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Web Appendix A. Consistency of the Kernel Weighted Mean 

Following the notation in Section 2 in the main text, we compute 𝑘𝑖𝑗  given by 

𝑘𝑖𝑗 =
𝐾 (
𝑝𝑖 − 𝑝𝑗
ℎ

)

∑ 𝐾 (
𝑝𝑖 − 𝑝𝑗
ℎ

)𝑗∈𝑠𝑐

,         𝑖 ∈ 𝑠𝑠, 𝑗 ∈ 𝑠𝑐  

where𝐾(⋅) is a kernel function, ℎ is the bandwidth, 𝑝𝑖 and 𝑝𝑗 are arguments of function 𝑘𝑖𝑗  for the 

propensity scores that are estimated by �̂�(𝒙𝑖
(𝑠), �̂�) and �̂�(𝒙𝑗

(𝑐), �̂�), with the superscripts (𝑠) and (𝑐) 

denoting the survey sample and the cohort, respectively. In addition, it follows that ∑ 𝑘𝑖𝑗𝑗∈𝑠𝑐 = 1. 

The KW pseudo weight for cohort unit 𝑗 is  

𝑤𝑗
𝐾𝑊 =∑ 𝑘𝑖𝑗 ⋅ 𝑑𝑖

𝑖∈𝑠𝑠

, 

where 𝑑𝑖 is the sample weight of the survey sample unit 𝑖, and �̂� = ∑ 𝑑𝑖𝑖∈𝑠𝑠
 is an unbiased estimator 

of the finite population size 𝑁. The cohort KW estimator of the population mean (�̅� = 𝑁−1 ∑ 𝑦𝑘
𝑁
𝑘=1 ) 

is given by  

�̂̅�𝐾𝑊 =
1

�̂�𝐾𝑊
∑ 𝑤𝑗

𝐾𝑊 ⋅ 𝑦𝑗
𝑗∈𝑠𝑐

, 

where �̂�𝐾𝑊 = ∑ 𝑤𝑗
𝐾𝑊

𝑗∈𝑠𝑐 . Notice that  

 �̂�𝐾𝑊 = �̂� (A.1) 

because ∑ 𝑤𝑗
𝐾𝑊

𝑗∈𝑠𝑐 = ∑ ∑ (𝑘𝑖𝑗 ⋅ 𝑑𝑖)𝑖∈𝑠𝑠𝑗∈𝑠𝑐 = ∑ (𝑑𝑖 ⋅ ∑ 𝑘𝑖𝑗𝑗∈𝑠𝑐 )𝑖∈𝑠𝑠 = ∑ 𝑑𝑖𝑖∈𝑠𝑠 . 

 

Theorem 1.  

Suppose in the superpopulation the variable of interest 𝑦 has an expectation 𝐸(𝑦) = 𝜇, where 𝐸 

denotes the expectation with respect to the joint distribution of 𝑦 and covariates x. Assume that the 

cohort and survey sample are selected from a finite population (a simple random sample from a 
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superpopulation) and the distributions of the estimated propensity scores are well overlapping 

between the two samples. If the following conditions are satisfied:  

(a) for the kernel function 𝐾(𝑢), ∫ 𝐾(𝑢)𝑑𝑢 = 1, sup
𝑢
|𝐾(𝑢)| < ∞, and lim

|𝑢|→∞
|𝑢| ⋅ |𝐾(𝑢)| = 0;  

(b) for the bandwidth ℎ = ℎ(𝑛𝑐), ℎ → 0, but 𝑛𝑐 ⋅ ℎ → ∞ as 𝑛𝑐 → ∞; 

(c) exchangeability, 𝐸{𝑦|𝑝(𝒙), cohort} = 𝐸{𝑦|𝑝(𝒙), survey } = 𝐸{𝑦|𝑝(𝒙)}; 

