Cell Systems, Volume 11

Supplemental Information

SYLARAS: A Platform for the Statistical

Analysis and Visual Display of Systemic Immunoprofiling

Data and Its Application to Glioblastoma

Gregory J. Baker, Jeremy L. Muhlich, Sucheendra K. Palaniappan, Jodene K. Moore, Stephanie H. Davis, Sandro Santagata, and Peter K. Sorger

Content

Fig. S1. Experimental Optimization for 12-color Immunophenotyping of GBM-bearing Mice by Flow Cytometry, Related to Fig. 1.

Fig. S2. Optical Spillover Among an Optimized Panel of 12 Mouse Immunophenotyping Antibodies is Fully Abrogated by Spectral Deconvolution, Related to Fig. 1.

Fig. S3. Cell Viability and Sample Counts for the 240 Lymphoid Tissues Analyzed in this Study, Related to Fig. 1.

Fig. S4. Dashboards from a SYLARAS screen of the GL261 Glioma Model, Related to Fig. 2.

Fig. S5. Antigen Expression by Different Mouse Immune Cell Subsets Identified via Prior Knowledge and Unsupervised Clustering Algorithms, Related to Fig. 4.

Fig. S6. Validation of a 12-channel t-CyCIF Antibody Panel, Related to Fig. 7.

Fig. S7. Survey of Glioma-infiltrating Lymphocytes by 12-channel t-CyCIF, Related to Fig. 7.

Table S1. Excel Spreadsheet for Calculating Reagent Dilutions (e.g. Antibodies, FVD, Fc Block,Injectable Anesthesia), Related to Fig. 1.

Table S2. Experimental Details for Performing 12-channel t-CyCIF on Mouse Brain FFPE Tissue

 Sections using Immune Lineage Markers, Related to Fig. 7.

Supplemental Information for SYLARAS

C	type	name	bead size	threshold	# of events	FSC voltage	SSC voltage	
	cytometer setup & tracking CS&T beads		2 µm (dim), 3 µm (mid/bright)	12,910	automated	automated	automated	
	PMT calibration	Sphero Rainbow Fluorescent Particles	3.0 - 3.4 μm	5,000	50,000	538	390	

target	clone	conjugate	detection channel	laser line (nm)	PMT intensity	voltage	band pass filter	long pass filter	type	log
CD45	30-F11	V500	AmCyan	405	24,291	302	525/50	505	area	on
B220	RA3-6B2	PerCP/Cy5.5	PerCP/Cy5.5	488	51,789	495	710/50	690	area	on
CD11b	M1/70	BUV737	BUV737	355	39,925	610	740/35	690	area	on
CD11c	N418	AF647	AF647	594	187,488	374	660/20	640	area	on
CD3ɛ	145-2C11	AF488	AF488	488	59,683	511	525/50	505	area	on
CD4	RM4-5	BV605	BV650	405	60,119	500	670/35	635	area	on
CD49b	ΗΜα2	PE/Cy7	PE/Cy7	488	22,867	604	780/60	755	area	on
CD8a	53-6.7	PE-CF594	PE-Texas Red	488	107,455	440	610/20	600	area	on
F4/80	BM8	PE	PE	488	156,784	519	575/26	505	area	on
Ly6C	HK1.4	APC/Cy7	APC/Cy7	594	55,387	427	780/60	735	area	on
Ly6G	1A8	BUV711	BUV786	405	36,228	650	780/60	750	area	on
live/dead	n/a	eFluor455UV	BUV395	355	29,688	339	450/50	n/a	area	on
CD45 isotype	A95-1	V500	AmCyan	405	24,291	302	525/50	505	area	on
			FSC (25K threshold)			359			area, height, width	off
			SSC			460			area, height, width	off

Fig. S1. Experimental Optimization for 12-color Immunophenotyping of GBM-bearing Mice by

Flow Cytometry, Related to Fig. 1.

(A) Kaplan-Meier Survival Analysis of the GL261 Mouse Glioma Model. Ten (10) C57BL/6J mice were

intracranially engrafted with 3x10⁴ syngeneic GL261 cells at 12-weeks-of-age.

Fig. S1 (continued). Median survival (indicated by the intersecting dashed red lines) was 36-days post tumor engraftment. (**B**) 8-point, 2-fold serial dilution titration curves for 11 immune lineage markers using splenocytes from 12-week-old female C57BL/6J mice. Separation index (SI) was calculated as $(MFI_{pos}-MFI_{neg})/[(84\%_{neg}-MFI_{neg})/0.995]$, where MFI_{pos} = median fluorescence intensity of the first positive peak, MFI_{neg} = median fluorescence intensity of the autofluorescence peak, $84\%_{neg}$ = 84^{th} percentile of the autofluorescence peak (Telford et al., Cytometry A. 2009). Adjacent data points were interpolated with cubic splines. Antibody concentrations resulting in maximum SI values (SI_{max}) are indicated by green dots. Data acquisition gating strategy: (FSC-A vs. SSC-A) \rightarrow (SSC-H vs. SSC-W) \rightarrow (FSC-H vs. FSC-W) \rightarrow (DAPI-A vs. FSC-A) \rightarrow (CD_x vs. count). (**C**) Settings for cytometer setup/tracking and photomultiplier tube (PMT) calibration used to standardize cytometer performance across data acquisition cycles. (**D**) Cytometer run settings. (**E**) High-Throughput Sampler (HTS) configurations.

