representing the stratified analysis of the 

association between FADD alterations and clinical stage (III/IV vs. II) in patients 

with HNSCC. 

 

 

 

HNSCC, head and neck squamous cell carcinoma; OR, odds ratio; CI, confidence 

intervals. Random-effects model, inverse-variance weighting (based on the 

DerSimonian and Laird method). A OR > 1 suggests that FADD alterations are 

associated with a higher T status. Diamonds indicate the pooled ORs with their 

corresponding 95% CIs.  
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10. Analysis of small‐study effects 

10.1 FADD overexpression and Overall Survival in HNSCC  

Figure S18. A funnel plot of estimated logHR against its standard error, 

graphically representing the analysis of small-study effects on Overall Survival in 

HNSCC.  

 

 

 

SE, standard error; HR, hazard ratio. The black vertical line corresponds to the 

pooled estimated prevalence. The two diagonal intermittent lines represent the 

pseudo-95% confidence interval. The green circles represent the published studies 

reporting the association between FADD overexpression and Overall Survival. 
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10.2 pFADD overexpression and Overall Survival in HNSCC  

Figure S19. A funnel plot of estimated logHR against its standard error, 

graphically representing the analysis of small-study effects on Overall Survival in 

HNSCC.  

 

 

 

SE, standard error; HR, hazard ratio. The black vertical line corresponds to the 

pooled estimated prevalence. The two diagonal intermittent lines represent the 

pseudo-95% confidence interval. The brown circles represent the published 

studies reporting the association between pFADD overexpression and Overall 

survival. 
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10.3 FADD overexpression and Disease-Specific Survival in HNSCC  

Figure S20. A funnel plot of estimated logHR against its standard error, 

graphically representing the analysis of small-study effects on Disease-Specific 

Survival in HNSCC.  

 

 

 

SE, standard error; HR, hazard ratio. The black vertical line corresponds to the 

pooled estimated prevalence. The two diagonal intermittent lines represent the 

pseudo-95% confidence interval. The green circles represent the published studies 

reporting the association between FADD overexpression and Disease-Specific 

survival. 
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10.4 FADD overexpression and Disease-Free Survival in HNSCC  

Figure S21. A funnel plot of estimated logHR against its standard error, 

graphically representing the analysis of small-study effects on Disease-Free 

Survival in HNSCC. 

 

 

SE, standard error; HR, hazard ratio. The black vertical line corresponds to the 

pooled estimated prevalence. The two diagonal intermittent lines represent the 

pseudo-95% confidence interval. The green circles represent the published studies 

reporting the association between FADD overexpression and Disease-Free 

survival. 
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10.5 FADD overexpression and T status in HNSCC  

Figure S22. A funnel plot of estimated logOR against its standard error, 

graphically representing the analysis of small-study effects on T status in HNSCC. 

 

 

 

SE, standard error; OR, odds ratio. The black vertical line corresponds to the 

pooled estimated prevalence. The two diagonal intermittent lines represent the 

pseudo-95% confidence interval. The green circles represent the published studies 

reporting the association between FADD overexpression and T status. 
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10.6 FADD overexpression and N status in HNSCC 

Figure S23. A funnel plot of estimated logOR against its standard error, 

graphically representing the analysis of small-study effects on N status in 

HNSCC. 

 

 

 

SE, standard error; OR, odds ratio. The black vertical line corresponds to the 

pooled estimated prevalence. The two diagonal intermittent lines represent the 

pseudo-95% confidence interval. The green circles represent the published studies 

reporting the association between FADD overexpression and N status. 
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10.7 FADD amplification and N status in HNSCC  

Figure S24. A funnel plot of estimated logOR against its standard error, 

graphically representing the analysis of small-study effects on N status in 

HNSCC. 

 

 

SE, standard error; OR, odds ratio. The black vertical line corresponds to the 

pooled estimated prevalence. The two diagonal intermittent lines represent the 

pseudo-95% confidence interval. The purple circles represent the published 

studies reporting the association between FADD amplification and N status. 
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10.8 FADD overexpression and Clinical Stage in HNSCC  

Figure S25. A funnel plot of estimated logOR against its standard error, 

graphically representing the analysis of small-study effects on Clinical Stage in 

HNSCC. 

