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Figure S1: Method comparison on simulated data (Related to Figure 2). (a) Precision and (b) Recall for the modules
identified by NETPHIX (red), UNCOVER (blue), ProGENI (green), LOBICO (orange), and SigMOD (purple).
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Figure S2: Impact of design choices on the performance of the algorithm (Related to Figure 3) (a) Com-
parison between runs with and without network information. The number of tested modules/drugs with CTRP
(tested) and the number of confirmed modules (validated) with ANOVA test (p < 0.05) are shown. Drugs are
counted when there is at least one associated modules that are validated (b) Comparison between runs with and
without penalty promoting mutual exclusivity (c) Comparison between the combined and separate connectivity
models. (d) Average distances between genes in the selected modules. Distances for genes associated with in-
creased sensitivity, decreased sensitivity, all sensitivity, and between decreased and increased sensitivity genes
are shown.
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Figure S3: Modules identified by NETPHIX (Related to Figure 3). (a-b) Sensitivity module for Vorinostat
(a) and Lapatinib (b). The two modules associated with the drugs are similar but they are associated with
opposite directions. The efficacy of combination therapy with Lapatinib and Vorinostat is confirmed in clinical
trials. (c) Sensitivity module for Cytarabine identified based on the separate connectivity model.
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Figure S4: The average running times of NETPHIX over different k’s (Related to Section S1.1.3)



S1 Transparent Methods

S1.1 NETPHIX method

S1.1.1 Formal definition of the computational problem for NETPHIX

We are given a graph G = (V,E), with vertices V = {1, . . . , n} representing genes and edges E

representing interactions among genes. Let P denote the set of m patients (or cell lines). For each

sample j ∈ P , we are also given a phenotype profile value wj ∈ R which quantitatively measures a

phenotype (e.g., drug response in our study). Let Pi ⊆ P be the set of patients in which gene i ∈ V

is altered. We say that a patient j ∈ P is covered by gene i ∈ V if j ∈ Pi i.e. if gene i is altered in

sample j. We say that a sample j ∈ P is covered by a subset of genes (or vertices) S ⊆ V , if there

exists at least one vertex v in S such that j ∈ Pv.

For simplicity of description, we start with the formulation in the case where the association is

in one direction, for example, with increased drug sensitivity. Later we will show how to extend the

problem to accommodate the case where mixed associations are allowed in the same module. Our

goal is to identify a connected subgraph S of G of at most k vertices such that the sum of the weights

of the samples covered by S is maximized. The weights are computed based on drug sensitivity. To

identify functionally complementary mutations, we can penalize coverage overlap when a sample is

covered more than once by S by assigning a penalty pj for each of the additional times sample j is

covered by S. Let cS(j) be the number of times element j ∈ P is covered by S. For a set S of genes,

we define its weight W (S) as:

W (S) =
∑

j∈∪s∈SPs

wj −
∑

j∈∪s∈SPs

(cS(j)− 1)pj (1)

Thus, we define the optimization problem for one-side association as follows: Given a graph G

defined on a set of n vertices V , a set P , a family of subsets P = {P1, . . . , Pn} where for each i,

Pi ⊆ P is associated with i ∈ V , weights wj and penalties pj ≥ 0 for each sample j ∈ P , find the

subset S ⊆ V of ≤ k connected vertices maximizing W (S).

Since genetic alterations may affect the increase or decrease of drug sensitivity, we extend the



problem to identify genes with associations in both directions in one module. Considering genes with

increased and decreased sensitivity simultaneously can pick up stronger signals of associations and

allow to take into account the interactions between alterations affecting drug responses in different

ways. Let I include the genes associated with increased sensitivity overall (i.e., genes i with positive

total weights,
∑

j∈Pi
wj ≥ 0) and D is the set of genes associated with decreased sensitivity overall

(i.e., genes i with negative total weights,
∑

j∈Pi
wj < 0). Our objective function is then defined as

follows:

