OMTN, Volume 22

Supplemental Information

miR-18a Contributes to Preeclampsia

by Downregulating Smad2 (Full Length)

and Reducing TGF- β Signaling

Peng Xu, Zhilang Li, Yongqing Wang, Xin Yu, Xuan Shao, Yu-xia Li, Chun Peng, Yangyu Zhao, and Yan-Ling Wang

Smad2(437aa): Smad2(425aa): Smad2(418aa): Smad2(414aa):	10 MSSILPFTPPV MLQLQFSSII I MCYHTKIFSVI MCYHTK	/VKRLLGW/ IVFLEAG I DLLLSLLILF G I	20 (KSAGGSG F LLFSNSI LCCIQSVK F LLFSNSI	30 GAGGGEO LAAP NVS PT	40 QNGQEEKV SDSSTCSE TCSE SDSSTCSE) VCEKAVKSL\ IWGLSTPNTI IWGLSTPNTI	⁵⁰ /KKLKKTGF <mark>L</mark> DQWDTTGL DQWDTTGL	DELEKAITTO (SFSEQT (SFSEQT YSFSEQT		80 -RSLDGR -RSLDGR -RSLDGR -FSLDGR	90 QVSHR QVSHR QVSHR QVSHR	:90 :78 :71 :67
Smad2(437aa): Smad2(425aa): Smad2(418aa): Smad2(414aa):	100 KGLPHVIYCRI KGLPHVIYCRI KGLPHVIYCRI KGLPHVIYCRI	LWRWPDLH LWRWPDLH LWRWPDLH LWRWPDLH	110 SHHELKAI SHHELKAI SHHELKAI SHHELKAI	120 ENCEYAI ENCEYAI ENCEYAI ENCEYAI	130 FNLKKDEV(FNLKKDEV(FNLKKDEV(FNLKKDEV(CVNPYHYQR CVNPYHYQR CVNPYHYQR CVNPYHYQR	40 VETPVLPPV VETPVLPPV VETPVLPPV VETPVLPPV	150 LVPRHTEI L LVPRHTEI L LVPRHTEI L LVPRHTEI L	160 TELPPLDDYT TELPPLDDYT TELPPLDDYT TELPPLDDYT	170 HS I PENT HS I PENT HS I PENT HS I PENT	180 'NFPAGI 'NFPAGI 'NFPAGI 'NFPAGI	:180 :168 :161 :157
Smad2(437aa): Smad2(425aa): Smad2(418aa): Smad2(414aa):	190 EPQSNYIPETF EPQSNYIPETF EPQSNYIPETF EPQSNYIPETF	PPPGYI SEC PPPGYI SEC PPPGYI SEC PPPGYI SEC	200 GETSDQQ GETSDQQ GETSDQQ GETSDQQ	210 LNQSMDT LNQSMDT LNQSMDT LNQSMDT	220 GSPAELSP GSPAELSP GSPAELSP GSPAELSP	23 TTLSPVNHS TTLSPVNHS TTLSPVNHS TTLSPVNHS	0 LDLQPVTYS LDLQPVTYS LDLQPVTYS LDLQPVTYS	40 EPAFWCSI EPAFWCSI EPAFWCSI EPAFWCSI	250 AYYELNQRV(AYYELNQRV(AYYELNQRV(AYYELNQRV(260 GETFHASQ GETFHASQ GETFHASQ GETFHASQ	270 PSLTVD PSLTVD PSLTVD PSLTVD	:270 :258 :251 :247
Smad2(437aa): Smad2(425aa):	28 GFTDPSNSER GFTDPSNSER	0 FCLGLLSN FCLGLLSN	290 /NRNATVEI /NRNATVEI	300 MTRRHIGI MTRRHIGI	310 GVRLYYI (GVRLYYI (320 GGEVFAECL GGEVFAECL	3 SDSAI FVQS SDSAI FVQS	30 PNCNQRYG' PNCNQRYG'	340 WHPATVCKI WHPATVCKI	350 PPGCNLKI PPGCNLKI	360 FNNQEF FNNQEF	; :360 :348
Smad2(418aa): Smad2(414aa):	GFTDPSNSER GFTDPSNSER	FCLGLLSN	/NR <mark>NATVE</mark> /NR <mark>NATVE</mark>	NTRRHIGI NTRRHIGI	GVRLYYI (GVRLYYI (GGEVFAECL GGEVFAECL	SDSAI FVQS SDSAI FVQS	PNCNQRYG PNCNQRYG	WHPATVCKI WHPATVCKI	PPGCNLKI PPGCNLKI	FNNQEF FNNQEF	:341 :337
Smad2(437aa): Smad2(425aa): Smad2(418aa): Smad2(414aa):	AALLAQSVNQ AALLAQSVNQ AALLAQSVNQ AALLAQSVNQ	GFEAVYQL QFEAVYQL QFEAVYQL QFEAVYQL	380 TRMCTIR TRMCTIR TRMCTIR TRMCTIR	390 SFVKGWGA SFVKGWGA SFVKGWGA SFVKGWGA	400 EYRRQTV1 EYRRQTV1 EYRRQTV1 EYRRQTV1	STPCWI ELI STPCWI ELI STPCWI ELI STPCWI ELI	4 ILNGPLQWL ILNGPLQWL ILNGPLQWL ILNGPLQWL	20 DKVLTQMG DKVLTQMG DKVLTQMG DKVLTQMG	430 SPSVRCSSM SPSVRCSSM SPSVRCSSM SPSVRCSSM	5 :437 5 :425 5 :418 5 :414		

Figure S1. Five conserved peptides and one Smad2(△exon3)-specific peptide were detected in

mass spectrum analysis.

Red sequences indicated the Smad2($\Delta exon3$)-specific peptide. Blue sequences indicated the conserved

peptides of different Smad2 variants.

Figure S2. Validation of the identity of primary CTBs and STBs.

The expression levels of cell type markers, syncytin-2 and hCG- β respectively, were detected by

Western blotting analysis.

Figure S3. miR-18a expression levels in different cells.

Examination of miR-18a expression levels in primary CTBs, primary STBs, HTR8/SVneo, JEG-3 and B6-tert cells. Data are presented as mean \pm SD. *p<0.05 vs. the miR-18a level of primary CTB. [#]p<0.05 vs. the miR-18a level of primary STB.

Figure S4. Validation of the accuracy of pcDNA4-Smad2(FL) plasmid.

The expression of Smad2(FL) in HTR8/SVneo cells transfected with pcDNA4-Smad2(FL) or pcDNA4 plasmid were measured by real-time PCR (A) and western blotting experiments (B). *p < 0.05.