 

 

 

SE, standard error; OR, odds ratio. The black vertical line corresponds to the 

pooled estimated prevalence. The two diagonal intermittent lines represent the 

pseudo-95% confidence interval. The green circles represent the published studies 

reporting the association between FADD overexpression and Clinical Stage. 
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10.9 FADD amplification and Clinical Stage in HNSCC  

Figure S26. A funnel plot of estimated logOR against its standard error, 

graphically representing the analysis of small-study effects on Clinical Stage in 

HNSCC. 

 

 

 

SE, standard error; OR, odds ratio. The black vertical line corresponds to the 

pooled estimated prevalence. The two diagonal intermittent lines represent the 

pseudo-95% confidence interval. The purple circles represent the published 

studies reporting the association between FADD amplification and Clinical Stage. 
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11. Sensitivity analysis (leave-one-out method). 

11.1 FADD overexpression and Overall Survival in HNSCC 

Table S3. Sensitivity analysis of the studies pooled in the meta-analysis on the 

association between FADD overexpression and overall survival in HNSCC. 

Study omitted Estimate [95%  Conf.  Interval] 

Gibcus et al. (2007) 1.4906355 1.2364639 1.7970554 

Schrijvers et al. (2012) 1.513523 1.2639613 1.8123593 

Rasamny et al. (2012) 1.4653386 1.2169495 1.764426 

Fan et al. (2013) 1.5351375 1.271728 1.8531061 

Li et al. (2014) 1.462427 1.2197764 1.7533484 

Chien et al. (2016) 1.5915769 1.2847401 1.9716961 

Watchers et al. (2017) 1.634128 1.3410536 1.9912508 

Combined 1.5190571 1.2772069 1.8067038 

 

 

 

Figure S27. Interval plot graphically representing the sensitivity analysis from 

Table S3. 

 

Sensitivity analysis (“leave-one-out” method) of the meta-analysis results, 

sequentially omitting one study at a time. 
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 Lower CI Limit  Estimate  Upper CI Limit 
 Meta-analysis estimates, given named study is omitted 
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11.2 pFADD overexpression and Overall Survival in HNSCC  

Table S4. Sensitivity analysis of the studies pooled in the meta-analysis on the 

association between pFADD overexpression and overall survival in HNSCC. 

 

Study omitted Estimate [95%  Conf.  Interval] 

Gibcus et al. (2007) .99004078 .97522885 1.0050777 

Schrijvers et al. (2012) 1.1845671 .7444275 1.8849374 

Watchers et al. (2017) 1.4657264 .95400482 2.2519319 

Combined 1.1351864 .82373875 1.5643893 

 

 

 

Figure S28. Interval plot graphically representing the sensitivity analysis from 

Table S4. 

 

Sensitivity analysis (“leave-one-out” method) of the meta-analysis results, 

sequentially omitting one study at a time. 
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11.3 FADD overexpression and Disease-Specific Survival in HNSCC  

Table S5. Sensitivity analysis of the studies pooled in the meta-analysis on the 

association between FADD overexpression and disease-specific survival in 

HNSCC. 

 

Study omitted Estimate [95%  Conf.  Interval] 

Gibcus et al. (2007) 2.4707458 1.5727993 3.8813503 

Gibcus et al. (2007) 2.5222166 1.6052625 3.9629509 

Prapinjumrune et al. (2010) 2.53386 1.6646988 3.856822 

Rasamny et al. (2012) 3.2637589 1.8779233 5.6722884 

Combined 2.6278329 1.7612923 3.9207041 

 

 

 

Figure S29. Interval plot graphically representing the sensitivity analysis from 

Table S5. 

 

Sensitivity analysis (“leave-one-out” method) of the meta-analysis results, 

sequentially omitting one study at a time. 
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11.4 FADD overexpression and Disease-Free Survival in HNSCC  

Table S6. Sensitivity analysis of the studies pooled in the meta-analysis on the 

association between FADD overexpression and disease-free survival in HNSCC. 