W (S) =
∑

j∈∪s∈S
⋂

IPs

wI
j−

∑
j∈∪s∈S

⋂
IPs

(cS⋂
I(j)−1)pIj+(

∑
j∈∪s∈S

⋂
DPs

wD
j −

∑
j∈∪s∈S

⋂
DPs

(cS⋂
D(j)−1)pDj )

(2)

where we define wI
j = wj and wD

j = −wj . We considered two versions of connectivity constraints

among the associated genes as illustrated in Figure 1b. In the first model, we insisted that all selected

genes should be connected whether they are associated with increased or decreased sensitivity. In the

second model, we ensured the connectivity of genes with the same direction of association, resulting

in two connected components in a solution (one for increased and the other for decreased sensitivity).

Although the problem is NP-hard (by a reduction to set cover) even for the simple one-sided case

without network constraints, we formulated it as an integer linear program as described in the next

subsection, which can be solved using a optimization software package such as CPLEX.

S1.1.2 ILP formulation of NETPHIX

Let xi be a binary variable (denoted with xi ∈ B) equal to 1 if gene i ∈ V is selected and xi = 0

otherwise. Let zIj ( resp., zDj ) be a binary variable equal to 1 if sample j is covered by a gene i ∈ I

(resp., i ∈ D) and 0 otherwise. Let yIj (resp., y
D
j ) denote the number of genes in I (resp., D) cover

sample j in the solution. Finally, let wj be the weight of sample j and pj be the penalty for sample j.

When sample j is covered by a gene in I , the weight and penalty remain the same wI
j = wj . When

j is covered by a gene in D, wD
j = −wj . Our ILP formulation for the combined model is defined as

follows:



z(q) = max
∑
j

(wI
j + pIj )z

I
j −

∑
j

pIjy
I
j +

∑
j

(wD
j + pDj )z

D
j −

∑
j

pDj y
D
j (3)

s.t.
∑
i

xi ≤ k, (4)

yIj =
∑

i:j∈Pi,i∈I

xi, ∀j (5)

yDj =
∑

i:j∈Pi,i∈D

xi, ∀j (6)

yIj ≥ zIj , ∀j (7)

yDj ≥ zDj , ∀j (8)

zIj ≥ yIj /k, ∀j (9)

zDj ≥ yDj /k, ∀j (10)

xi, zj ∈ B, yj ∈ D ∀i, j (11)∑
l:il∈E

xl ≥ C(k − 1)(xi − 1) + C

(∑
l∈V

xl − 1

)
∀i ∈ V (12)

Constraint (4) impose that the total number of sets (i.e., selected genes) in the solution is at most

k. Constraints (5) and (6) define how many times each sample has been covered by genes in I and D,

respectively. Constraints (7) (resp., Constraints (8)) ensure that for each sample j ∈ P , if j is covered

by increased (resp., decreased) sensitivity genes in the current solution then the number of times j is

covered by I (resp., D) in the solution is at least 1. Constraints (9) (resp., Constraints (10)) impose

that for each element (sample) j ∈ P , if j is covered by at least one increased (resp., decreased)

sensitivity gene in the current solution then j is covered by I (resp., D).

Constraints (12) were used to ensure the high connectivity of a selected module (the combined

connectivity model). Specifically, the constraints enforce that each selected gene is connected with at

least C fraction of genes in the selected module (other than the gene itself). Note that if C ≥ 0.5, the

module is a connected subgraph since for any two non-adjacent vertices, they must have a common

neighbor (C = 0.5 is used in our analysis). In our study, we used a functional interaction network



(from STRING database), which is relatively dense. For sparse networks where highly connected

components are rare, we may use an alternative approach based on a branch-and-cut algorithm to

ensure the connectivity [Fischetti et al., 2017, Bomersbach et al., 2016, Wang et al., 2017].

Note that Constraints (12) forces the connectivity among all selected genes regardless of the di-

rections of association. For the separate connectivity model, we identify candidate modules so that

the connectivity is only enforced among the genes in I and D, separately. In this case, we replace the

connectivity constraints given in (12) with the following constraints.