detection channel:	AmCyan	PCP/Cy5.5	BUV737	AF647	AF488	BV650	PE/Cy7	PE-Tx. Red	PE	APC/Cy7	BV786
CD45 (V500), clone: 30-F11											
PRE-compensation											
POST-compensation											
B220 (PerCP/Cy5.5), clone: RA3-6B2											
PRE-compensation							M				
POST-compensation											
CD11b (BUV737), clone: M1/70											
PRE-compensation			A_								
POST-compensation											
CD11c (AF647), clone: N418											
PRE-compensation											
POST-compensation											
CD3ɛ (AF488), clone: 145-2C11											
PRE-compensation					\mathbb{A}						
POST-compensation					M						
CD4 (BV605), clone: RM4-5											
PRE-compensation						$\mathbf{A}_{\mathbf{A}}$					
POST-compensation											
CD49b (PE/Cv7) clope: HMg2											
PRE-compensation							A				
POST-compensation						\bigwedge					
CD8g (PE-CE594) clone: 53-6 7											
PRE-compensation											
POST-compensation											
F4/80 (PE), clone: BM8											
PRE-compensation									A		
POST-compensation											
Ly6C (APC/Cy7), clone: HK1.4											
PRE-compensation											
POST-compensation											
Ly6G (BV711), clone: 1A8											
PRE-compensation											
POST-compensation											
FVD											
PRE-compensation											

Fig. S2. Optical Spillover Among an Optimized Panel of 12 Mouse Immunophenotyping

Antibodies is Fully Abrogated by Spectral Deconvolution, Related to Fig. 1.

Signal intensity distributions of splenocytes from 12-week-old female C57BL/6J mice immunolabeled with an optimized 11-antibody immunomarker panel then stained with fixable viability dye (FVD). Detection channels of a BD LSR II SORP flow cytometer (columns) are shown pre- and post-compensation. Antibodies (rows) are color-coded according to their target detection channel. Histograms forming the downward diagonal from left to right across the matrix show the placement of the respective channel's compensation gate (blue-green interfaces).

Fig. S3. Cell Viability and Sample Counts for the 240 Lymphoid Tissues Analyzed in this Study, Related to Fig. 1. (**A**) Radial bar chart showing the percentage of dead cells among the dataset's 240 tissue samples. C = control samples, T = GBM samples. Viability only differed between the two groups in the bone marrow at the t = 30-day time point (p = 0.005, two-tailed independent Student's t test, n = 8 mice/group). (**B**) Radial bar charts showing the number of cells in control (left) and GBM (right) mouse tissue samples after weighted random sampling by tissue to balance the number of cells per sample.

Fig. S4. Dashboards from a SYLARAS screen of the GL261 Glioma Model, Related to Fig. 2.

PDF available for download at: https://www.synapse.org/#!Synapse:syn22249852.

Manual Gating

11

11.1.1.11

Π

1.

PhenoGraph

FlowSOM

Fig. S5. Antigen Expression by Different Mouse Immune Cell Subsets Identified via Prior

Knowledge and Unsupervised Clustering Algorithms, Related to Fig. 4.

Boxplot distributions of Logicle-transformed antigen expression by various immune cell subsets from control (naïve) and GBM-bearing (gl261) mice identified through manual gating (top), PhenoGraph clustering (middle), and FlowSOM clustering (bottom). PDF available for download at: https://www.synapse.org/#!Synapse:syn22263977.

See figure legend below for link to high-resolution TIFF.

Fig. S6. Validation of a 12-channel t-CyCIF Antibody Panel, Related to Fig. 7.

(A) 11 antibodies validated on inguinal lymph node FFPE tissue sections from a C57BL/6 mouse;

individual channels (left) and composite image (right) are shown.

Fig. S6 (continued). High-resolution TIFF available for download at:

https://www.synapse.org/#!Synapse:syn22249837. (**B**) X and Y coordinates of cells from the micrograph shown in (A) color-coded according to antibody signal intensity; the percentage of total cells immunoreactive to each antibody is shown.

See figure legend below for link to high-resolution TIFF.

x coordinate

See figure legend below for link to high-resolution TIFFs.

Fig. S7. Survey of Glioma-infiltrating Lymphocytes by 12-channel t-CyCIF, Related to Fig. 7.

(A) A 12-channel (11 antibodies plus nuclear counter stain), 168-tile ($400\mu m \times 300\mu m$ fields of view) mosaic image taken at 40X of the tumor-ipsilateral mouse brain hemisphere bearing GL261 glioma 36days after engraftment. Tile numbers and grid coordinates are indicated in increasing order from the bottom-left to the top-right of the image. Immunomarker colors are as in (C-E). High-resolution TIFF available for download at: https://www.synapse.org/#!Synapse:syn22249837. (**B**) X and Y coordinates of ~9x10⁴ cells extracted from the image shown in (A). Data points representing individual cells are colored according to cell density. Black perimeter outlines the tumor/brain parenchyma interface. (**C**) Examples of B220/CD8 α double-positive cells. Tile coordinates are provided for each image for crossreferencing with the image shown in (A). (**D**) Examples of CD8 α single-positive cells. Tile coordinates are provided for each image for cross-referencing with the image shown in (A). (**E**) Examples of other, lower abundance, immunophenotypes identified in the late-stage GL261 tumor microenvironment. Tile coordinates are provided for each image for cross-referencing with the image shown in (A). Highresolution TIFFs of (C-E) available for download at: https://www.synapse.org/#!Synapse:syn22249837.