Supplementary Information

Training high-strength aluminum alloys to withstand fatigue

Qi Zhang, Yuman Zhu, Xiang Gao, Yuxiang Wu, Christopher Hutchinson*

Department of Materials Science and Engineering, Monash University, Clayton, 3800, VIC,

AUSTRALIA.

*Correspondence to: christopher.hutchinson@monash.edu

Allov	Compositions (wt.%)	Solution treatment	Aging treatment	
			UA	PA
AA2024	$Al-4.6Cu-1.3Mg-(Zn-Mn-Si-Fe-Cr-Ti)$	493° C 1h, air quenching	191° C 30 min	191° C 7h
AA6061	Al-1Mg-0.67Si-(Cu-Zn-Mn-Fe-Cr-Ti)	530° C 1h, air quenching	177° C 20 min	177 °C 20h
AA7050	$Al-2.2Cu-2.3Mg-6.2Zn-(Mn-Si-Fe-Cr-Ti)$	480° C 1h, air quenching	150° C 10min	150° C 10h

Table S1. Alloys compositions and heat treatment conditions for AA2024, AA6061 and AA7050.

Fig. S1. Fatigue strength versus tensile strength for alloy steel, carbon steel, stainless steel and cast iron ¹⁰.

Fig. S2. Bright field TEM images showing initial precipitation microstructure in grains for the under aged (UA) AA2024 (**a**), AA6061 (**b**) and AA7050 (**c**), the peak aged (PA) AA2024 (**d**), AA6061 (**e**) and AA7050 (**f**), and the cyclically trained UA AA2024 (**g**), AA6061 (**h**) and AA7050 (**i**) alloys. The electron beam is closely parallel to <001>_{Al} for AA2024 and AA6061, and is closely parallel to <110>_{Al} for AA7050.

Fig. S3. Engineering stress strain curves for UA, PA and trained AA2024 (**a**), AA6061 (**b**) and AA7050 (**c**) alloys.

Fig. S4. The fatigue crack growth (FCG) da/dN- Δ K curves in log scale for PA and UA AA2024 (a), AA6061 (**b**) and AA7050 (**c**) alloys. Tests were performed with pre-cracks both parallel (1) and perpendicular (1) to the rolling direction (RD).

Fig. S5. Summary of the surface relief size evolution for UA and PA samples during fatigue. The stress amplitudes applied are 200 MPa for AA2024 (**a**), 120 MPa for AA6061 (**b**) and 195 MPa for AA7050 (**c**).

Fig. S6. Bright field TEM images showing the microstructure in PFZ's for PA and HCF treated AA2024 (a), AA6061 (b) and AA7050 (c) alloys. The electron beam is closely parallel to ≤ 001 >_{Al} for AA2024 and AA6061, and is closely parallel to <110>Al for AA7050. AA2024 was fatigued at 185 MPa for 1×10^6 cycles, AA6061 was fatigued at 120 MPa for 2×10^6 cycles and AA7050 was fatigued at 175 MPa for 2×10^6 cycles.

Fig. S7. Cyclic training profiles showing the stress amplitude evolution as a function of cycle number for UA AA2024 (**a**), AA6061 (**b**) and AA7050 (**c**) alloys.

Fig. S8. LAADF-STEM images showing the precipitation microstructure in grains for the cyclically trained UA AA2024 (**a**, **d**), AA6061 (**b**, **e**) and AA7050 (**c**, **f**) alloys. The electron beam direction was parallel to $\langle 100 \rangle$ _{Al} for AA2024 and AA6061 and parallel to $\langle 110 \rangle$ _{Al} for 7050.

Fig. S9. Comparisons between the microstrains in original UA samples, samples after cyclical training and samples after tensile to the same final training stress (σ_f) for AA2024, AA6061 and AA7050 alloys.