∑
l:il∈E,l∈I

xl ≥ C(k − 1)(xi − 1) + C

(∑
l∈I

xl − 1

)
∀i ∈ I (13)

∑
l:il∈E,l∈D

xl ≥ C(k − 1)(xi − 1) + C

(∑
l∈D

xl − 1

)
∀i ∈ D (14)

S1.1.3 Parameters

To obtain a pool of candidate modules for each drug, we generated ILP instances with different sizes k

(k = 1 to 5) and two connectivity options (the combined and separate model). The objective function

can include a penalty to reinforce mutual exclusivity. As for the penalty for increased sensitivity pIj ,

we use the average of the positive phenotype values if the original value of the element was positive

(wj > 0) and assign a penalty equal to its absolute value otherwise. The penalty for decreased

sensitivity pDj is computed in the opposite way. The negative of the average of the negative phenotype

values is used if the original value of the element was negative (wj < 0) and assign a penalty equal to

its absolute value otherwise. The penalties are set to be zero when no penalty is imposed.

We solved the ILP instances to optimality using CPLEX, which can be run in a reasonable amount

of time (See Figure S4 for running times for the simulation instances with different k’s). For the

instances requiring a large amount of resources solving ILP, we set the time limit of 24h and the

memory space limit of 10 GB.



S1.1.4 Selecting final modules

For each candidate module, we run a permutation test to assess the statistical significance of associa-

tion and select maximal modules among significantly associated ones. Note that we allow to choose

multiple modules associated with a drug in the final solution because it is possible that multiple func-

tional components are associated with drug response.

Permutation test: For each candidate module, we assess the statistical significance of the asso-

ciation between their alteration profile and drug response by a phenotype permutation test. In the

phenotype permutation, the dependencies among alterations in genes are maintained, while the asso-

ciation between alterations and the phenotype is removed. Specifically, a permuted dataset under the

null distribution is obtained as follows: the graph G = (V,E) and the sets Pi, i ∈ V are the same as

observed in the data; the values of the phenotype are randomly permuted across the samples (Figure

1c). Once we find the optimal solution for the original instance, we can run ILP as a feasibility test

simply checking if a permuted instance has a solution with the objective value that is greater than or

equal to the optimal.

To estimate the p-value for the solutions obtained by ILP, we used the following standard proce-

dure: 1) we run an algorithm on the real dataD, obtaining a solution with objective function oD; 2) we

generate N permuted datasets as described above; 3) we run a feasibility test by simply checking if a

permuted instance has a solution with the objective value greater than or equal to oD; 4) the p-value

is then given by (e+ 1)/(N + 1), where e is the number of permuted datasets in which our algorithm

found a solution with objective function ≥ oD. We used N = 100 permutations in our analysis and

let pbest is the most significant p-value for the drug among different parameters. We only considered

modules with p-value = pbest . If pbest < 0.05 (FDR < 10%, BH), we considered those modules as

significantly associated modules.

Selecting maximal modules: Among all significantly associated modules obtained based on the

permutation test, we remove redundant modules by selecting only maximal modules. In other words,

let M1,M2, ...,Mt be the set of significantly associated modules for a drug. For any two modules Mi

and Mj such that Mi ⊂Mj , we only include Mj in the final solution for the drug. Therefore, for two



overlapping modules, when one is not a proper subset of the other, both modules may be included.