 

Study omitted Estimate [95%  Conf.  Interval] 

Rasamny et al. (2012) 1.5476116 1.0908701 2.1955884 

Fan et al. (2013) 1.7553831 1.343407 2.2936978 

Chien et al. (2016) 1.5624157 .89802778 2.718338 

Combined 1.669448 1.2948737 2.1523771 

 

 

 

Figure S30. Interval plot graphically representing the sensitivity analysis from 

Table S6. 

 

Sensitivity analysis (“leave-one-out” method) of the meta-analysis results, 

sequentially omitting one study at a time. 
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11.5 FADD overexpression and T status in HNSCC 

Table S7. Sensitivity analysis of the studies pooled in the meta-analysis on the 

association between FADD overexpression and T status in HNSCC. 

 

Study omitted Estimate [95%  Conf.  Interval] 

Rasamny et al. (2012) .69625008 .48438099 1.0007912 

Pattje et al. (2013) .76719201 .53848147 1.0930433 

Chien et al. (2016) .84092093 .53537071 1.3208567 

Combined .75651804 .553485 1.034029 

 

 

 

Figure S31. Interval plot graphically representing the sensitivity analysis from 

Table S7. 

 

Sensitivity analysis (“leave-one-out” method) of the meta-analysis results, 

sequentially omitting one study at a time. 
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11.6 FADD overexpression and N status in HNSCC  

Table S8. Sensitivity analysis of the studies pooled in the meta-analysis on the 

association between FADD overexpression and N status in HNSCC. 

 

Study omitted Estimate [95%  Conf.  Interval] 

Haili et al. (2010) 2.4207382 1.8429391 3.1796894 

Prapinjumrune et al. (2010) 1.9542508 1.2323474 3.0990419 

Rasamny et al. (2012) 1.9523166 1.1762527 3.2404091 

Fan et al. (2013) 2.3477948 1.5364938 3.5874796 

Pattje et al. (2013) 1.9280764 1.1692497 3.1793711 

Li et al. (2014) 2.0272856 1.2048961 3.4109883 

Chien et al. (2016) 1.9254345 1.1291019 3.2834041 

Watchers et al. (2017) 2.0574157 1.2923254 3.2754593 

Noorlag et al. (2017) 1.9049153 1.1889012 3.0521479 

Combined 2.0714651 1.342135 3.1971207 

 

 

 

Figure S32. Interval plot graphically representing the sensitivity analysis from 

Table S8. 

 

Sensitivity analysis (“leave-one-out” method) of the meta-analysis results, 

sequentially omitting one study at a time. 
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11.7 FADD amplification and N status in HNSCC  

Table S9. Sensitivity analysis of the studies pooled in the meta-analysis on the 

association between FADD amplification and N status in HNSCC. 

 

Study omitted Estimate [95%  Conf.  Interval] 

Prapinjumrune et al. (2010) 2.8390503 1.7593453 4.5813675 

van Kempen et al. (2015) 1.6357899 .46936208 5.7009473 

Chien et al. (2016) 1.7380167 .36254889 8.3318481 

Combined 2.3030481 1.1580079 4.5803063 

 

 

 

Figure S33. Interval plot graphically representing the sensitivity analysis from 

Table S9. 

 

Sensitivity analysis (“leave-one-out” method) of the meta-analysis results, 

sequentially omitting one study at a time. 
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11.8 FADD overexpression and Clinical Stage in HNSCC  

Table S10. Sensitivity analysis of the studies pooled in the meta-analysis on the 

association between FADD overexpression and clinical stage in HNSCC. 

 

Study omitted Estimate [95%  Conf.  Interval] 

Haili et al. (2010) 1.8295856 1.1725422 2.8548083 

Prapinjumrune et al. (2010) 1.5770947 1.0588968 2.3488858 

Rasamny et al. (2012) 1.543282 .99072087 2.4040267 

Li et al. (2014) 2.3139443 1.341679 3.9907749 

Watchers et al. (2017) 1.7638493 1.101193 2.8252671 

Combined 1.7165302       1.1741113 2.5095372 

 

 

 

Figure S34. Interval plot graphically representing the sensitivity analysis from 

Table S10. 