(d) bounded second moment, 𝐸(𝑦2) < ∞; and 

(e) bounded survey sample weights 𝑑𝑖 < 𝑅, for some 𝑅 ∈ ℝ>0, 𝑖 ∈ 𝑠𝑠; 

then the KW estimator of the population mean �̂̅�𝐾𝑊 =
∑ 𝑤𝑗

𝐾𝑊⋅𝑦𝑗𝑗∈𝑠𝑐

∑ 𝑤𝑗
𝐾𝑊

𝑗∈𝑠𝑐

→ 𝜇 in probability as the finite 

population size 𝑁 → ∞, the survey sample size 𝑛𝑠 → ∞, the cohort sample size 𝑛𝑐 → ∞, with 
𝑛𝑐

𝑁
=

𝑂(1). 

 

 

Proof. Suppose in the superpopulation, variable (𝑦, 𝑝(𝒙)) has the joint distribution function 𝐹. The 

finite population consists of (𝑦1, 𝑝1),⋯ (𝑦𝑁, 𝑝𝑁) with (𝑦𝑘 , 𝑝𝑘) being a realization of the random 

vector (𝑦, 𝑝), and with (𝑦1, 𝑝1),⋯ (𝑦𝑁 , 𝑝𝑁) being independent and identically distributed (i.i.d) from 

𝐹. The cohort (𝑦1, 𝑝1),⋯ (𝑦𝑛𝑐 , 𝑝𝑛𝑐) and survey sample (𝑦1, 𝑝1),⋯ (𝑦𝑛𝑠 , 𝑝𝑛𝑠) are two random samples 

of the finite population.  

Under the conditions (a), (b) and (c), it can be proved by applying Theorem 2.1 and 3.1 in 

Noda (1976) that 

𝑦∗ =
∑ 𝐾 (

𝑝 − 𝑝𝑗
ℎ

) ⋅ 𝑦𝑗𝑗∈𝑠𝑐

∑ 𝐾 (
𝑝 − 𝑝𝑗
ℎ

)𝑗∈𝑠𝑐

𝑃
→𝐸(𝑦|𝑝), 

and 
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 𝐸{|𝑦∗ − 𝐸(𝑦|𝑝)|} → 0, (A.2) 

 

Denote 𝑦𝑘
∗ =

∑ 𝐾(
𝑝𝑘−𝑝𝑗

ℎ
)⋅𝑦𝑗𝑗∈𝑠𝑐

∑ 𝐾(
𝑝𝑘−𝑝𝑗
ℎ

)𝑗∈𝑠𝑐

, 𝜇𝑘 = 𝐸(𝑦|𝑝𝑘) for 𝑘 = 1,⋯ ,𝑁 in the finite population. By applying 

(A.2),  

 𝐸(|𝑦𝑘
∗ − 𝜇𝑘|) → 0, (A.3) 

Let �̅�∗ = 𝑁−1∑ 𝑦𝑘
∗𝑁

𝑘=1  and �̅�𝑘 = 𝑁
−1 ∑ 𝜇𝑘

𝑁
𝑘=1  in the finite population, and then it follows 

𝐸(|�̅�∗ − �̅�𝑘|)
𝑃
→0 as 𝑁 → ∞ based on (A.3). By Law of Large Numbers, �̅�𝑘

𝑃
→𝜇. Therefore, 

 𝐸|�̅�∗ − 𝜇| → 0, (A.4) 

as 𝑁 → ∞ and 𝑛𝑐 → ∞.  

Under condition (d), it follows that 𝑉𝑎𝑟(�̅�∗ − 𝜇) → 0 as 𝑛𝑐 → ∞ and 𝑁 → ∞. Hence, by Chebyshev's 

inequality we have  

 �̅�∗ − 𝜇
𝑃
→0. (A.5) 

Denote the Hajek estimator (Hajek 1971) for �̅�∗ as �̂̅�∗ =
1

�̂�
∑ 𝑑𝑖𝑦𝑖

∗
𝑖∈𝑠𝑠 . According to Isaki and Fuller 

(1982), with condition (e) we have 

 �̂̅�∗ = �̅�∗ +𝑂𝑝 (𝑛𝑠
−
1
2), (A.6) 

as 𝑁 → ∞, 𝑛𝑠 → ∞.  