S1.2 Datasets

Drug sensitivity dataset: The Genomics of Drug Sensitivity in Cancer Project (https://www.

cancerrxgene.org/) consists of drug sensitivity data generated from high-throughput screen-

ing using fluorescence-based cell viability assays following 72 hours of drug treatment. In particu-

lar, we considered the area under the curve for each experiment as a phenotype. These scores are

provided in the file portal-GDSC AUC-201806-21.txt available through the DepMap data

portal (https://depmap.org) for 265 compounds and 743 cell lines, with 736 having alter-

ation data available through the DepMap portal. For the DepMap experiments [Stransky et al., 2015,

Barretina et al., 2012], we used the alteration provided at https://depmap.org/portal/download/

all/. We downloaded the data on July 6th 2018. In particular we used mutation data from the file

portal-mutation-201806-21.csv that includes binary entries for 18,652 gene-level muta-

tions. Additionally, we considered 22,746 amplifications and 22,746 deletions computed from the

gene copy number data in portal-copy number relative-2018-06-21.csv, with an am-

plification defined by a copy number above 2 and a deletion defined by a copy number below -1.

Removing genes not present in the interaction network (see below for the details of interaction net-

work data), we collected 26,917 gene-level alteration profiles (combining amplification, deletion and

mutation).

We also utilized an independent drug response dataset from the Cancer Therapeutics Response

Portal (CTRP) for validation [Seashore-Ludlow et al., 2015]. The drug screening results were down-

loaded from https://portals.broadinstitute.org/ctrp/(Version 2). The area un-

der the curve (AUC) values in v20.data.curves post qc.txt were used for drug response

phenotypes (from CTRPv2.0 2015 ctd2 ExpandedDataset.zip file downloaded on August

2nd, 2019).

Preprocessing drug sensitivity data: For every drug response profile, we excluded samples with

missing values for that phenotype, which results in a different number of samples for each pheno-

type. The number of samples varied between 240 and 705. To generate drug sensitivity values for



the patients, we took the negatives of cell viability (i.e., increased cell survival indicates decreased

sensitivity to the drug and vice versa) and then normalized the phenotype values before running the

algorithm, by using standard z-scores (subtracting the average value
∑

j∈J wj/m from each weightwj

and dividing the result by the standard deviation of the (original) wj’s), in order to have both positive

and negative phenotype values. We excluded genes with low mutation frequency (present in less than

1% samples) from our analyses.

Interaction network: For functional interactions among genes, we used the data downloaded from

STRING database version 10.0 (https://string-db.org). The data integrates multiple types

of interactions including physical interactions. We only included the edges with high confidence

scores (≥ 900 out of 1000) as an input to NETPHIX. The resulting interaction network includes

9,215 nodes and 160,249 edges.

S1.3 Evaluation Details

S1.3.1 Running simulated experiments

For the background of simulation data, we use the same gene alteration table and interactions from

drug sensitivity dataset described previously in Section S1.2. The phenotype values for individual

samples are randomly drawn from normal distribution N(0, 1). We then planted randomly generated

phenotypes and associated modules to the background as follows.

Phenotypes: α fraction of patients P (α) (α = 0.1, 0.2, and 0.3) were randomly selected and

assigned phenotype values drawn randomly from N(z, 0.5) where z is a z-score corresponding to a

cumulative p-value p (p = 0.005, 0.1, 0.99, and 0.995).

Associated gene modules: we randomly selected a gene set S(k) of size k (k = 3, 4, and 5) and

added random alterations in S(k) for patients P (α) so that each patient in P (α) has an alteration in

exactly one gene in S(k). Therefore, the added alterations among the patients P (α) are mutually

exclusive although there may be overlapping mutations due to the background alterations. We also

added random edges among the genes S(k) so that they satisfy the density constraints (C = 0.5)

We generated 10 random instances for each combination of parameters (k, α, z) and ran the

module identification algorithms.



For LOBICO [Knijnenburg et al., 2016], we used its R implementation (https://github.

com/clareli9/rlobico,release 2018/7/27) with the default parameter settings, except the logic

function parameters (K and M ) and the maximum running time. The OR logic model with K = k

and M = 1 was used for increased sensitivity modules and the AND logic module with K = 1 and

M = k for decreased sensitivity modules, where k is the size of the searched module. We limited

the running time of ILP instances to be 24h and reported the best current solution (which may be

suboptimal) when the program stops.