Sensitivity analysis (“leave-one-out” method) of the meta-analysis results, 

sequentially omitting one study at a time. 
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11.9 FADD amplification and Clinical Stage in HNSCC  

Table S11. Sensitivity analysis of the studies pooled in the meta-analysis on the 

association between FADD amplification and clinical stage in HNSCC. 

 

Study omitted Estimate [95%  Conf.  Interval] 

Prapinjumrune et al. (2010) 3.0390019 1.3279233 6.9548697 

Ribeiro et al. (2014) 1.7380167 .36254889 8.3318481 

van Kempen et al. (2015) 1.1265144 .37953743 3.3436351 

Combined 1.923229 .73110068 5.0592345 

 

 

 

Figure S35. Interval plot graphically representing the sensitivity analysis from 

Table S11. 

 

Sensitivity analysis (“leave-one-out” method) of the meta-analysis results, 

sequentially omitting one study at a time. 
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12. Sensitivity analysis (by study subsets) 

12.1 FADD overexpression and Overall Survival in HNSCC by Quality 

Table S12. Sensitivity analysis of the study subsets by overall quality , pooled in 

the meta-analysis on the association between FADD overexpression and overall 

survival in HNSCC. 

 

Study subset omitted Estimate [95%  Conf.  Interval] 

Low Risk of Bias 

(n=6 individual study) 
1.44 0.70 2.98 

High Risk of Bias 

(n=1 individual studies) 
1.54 1.27 1.85 

Combined 1.52 1.28 1.81 

 

 

 

Figure S36. Interval plot graphically representing the sensitivity analysis from 

Table S12. 

 

 

Sensitivity analysis of the meta-analysis results, sequentially omitting one study 

subset at a time. 
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12.2 FADD overexpression and Overall Survival in HNSCC by Source of 

Data 

Table S13. Sensitivity analysis of the study subsets by source of data, pooled in 

the meta-analysis on the association between FADD overexpression and overall 

survival in HNSCC. 

 

Study subset omitted Estimate [95%  Conf.  Interval] 

Univariable analysis (n=4) 1.92 1.37 2.67 

Multivariable model (n=2) 1.40 1.15 1.70 

Kaplan-Meier curves (n=1) 1.54 1.27 1.85 

Combined 1.52 1.28 1.81 

  

 

 

Figure S37. Interval plot graphically representing the sensitivity analysis from 

Table S13. 

 

Sensitivity analysis of the meta-analysis results, sequentially omitting one study 

subset at a time.

Kaplan-Meier curves

Multivariable model

Univariable analysis

1.15 2.671.521.28 1.81

Meta-analysis estimates, given named subset is omitted
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12.3 FADD overexpression and N status in HNSCC by Quality 

Table S14. Sensitivity analysis of the study subsets by overall quality , pooled in 

the meta-analysis on the association between FADD overexpression and N status 

in HNSCC. 

 

Study subset omitted Estimate [95%  Conf.  Interval] 

Low Risk of Bias (n=6) 1.84 0.43 7.78 

High Risk of Bias (n=2) 2.57 1.97 3.34 

Combined 2.42 1.84 3.18 

 

 

 

Figure S38. Interval plot graphically representing the sensitivity analysis from 

Table S14. 

 

 

Sensitivity analysis of the meta-analysis results, sequentially omitting one study 

subset at a time. The outlier previously identified (Haili et al. 2010) was excluded 

for this analysis. 
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13. Evaluation of quality of evidence. Table S15. Grading of Recommendations Assessment, Development and Evaluation (GRADE) system 

Explanations:  

Scoring system: As recommended for observational studies (i.e, all the studies included in this systematic review), an initial baseline overall quality of “LOW QUALITY” of evidence was assigned to each outcome. Then, this rating was “downgraded” based on the following domains: risk of bias, inconsistency, indirectness, imprecision and 
publication bias; or “upgraded” according to magnitude of effect size. The quality of evidence was classified in one of four levels: very low, low, moderate or high. A “serious” score downgrades one level of evidence, “very serious” two levels. A “large effect size” upgrades one level of evidence. 