 By (A.5) and (A.6), 

 �̂̅�∗
𝑃
→𝜇. (A.7) 

By the Law of Large Numbers,  

 �̅� = 𝜇 + 𝑂𝑝 (𝑁
−
1
2). (A.8) 

(A.7) and (A.8) together implies  
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 �̂̅�∗ − �̅�
𝑃
→0. (A.9) 

(A.4) and (A.6) together implies  

 𝐸(�̂̅�∗) → 𝜇, (A.10) 

as 𝑁 → ∞, 𝑛𝑠 → ∞, and 𝑛𝑐 → ∞. 

Notice that by applying (A.1), the KW estimator of finite population mean �̂̅�𝐾𝑊 = �̂̅�∗ because  

�̂̅�∗ =
1

�̂�
∑ {𝑑𝑖 ⋅ (∑ 𝑘𝑖𝑗𝑦𝑗𝑗∈𝑠𝑐 )}𝑖∈𝑠𝑠 =

1

�̂�𝐾𝑊
∑ {𝑦𝑗 ⋅ (∑ 𝑘𝑖𝑗𝑑𝑖𝑖∈𝑠𝑠 )}𝑗∈𝑠𝑐 =

1

�̂�𝐾𝑊
∑ 𝑤𝑗

𝐾𝑊 ⋅ 𝑦𝑗𝑗∈𝑠𝑐   

Web Appendix B. Jackknife Variance Estimation for Pseudo-Weighted Estimators  

Suppose that the survey sample be randomly selected from a target population by a stratified 

multistage sample design with 𝐿 strata in the population as described in Section 2.1 of the main text. 

At the first stage of sampling, 𝑚𝑙 clusters (i.e., PSUs) are randomly selected (approximated by 

sampling with replacement) from stratum 𝑙, for 𝑙 = 1,⋯ , 𝐿. The cohort is recruited from 𝐶 study 

centers, which are treated as a random sample of clusters (i.e., PSU’s) from the finite population. We 

combine the cohort with the survey sample and treat the cohort as the (𝐿 + 1)-th stratum in the 

combined sample. The leave-one-out jackknife (JK) variance estimation procedure involves leaving 

one PSU out of the combined sample at a time, adjusting the weights in the survey or cohort for the 

smaller number of sampled PSUs, recomputing new pseudo-weights for the cohort with these adjusted 

weights, re-estimating the quantity of interest, e.g., prevalence, and then estimating the variance as 

the variability across the re-estimated quantities of interest. The modified sample and weights after 

removal of each PSU are called jackknife replicates. The total number of replicates is 𝑅 = ∑ 𝑚𝑙
𝐿+1
𝑙=1 , 

where 𝑚𝐿+1 = 𝐶, i.e., the total number of PSUs and study centers in the survey and cohort. Formally 

the jackknife variance estimation procedure follows as: 
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Step 1. Leave out 𝛼-th PSU (a survey sample cluster or a cohort study center) in stratum 𝑙, with 𝛼 =

1,⋯ ,𝑚𝑙 , and 𝑙 = 1,⋯ , 𝐿 + 1. Then weight up the units in remaining PSU’s in stratum 𝑙 by the ratio 

of the number of PSU’s in 𝑙 to the number of remaining PSU’s, i.e., 
𝑚𝑙

𝑚𝑙−1
. This weight adjustment 

factor for unit 𝑟 ∈ 𝑠𝑐 ∪
∗ 𝑠𝑠 in replicate 𝑙𝛼, 𝑙 = 1,⋯ , 𝐿 + 1 and 𝛼 = 1,⋯ ,𝑚𝑙  can be written as  

𝑓𝑟(𝑙𝛼) = {

    0,         for unit 𝑟 in stratum 𝑙 cluster 𝛼;          
𝑚𝑙

𝑚𝑙 − 1
,   for unit 𝑟 in stratum 𝑙 cluster 𝛼′ ≠ 𝛼;

     1,        otherwise.                                                   

 

Step 2. Refit Model (2.1.1) in the main text with weights of 𝑓𝑟(𝑙𝛼), and then re-estimate the propensity 

score for each unit in the replicate-𝑙𝛼 sample. 