For ProGENI, we downloaded the program from github (https://github.com/KnowEnG/

ProGENI, release 2017/7/12). ProGENI originally utilized gene expression information for drug

prediction but for comparison with NETPHIX, we used gene alteration profiles instead. The profiles

for genes are computed by summing over mutation, deletion and amplification for each gene. There-

fore, each entry in the matrix can have a value between 0 and 2 as deletions and amplifications cannot

co-occur. We ran a robust version of ProGENI, in which gene prioritization is performed on randomly

selected 80% of samples 50 times repeatedly and the resulting ranked lists are aggregated to produce

the final ranking of genes.

S1.3.2 Method comparison with real drug screening dataset.

Identifying modules using different methods. UNCOVER modules are obtained by setting k = 3

(module size) as presented in [Sarto Basso et al., 2019] and for decreased and increased sensitivity

separately. The significance of each module is assessed using permutation tests (using 100 permuted

instances), and we consider the modules with p < 0.05 as significant modules and used for further

analysis. The rankings of genes in ProGENI are computed by performing RobustProGENI with boot-

strap sampling rate of 95% and 100 runs.

Computing distance information. To compute the distances from drug targets to the selected mod-

ules by the algorithms, we used the drug target information given in Table S1. For each drug, we only

used the drug targets present in the functional network that are reachable from the selected modules

and computed the average distance for all pairs of genes. The identified modules are used for NET-

PHIX and UNCOVER while 5 and 20 top-ranked genes are used for ProGENI. We also included 5



and 20 randomly selected genes for control.

For NETPHIX modules, we also computed the average distances within modules. The distances

are computed by computing the pairwise shortest distances within modules and take the average

distances.

Response prediction using random forest regression. We ran RandomForestRegressor in scikit-

learn package to learn and test the models. First, we ran 3-fold nested cross validation with GDSC

dataset for each drug. For each of training sets, the best model is learned based on 3-fold cross vali-

dations inside the training set, with the best parameters estimated using GridsearchCV with combina-

tions of parameters (n estimators = (10, 100), max depth = (None, 10, 100), and min samples split =

(1, 2, 3)). To measure the performance, we used probabilistic concordance index (PCI) defined as in

[Costello et al., 2014, Cokelaer et al., 2015, Emad et al., 2017]. The PCI metric compares the ranks

of the predicted values and actual AUC scores to compute the prediction power.

For NETPHIX, we merged all modules significantly associated with the response for each drug

and used them as features for regression. The number of features for each drug vares between 3 to

15 in total. UNCOVER finds at most one significant module for decreased and increased sensitivity

respectively, and genes in both directions are used as features (total of 3 to 6 genes). For ProGENI,

we used 20 top ranked genes as features for regression.

We found the drug response profiles for 76 drugs in both CTRP and GDSC datasets, among which

44 drugs with consistent drug response profiles were used (pearson correlation coefficient > 0.25) for

validation. For the 44 drugs, we trained the model with GDSC datasets for the modules identified by

the algorithm and tested with the responses in CTRP. The hyperparameters were learned using 4-fold

cross validation in GDSC among the same parameter combinations given above and the best models

were used to predict the drug response values in CTRP.

Validation with CTRP dataset using ANOVA test. To test if the alteration status of selected genes

are associated with different drug responses, we also performed ANOVA tests by testing UNCOVER

and NETPHIX modules identified from GDSC dataset in the drug responses in CTRP. For each mod-

ule, we divided the cell lines into three groups; The cell lines (CI) with alterations in increased



sensitivity genes but no alterations in decreased sensitivity genes, the cell lines (CD) with alterations

in decreased sensitivity genes but no alterations in increased sensitivity genes, and the cell lines (CN )

with no mutations in the identified genes. We then performed ANOVA tests for the cell survival rates

(AUC) in CTRP dataset for the three groups (CI , CD, and CN ), and the modules with p < 0.05 are

considered as validated.
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