Risk of bias: Quality was assessed using QUIPS tool. If the overall results from quantitative evaluation were seriously influenced by studies with a higher risk of bias, a “serious” rating was assigned.  

Inconsistency: Heterogeneity was assessed through Q test and I2 statistic, visual inspection analyses of forest and funnel plots, a Galbraith plot, and with subgroups and meta-regression analyses.  If the sources of heterogeneity were identified or true potentially subpopulations were found, the outcomes were scored with a “not serious” rating. 

Indirectness: according to our judgment and strict eligibility criteria applied, all outcomes were considered as sources of direct evidence (i.e., a research that directly compares the exposures which we are interested in, target subpopulations and outcomes of interest). 

Imprecision: Wide confidence intervals, number of studies, small sample size and low event rates were considered for downgrading.  

Publication bias: The variables that entered in meta-analysis (if ≥3 studies) were assessed by funnel plots and tests. Note that according to Sterne et al. 2011 and GRADE recommendations, these methods lack statistical power when the number of primary studies is fewer than ten. 

Other considerations: An odds ratio>2  was considered as a “large effect size”. 

GRADE certainty ratings. Very low: The true effect is probably markedly different from the estimated effect; Low: The true effect might be markedly different from the estimated effect; Moderate: The authors believe that the true effect is probably close to the estimated effect; High: The authors have a lot of confidence that the true effect is 
similar to the estimated effect. 

Outcome Alteration No of studies No of patients Risk of bias Inconsistency Indirectness Imprecision Publication bias Other considerations Overall quality of evidence 

Overall survival FADD amplification 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 

Overall survival pFADD overexpression 3 285 Not serious Not serious Not serious Serious Undetected None       ⨁◯◯◯   VERY LOW 

Overall survival FADD overexpression 7 1,196 Not serious Not serious Not serious Not serious Undetected  None       ⨁⨁◯◯   LOW 

Disease-specific survival pFADD overexpression 1 133 Serious Not serious Not serious Very serious Not applied Large magnitude of effect       ⨁◯◯◯   VERY LOW 

Disease-specific survival FADD overexpression 3 422 Not serious Not serious Not serious Serious Undetected Large magnitude of effect       ⨁⨁◯◯   LOW 

Disease-free survival FADD amplification 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 

Disease-free survival FADD overexpression 3 658 Not serious Not serious Not serious Serious Undetected None       ⨁◯◯◯   VERY LOW 

Local recurrence pFADD overexpression 2 152 Not serious Serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 

Local recurrence FADD overexpression 2 150 Not serious Serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 

T status FADD amplification 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 

T status FADD overexpression 3 727 Not serious Not serious Not serious Serious Undetected None       ⨁◯◯◯   VERY LOW 

N status  FADD amplification 3 533 Not serious Not serious Not serious Serious Undetected  Large magnitude of effect       ⨁⨁◯◯   LOW 
N status pFADD overexpression 1 59 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
N status FADD overexpression 9 1,483 Not serious Not serious Not serious Not serious Undetected Large magnitude of effect       ⨁⨁⨁◯   MODERATE 
Clinical stage FADD amplification 3 224 Not serious Not serious Not serious Very serious Undetected  None       ⨁◯◯◯   VERY LOW 
Clinical stage pFADD overexpression 1 59 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Clinical stage FADD overexpression 5 616 Not serious Not serious Not serious Not serious Undetected None       ⨁⨁◯◯   LOW 
Histological grade FADD amplification 2 369 Not serious Very serious Not serious Very serious Not applied Large magnitude of effect       ⨁◯◯◯   VERY LOW 
Histological grade FADD overexpression 3 439 Not serious Not serious Not serious Serious Not applied None       ⨁◯◯◯   VERY LOW 
Bone invasion FADD amplification 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Bone invasion FADD overexpression 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Skin invasion FADD amplification 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Skin invasion FADD overexpression 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Lymphatic invasion FADD amplification 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Lymphatic invasion FADD overexpression 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Vascular invasion FADD amplification 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Vascular invasion FADD overexpression 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Perineural invasion FADD amplification 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Perineural invasion FADD overexpression 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Margins FADD overexpression 1 177 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Tumor thickness FADD amplification 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Tumor thickness FADD overexpression 1 339 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Extracapsular spread FADD amplification 1 157 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
Extracapsular spread FADD overexpression 2 264 Not serious Not serious Not serious Very serious Not applied None       ⨁◯◯◯   VERY LOW 
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14. Validation of methodological quality 