Step 3. Compute pseudo-weights. The smoothed kernel weight for cohort unit 𝑗 borrowed from survey 

unit 𝑖 is 

𝑘𝑖𝑗(𝑙𝛼) =
𝐾 (𝑑(𝒙𝑖

(𝑠), 𝒙𝑗
(𝑐))/ℎ)

∑ 𝐾 (𝑑 (𝒙𝑖
(𝑠), 𝒙𝑗

(𝑐)) /ℎ)𝑗∈𝑠𝑐(𝑙𝛼)

, for 𝑖 ∈ 𝑠𝑠(𝑙𝛼); 𝑗 ∈ 𝑠𝑐(𝑙𝛼) 

where the bandwidth ℎ is the same as obtained from the original combined sample (Korn & Graubard, 

1999 page 89); 𝑠𝑠(𝑙𝛼) and 𝑠𝑐(𝑙𝛼) denote the cohort and survey sample in replicate-𝑙𝛼, respectively. 

The KW pseudo-weight for cohort unit 𝑗 in replicate-𝑙𝛼 is  

𝑤𝑗(𝑙𝛼)
𝐾𝑊 =∑ 𝑘𝑖𝑗(𝑙𝛼) ⋅ 𝑑𝑖 ⋅ 𝑓𝑖(𝑙𝛼)

𝑖∈𝑠𝑠

, for 𝑗 ∈ 𝑠𝑐(𝑙𝛼). 

Step 4. Re-estimate the population mean/prevalence estimate as  

�̂̅�(𝑙𝛼)
𝐾𝑊 = (∑ 𝑤𝑗(𝑙𝛼)

𝐾𝑊

𝑗∈𝑠𝑐(𝑙𝛼)

)

−1

⋅∑ 𝑤𝑗(𝑙𝛼)
𝐾𝑊 ⋅ 𝑦𝑗

𝑗∈𝑠𝑐(𝑙𝛼)

.  

The jackknife variance estimator for �̂̅�𝐾𝑊 is  

𝑣𝑎𝑟(�̂̅�𝐾𝑊) = ∑
𝑚𝑙 − 1

𝑚𝑙
∑(�̂̅�(𝑙𝛼)

𝐾𝑊 − �̂̅�𝐾𝑊)
2

𝑚𝑙

𝛼=1

𝐿+1

𝑙=1

.  
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The PSAS and IPSW jackknife variance estimates are calculated similarly as described above, but 

differ at Steps 2 and 3. At Step 2, the IPSW method estimates propensity scores with weights of 

𝑓𝑖(𝑙𝛼)𝑑𝑖 for each survey unit 𝑖. At Step 3, the PSAS method creates pseudo-weights by partitioning 

the replicate-𝑙𝛼 sample into quintiles of predicted propensity scores, and then dividing the sum of 

survey replicate weights (i.e., ∑ 𝑓𝑖(𝑙𝛼)𝑑𝑖𝑖∈𝑠𝑢𝑏𝑔 , where 𝑠𝑢𝑏𝑔 is the 𝑔-th subclass, 𝑔 = 1,⋯ , 𝐺) by the 

number of cohort units in each quintile. At Step 3, the IPSW method uses the inverse of predicted 

odds as the pseudo-weights. 