14.1 List S2. AMSTAR2 checklist 
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14.2 Validation of methodological quality  

Table S16. AMSTAR2 scoring system 

 

Explanation: 

The methodological quality of this systematic review followed the Assesing the Methodological Quality of Systematic Reviews-2 (AMSTAR2) recommendations and was validated using this 
tool. AMSTAR2 was designed to develop, evaluate and validate high quality systematic reviews through 16 items. An overall rating is obtained based on weaknesses(*) in the following  critical 
and non-critical items (the checklist was also included in the precedent appendix page): 

1. Did the research questions and inclusion criteria for the review include the components of PICO? 
2. Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of their review, and did the report justify any significant deviations 
from the protocol?* 
3. Did the review authors explain their selection of the study designs for inclusion in the review? 
4. Did the review authors use a comprehensive literature search strategy?*  
5. Did the review authors perform study selection in duplicate? 
6. Did the review authors perform data extraction in duplicate? 
7. Did the review authors provide a list of excluded studies and justify the exclusions?* 
8. Did the review authors describe the included studies in adequate detail? 
9. Did the review authors use a satisfactory technique for assessing the risk of bias (RoB) in individual studies that were included in the review?* 
10. Did the review authors report on the sources of funding for the studies included in the review? 
11. If meta-analysis was performed, did the review authors use appropriate methods for statistical combination of results?* 
12. If meta-analysis was performed, did the review authors assess the potential impact of RoB in individual studies on the results of the metaanalysis or other evidence synthesis? 
13. Did the review authors account for RoB in individual studies when interpreting/discussing the results of the review?* 
14. Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review? 
15. If they performed quantitative synthesis, did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the 
review?*  
16. Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review? 

High overall rating: No or one non-critical weakness. The systematic review provides an accurate and comprehensive summary of the results of the available studies that address the question 
of interest. 

Tool 
Study  
design 

Items Overall  
rating 

Score 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

AMSTAR2 
Systematic review 
and meta-analysis 

                
HIGH 16 
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15. List of excluded studies with reasons 

15.1 List S3. Records screened and excluded according to titles and abstracts 

- In vitro/animal research (n=87) 

Ahmed, S., Sulaiman, S. A., & Othman, N. H. (2017). Oral administration of Tualang and Manuka honeys modulates 

breast cancer progression in Sprague-Dawley rats model. Evidence-Based Complementary and Alternative Medicine, 

2017. 

An, Y., Sun, L., Derakhshan, A., Carlson, S., Chen, Z., & Waes, C. Van. (2018). Combination of birinapant and 

TRAILR2 agonist antibody enhances cell death in HPV-positive head and neck squamous cell carcinomas. Cancer 
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Review question. 

What is the clinicopathological and prognostic significance of FADD alterations in 

patients with head and neck squamous cell carcinoma? 

 

Searches. 

Studies published in PubMed, Embase, Web of Science and Scopus (upper 

limit=February 2020), using both database thesaurus terms (i.e. MeSH or Emtree terms) 

and free text words:  

 

PubMed - ("Fas-Associated Death Domain Protein"[MH] OR (“fas”[ALL] N4 

“associated”[ALL] N4 “death”[ALL] N4 “domain”[ALL]) OR "FADD"[ALL]) AND 

(“head”[MH] OR “head”[ALL] OR “neck”[MH] OR “neck”[ALL] OR "mouth"[MH] 

OR "mouth"[ALL] OR "oral"[ALL] OR "pharynx”[MH] OR pharyn*[ALL] OR 

oropharyn*[ALL] OR nasopharyn*[ALL] OR hypopharyn*[ALL] OR "larynx”[MH] 