Web Appendix C. Simulations: Finite Population Generation 

A finite population of 𝑀 = 3,000 clusters with each cluster composed of 3,000 units was generated 

(population total 𝑁 = 9,000,000). The 2015 one-year estimates at county level from the American 

Community Survey (ACS) were used to generate the finite population of clusters of individuals. For 

example, the four-category race/ethnicity (Non-Hispanic White, Non-Hispanic Black, Other Non-

Hispanic, and Hispanic) from the ACS had the weighted proportions of 𝑜𝑟
(𝛼)
, 𝑟 = 1,⋯ , 4 for the 𝛼-th 

county, 𝛼 = 1,⋯ ,𝑀. Accordingly, the race/ethnicity for individuals in 𝛼-th cluster in the simulated 

finite population is generated by a multinomial distribution with parameter 𝑜(𝛼) =

(𝑜1
(𝛼), 𝑜2

(𝛼), 𝑜3
(𝛼), 𝑜4

(𝛼)). The other variables generated from the ACS estimates included age, using a 

normal distribution with cluster specified mean and variance sex (sex), household income level 

(ℎℎ_𝑖𝑛𝑐), and urban/rural area (urb). We further generated a continuous environmental factor 𝐸𝑛𝑣 ∼

min{4.5,LogNormal(𝜇𝑎, 0.5)} , where 𝜇𝛼 ∼ Uniform(0, 0.5), for 𝛼 = 1,⋯ ,𝑀, resulting in an 

intra-class correlation (ICC) within the clusters of 0.054 for the finite population.  

The disease status 𝑦 (1 for presence and 0 for absence) was generated to have an ICC within 

the clusters of 0.07 for the finite population, with the probability of disease generated by 𝜇 =

expit(𝜸𝒗) (Hunsberger et al., 2008; Oman & Zucker, 2001). The parameter 𝜸 =



8 

 

(−5, 0.5,−1, 1, 0.3, 0.10)𝑇 where the intercept was −5, and the variables in vector 𝒗 included age 

level (=1 if 10-19yrs; =2 if 20-29yrs; =3 if 30-39yrs; =4 if 40-49yrs; =5 if 50-59yrs; =6 if >=60 yrs), 

sex (1 = male and 0 = female), Hispanic (1=Hispanic and 0= otherwise), 𝐸𝑛𝑣, and an interaction 

between age and 𝐸𝑛𝑣. The disease prevalence in the population was 9.59%. A substitute of 𝜇 was 

generated by 𝑧 = 𝜇 + 𝑒, with 𝑒 ∼ Normal(0, 0.0852) in the finite population to reflect situations 

occurs in real data when 𝜇 is not available but related variables are available. The correlation between 

𝑧 and 𝑦 was 𝜌 = 0.30. 

Web Appendix D. Simulations: True Propensity-Score Models Fitted to Weighted and 

Unweighted Sample under Two-Stage Cluster Sampling  

D.1 Description of Sampling Designs in the Simulation 

The cohort and survey sample were randomly selected from the finite population by two-stage cluster 

sampling with each stage using a probability proportional to size (PPS) sampling. The measures of 

size (MOS) of the PPS sampling for the cohort and survey sample selection were functions of 𝑞𝑘
𝑎 =

exp{𝑎 ⋅ (𝛽0 + 𝜷𝒙𝑘)} and 𝑞𝑘
𝑏 = exp{𝑏 ⋅ (𝛽0 + 𝜷𝒙𝑘)}, respectively, for population unit 𝑘, where 𝒙𝑘 is 

a vector of covariates, (𝛽0, 𝜷) is the vector of parameters, 𝑎 and 𝑏 are two real numbers (described 

later). Web Table 1 below describes the two-stage PPS cluster sampling.  

Web Table 1 Two-stage PPS cluster sampling applied in the simulations. 