OR laryn*[ALL] OR "nose”[MH] OR “nose”[ALL] OR “nasal”[ALL]) AND 

("carcinoma, squamous cell"[MH] OR "carcinoma"[ALL] OR "Head and Neck 

Neoplasms"[MH] OR neoplas*[ALL] OR “cancer”[ALL]) 

Embase - ('Fas associated death domain protein'/exp OR ('fass' N4 'associated' N4 

'death' N4 'domain') OR 'FADD') AND ('head'/exp OR 'head' OR 'neck'/exp OR 'neck' 

OR 'mouth'/exp OR 'mouth' OR 'oral' OR 'pharynx'/exp OR 'pharyn*' OR 'oropharyn*' 

OR 'nasopharyn*' OR 'hypopharyn*' OR 'larynx'/exp OR 'laryn*' OR 'nose'/exp OR 

'nose' OR 'nasal') AND ('squamous cell carcinoma'/exp OR 'carcinoma' OR 'head and 

neck cancer'/exp OR 'cancer' OR 'neoplas*') 

Web of Science - TS=(FADD OR “Fas associated death domain protein”) AND 

TS=(head OR neck OR mouth OR oral OR pharyn* OR oropharyn* OR 

nasopharyn*OR hypopharyn* OR laryn* OR nose OR nasal) AND TS=(“squamous cell 

carcinoma” OR neoplas* or cancer) 

Scopus - TITLE-ABS-KEY((“FADD” OR “Fas associated death domain protein”) 

AND ("head" OR "neck" OR "mouth" OR "oral" OR "pharyn*" OR "oropharyn*" OR 

"nasopharyn*" OR "hypopharyn*" OR "laryn*" OR "nose" OR "nasal") AND 

(“squamous cell carcinoma” OR “neoplas*” or “cancer”)) 

 

An additional screening will also be performed handsearching the reference lists of 

retrieved included studies and using Google Scholar. 
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Condition or domain being studied. 

Head and neck cancer is the sixth most common type of cancer, accounting for 

approximately 600,000 new cases and 300,000 cancer deaths worldwide annually. 

Around 90% of these neoplasms are histologically squamous cell carcinomas. The 

overall 5-year survival rate of head and neck squamous cell carcinoma (HNSCC) -

which is approximately of 50%- has not changed significantly in the past decades. In 

clinical practice, prognostic evaluation of patients with HNSCC is mainly based on 

traditional TNM classification. Therefore, the future identification and validation of 

prognostic molecular markers is needed to identify high risk patients, and predict 

treatment response. 

 

Participants/population. 

Patients diagnosed with head and neck squamous cell carcinoma. Studies researching 

patients with distinct anatomical location or histopathological type will be excluded. 

 

Intervention(s), exposure(s). 

We will evaluate studies in which the FADD alterations (FADD amplification or 

pFADD/FADD overexpression) were evaluated in tumor biopsies from patients with 

HNSCC. 

Differences in the amplification levels of FADD will be categorized as positive for the 

exposition group, and negative for the control group, based on the cut-off value chosen 

by the authors. Differences in the expression of FADD and/or pFADD will be 

categorized as high expression or overexpression for the exposition group, and low 

expression for the control group, based on the cut-off value chosen by the authors. 

 

Comparator(s)/control. 

Control group will be represented by the group of patients with HNSCC and negative 

FADD amplification or low pFADD or FADD expression. 

 

Primary outcome(s). 

Prognostic variables: overall survival, diseases-specific survival, diseases-free survival, 

local recurrence.  

Clinicopathological variables: T and N status, clinical stage and histological grade. 

 

Secondary outcome(s). 

- Although survival variables are logically the most relevant parameters, all will be 

considered as primary outcomes. 
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Types of study to be included. 

Inclusion criteria will be: 

- Original research articles published in all languages, without time or study design 

restrictions. 

- FADD alterations evaluated in human HNSCCs. 

- Analysis of the outcomes of interest (please, see below) and their relationships with 

FADD alterations. 

 

Exclusion criteria will be: 

-Retractions, case reports, editorials, letters, personal opinions or comments, meeting 

abstracts, books, reviews or meta-analyses.  