Sample Design Measure of Size 

(MOS) 

Inclusion Probability 

Cohort 

Stage 1- clusters selected by PPS  ∑ 𝑞𝑘
𝑎

𝑘∈𝑢𝛼

 

𝑝𝑘
(𝑐) =

𝑛𝑐 ⋅ 𝑞𝑘
𝑎

∑ 𝑞𝑘
𝑎𝑁

𝑘=1

 

Stage 2- subjects selected by PPS 𝑞𝑘
𝑎 , 𝑘 ∈ 𝑢𝛼  

Survey  

Stage 1- clusters selected by PPS  ∑ 𝑞𝑘
𝑏

𝑘∈𝑢𝛼

 

𝑝𝑘
(𝑠)
=
𝑛𝑠 ⋅ 𝑞𝑘

𝑏

∑ 𝑞𝑘
𝑏𝑁

𝑘=1

 

Stage 2- subjects selected by PPS 𝑞𝑘
𝑏 , 𝑘 ∈ 𝑢𝛼 
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In the table, 𝑛𝑐 and 𝑛𝑠 are the size of cohort and survey sample, respectively; 𝑢𝛼 is the set of 

individuals from 𝛼-th cluster (𝛼 = 1,⋯ ,𝑀), 𝑁 is the population size; 𝑎 and 𝑏 are real numbers that 

control the difference of the covariate distributions between the cohort and the survey. We let 𝑎 ⋅ 𝑏 ≤

0 so that the cohort and survey oversample people with different characteristics, which generally is 

what occurs in real data. For example, population-based surveys tend to oversample minority 

subpopulations such as Hispanics, but minorities tend to be grossly under-represented in cohort 

studies. According to the cohort and survey sample selection probabilities in Web Table 1, when 𝑎 =

−1 and 𝑏 = 1, population units with larger values of 𝑞𝑘
−1 and 𝑞𝑘 tend to be oversampled in the cohort 

and survey, respectively. The larger |𝑎 − 𝑏| is, the more different the covariate distributions are 

between the cohort and the survey. 

D.2 True Propensity-Score Model assumed by PSAS and KW methods 

Using the same notation in the main text, we denote 𝑠𝑐 and 𝑠𝑠 as the cohort and survey sample 

respectively, and denote 𝐹𝑃 as the finite population from which the 𝑠𝑐 and 𝑠𝑠 are selected. Define 𝑝𝑘 

as the probability of being self-selected in the cohort for 𝑘 ∈ 𝐹𝑃 given it has been selected into the 

combined sample of cohort and survey sample, given by 

𝑝𝑘 = Pr{𝑘 ∈ 𝑠𝑐|𝑘 ∈ 𝑠𝑐 ∪
∗ 𝑠𝑠} =

𝑝𝑘
(𝑐)

𝑝𝑘
(𝑐) + 𝑝𝑘

(𝑠)
, for 𝑘 ∈ 𝐹𝑃. 

where 𝑝𝑘
(𝑐)

 and 𝑝𝑘
(𝑠)

 (defined in Web Table 1) are the inclusion probabilities of cohort and survey 

sample respectively for 𝑘 ∈ 𝐹𝑃. The notation ∪∗ represents the combination of the two samples that 

allows population units to be selected in both cohort and survey. The overlap of 𝑠𝑐 and  𝑠𝑠 will be 

counted twice in the combined sample 𝑠𝑐 ∪
∗ 𝑠𝑠.  
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Accordingly, 1 − 𝑝𝑘 = 𝑝𝑘
(𝑠) (𝑝𝑘

(𝑐) + 𝑝𝑘
(𝑠))⁄  is the probability of 𝑘 ∈ 𝐹𝑃 being selected in the 

survey conditional on being selected into the combined cohort and survey sample. Hence, the log-

odds of the propensity score 𝑝𝑘 can be written as 

log (
𝑝𝑘

1 − 𝑝𝑘
) = log {

𝑝𝑘
(𝑐) (𝑝𝑘

(𝑐) + 𝑝𝑘
(𝑠))⁄

𝑝𝑘
(𝑠) (𝑝𝑘

(𝑐) + 𝑝𝑘
(𝑠))⁄
} = log {

𝑝𝑘
(𝑐)

𝑝𝑘
(𝑠)
}. 