- in vitro or animal research.  

- No HNSCC.  

- Other FADD alterations (e.g., polymorphisms) and the combined assessment of the 

amplification of the set of genes of 11q13 chromosomal band (without specific data for 

FADD). 

- Lack essential data for OR/HR (with 95%CI) estimations. 

 

Data extraction  

Data will be gathered on the first author, publication year, country, publication 

language, sample size, FADD alteration under study, methodology, and the frequency 

of alterations, tumor location, sex and age of patients, tobacco and alcohol consumption, 

recruitment period, funding and potential conflict of interest, treatment modality, 

follow-up period and study design. In immunohistochemical studies, information will 

be also recorded on the anti-FADD antibody, intracellular immunostaining 

(nuclear/cytoplasmic/mixed), cutoff point and scoring system.  

 

Risk of bias (quality) assessment. 

The risk of bias in individual studies will be assessed using the Quality in Prognostic 

Studies (QUIPS) tool, developed by Cochrane prognosis methods group. Specifically, it 

contains 6 domains: study participation, study attrition, prognostic factor measurement, 

outcome measurement, study confounding and statistical analysis and reporting. Each 

domain will be rated as low, moderate or high risk of bias for each study. An overall 

rating will be also assigned to individual studies for statistical purposes (i.e., to explore 

the potential influence of quality/risk of bias on pooled estimates). 
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Strategy for data synthesis. 

Odds ratios (OR) and 95% confidence intervals (CI) will be used as the measure of 

association to determine the correlations between FADD alterations and 

clinicopathological features (T status [T3/4 vs, T1/2], N status [N+ vs, N-], clinical 

stage [III/IV vs, I/II] and histological grade [II/III vs, I]). 

Hazard ratios (HR) and 95% CI will be used as the measure of association to estimate 

the impact of FADD alterations on time-to-event parameters (OS, DSS, DFS and LR). If 

HR with 95%CI are not explicitly reported by the authors, they will be calculated by us 

using Parmar and Tierney methods. If only Kaplan-Meier curves are reported, HR data 

will be extracted using En Engauge Digitizer 4.1 software. In both meta-analyses, if 

data are not reported as OR or HR, different ratio metrics will be extracted and pooled 

as an approximation of these measures if appropriate (rare outcomes under study (<5%) 

and an effect size not too high or low). If these measures derived both from univariable 

and multivariable models, data will be extracted from multivariable, reflecting a greater 

adjustment for potentially confounding variables. 

In meta-analysis, OR and HR will be pooled where appropriate (taking into account 

heterogeneity degree with a low number of studies, making it impossible to assess their 

potential sources) using random effects models, which accounts for the possibility that 

are different underlying results among study subpopulations (i.e., HNSCC subsites, 

geographical differences, or based on different experimental methods). Forest plots will 

be constructed to examine the overall effect. Heterogeneity between studies will be 

checked using the χ² based Cochran’s Q test (p<0.10) and Higgins I
2
 statistic. 

Subgroups analyses, meta-regression and sensitivity analyses will also be performed 

(please, see next above).  

Finally, funnel plots will be constructed where appropriate, to assess small-study effects 

such as publication bias. Egger’s and Peters’s tests (p<0.10) will also be used to 

statistically assess funnel plots asymmetry. Stata v.14.1 will be employed for all tests, 

using commands written by the user. 

 

Analysis of subgroups or subsets. 

Preplanned subgroup (geographical area, HNSCC subsite, anti-FADD antibody, and 

immunohistochemical pattern) and meta-regression (sex, age, clinical stage and follow 

up period) analyses will be performed to explore the relations between the precedent 

outcomes in these subgroups. If a low number of studies are included in meta-regression 

analyses, bootstrap methods will be implemented to improve the precision of 

estimations.  

Finally, sensitivity analyses will be performed to explore the influence of individual and 

subsets of studies (by quality and source of data, i.e., derived from curves, univariable 

or multivariable models) on the estimation of the overall effect, to test the reliability of 

the overall pooled results.  

 

 

 