Since 𝑝𝑘
(𝑐) =

𝑛𝑐⋅𝑞𝑘
𝑎

∑ 𝑞𝑘
𝑎𝑁

𝑘=1
, and 𝑝𝑘

(𝑠) =
𝑛𝑠⋅𝑞𝑘

𝑏

∑ 𝑞𝑘
𝑏𝑁

𝑘=1

 as defined in Web Table 1, we have 

    log (
𝑝𝑘

1 − 𝑝𝑘
) = log (

𝑛𝑐 ⋅ 𝑞𝑘
𝑎 ∑ 𝑞𝑘

𝑎𝑁
𝑘=1⁄

𝑛𝑠 ⋅ 𝑞𝑘
𝑏 ∑ 𝑞𝑘

𝑏𝑁
𝑘=1⁄

) 

= log (
𝑛𝑐 ⋅ ∑ 𝑞𝑘

𝑏𝑁
𝑘=1

𝑛𝑠 ⋅ ∑ 𝑞𝑘
𝑎𝑁

𝑘=1

)+ log (
𝑞𝑘
𝑎

𝑞𝑘
𝑏),               

Because 𝑞𝑘
𝑎 = exp{𝑎 ⋅ (𝛽0 +𝜷𝒙𝑘)} and 𝑞𝑘

𝑏 = exp{𝑏 ⋅ (𝛽0 +𝜷𝒙𝑘)}, we have 

 log (
𝑝𝑘

1 − 𝑝𝑘
) = 𝜔 + (𝑎 − 𝑏) ⋅ 𝜷𝒙𝑘 , (D.1) 

where 𝜔 = log (
𝑛𝑐⋅∑ 𝑞𝑘

𝑏𝑁
𝑘=1

𝑛𝑠⋅∑ 𝑞𝑘
𝑎𝑁

𝑘=1
) + (𝑎 − 𝑏) ⋅ 𝛽0 is the intercept. Note that the vector of model coefficients 

(𝑎 − 𝑏) ⋅ 𝜷 can be estimated by fitting the propensity model (D.1) to the sample of cohort and 

unweighted survey. The predicted 𝑝𝑘, i.e., �̂�𝑘 = expit(�̂� + (𝑎 − 𝑏) ⋅ �̂�𝒙) is used by the PSAS and 

KW methods to measure the similarity between cohort units and survey units.  

D.3 True Propensity-Score Model assumed by the IPSW method 

Define 𝑝𝑘
∗ , for 𝑘 ∈ 𝐹𝑃, the probability of being in the cohort conditional on the sample of cohort 

combined with the finite population (FP), written as 

𝑝𝑘
∗ = Pr{𝑘 ∈ 𝑠𝑐|𝑘 ∈ 𝑠𝑐 ∪

∗ 𝐹𝑃} =
𝑝𝑘
(𝑐)

𝑝𝑘
(𝑐)
+ 1

, for 𝑘 ∈ 𝐹𝑃. 
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Again, the notation ∪∗ means the combination of 𝑠𝑐 and 𝐹𝑃, allowing duplicated 𝑠𝑐 in the combined 

set 𝑠𝑐 ∪
∗ 𝐹𝑃. Accordingly,  

log (
𝑝𝑘
∗

1 − 𝑝𝑘
∗) = log {

𝑝𝑘
(𝑐) (1 + 𝑝𝑘

(𝑐))⁄

1 (1 + 𝑝𝑘
(𝑐))⁄

} = log(𝑝𝑘
(𝑐)) 

        = log (
𝑛𝑐

∑ 𝑞𝑘
𝑎𝑁

𝑘=1

) + log(𝑞𝑘
𝑎). 

Since 𝑞𝑘
𝑎 = exp{𝑎 ⋅ (𝛽0 +𝜷𝒙𝑘)}, we have 

 log (
𝑝𝑘
∗

1 − 𝑝𝑘
∗) = 𝜔

∗ + 𝑎 ⋅ 𝜷𝒙𝑘 , (D.2) 

where 𝜔∗ = log (
𝑛𝑐

∑ 𝑞𝑘
𝑎𝑁

𝑘=1
) + 𝑎 ⋅ 𝛽0 is the intercept.  Note that model coefficient 𝑎 ⋅ 𝜷 can be estimated 

by fitting the propensity model (D.2) to the combined cohort and weighted survey sample. The 

predicted odds, i.e. 
�̂�𝑘
∗

1−�̂�𝑘
∗ = exp(�̂�

∗ + 𝑎 ⋅ �̂�𝑤𝒙) is used by the IPSW method to estimate the self-

selection probability for cohort units.  

D.4 Simulation Results 

In this simulation, we empirically verify D.2 and D.3. The MOS for cohort and survey sample 

selection were 𝑞𝑘
𝑎 and 𝑞𝑘

𝑏  respectively, where 𝑞𝑘 = exp(𝛽0 + 𝛽1𝑎𝑔𝑒𝑘 + 𝛽2ℎℎ_𝑖𝑛𝑐𝑘 + 𝛽3𝐸𝑛𝑣𝑘 +

𝛽4𝑧𝑘) with (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4) = (0, 0.3,−0.4,0.7, 0.7), 𝑎 = −1, and 𝑏 = 0.5. As derived in D.2 and 

D.3, �̂�𝑤, and �̂�, the regression coefficients estimated from the propensity models fitted to the 

weighted and unweighted combination of the cohort and survey sample are approximate unbiased 

estimators of 𝑎 ⋅ 𝜷 = −(𝛽1, 𝛽2, 𝛽3, 𝛽4) and (𝑎 − 𝑏) ⋅ 𝜷 = −1.5(𝛽1, 𝛽2, 𝛽3, 𝛽4), respectively. The 

percent of relative bias relative bias (%RB), empirical variance (V) of �̂�𝑤, and �̂� are shown in Web 

Table 2. 
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Web Table 2 

Results of coefficients of propensity model fitted to unweighted and weighted combined cohort and survey 

sample over 1,000 simulation runs 

 𝛽1 = 0.3  𝛽2 = −0.4  𝛽3 = 0.7  𝛽4 = 0.7 

 %RB V(10−3)  %RB V(10−3)  %RB V(10−3)  %RB V(10−3) 

�̂� -2.2% 0.71  -1.7% 1.98  -0.6% 8.61  0.6% 93.02 

�̂�𝑤 3.3% 1.03  -2.5% 3.53  2.9% 15.43  1.4% 189.29 

 

As expected, the weighted sample produced approximately unbiased estimates of −𝜷 whereas the 

unweighted sample produced approximately unbiased estimates of −1.5𝜷. Thus, the three methods 

can achieve greatest bias reduction under the true propensity models that have the same functional 

form of covariates 𝒙 in the simulation (the IPSW and KW estimates are expected to be approximately 

unbiased while the PSAS estimates can be biased under the true propensity model due to invalid 

assumption of the equal representativeness of cohort units within subclasses). This allows for a fair 

comparison among the three methods in the simulation. 

However, the coefficients estimated from the propensity model fitted to the weighted sample 

had much larger empirical variances than the coefficients estimated from the model fitted to the 

unweighted sample due to the highly variable weights (weights of 1 for cohort units, and the sample 

weights for survey units). Hence, we expect that the naïve Taylor linearization (TL) method, which 

ignores variability due to estimating propensity scores, may substantially underestimate the variance 

of the IPSW estimates.  

Web Appendix E. Optimal Bandwidth Minimizing Asymptotic Mean Integrated Squared 

Error 

One of the most commonly used optimality criteria for bandwidth selection is the Asymptotic Mean 

Integrated Squared Error (AMISE) (Silverman, 1986; Scott, 1992; Sheather, 2004). Minimizing 

AMISE with respect to ℎ gives the optimal bandwidth  
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 ℎopt = (
𝑅(𝐾)

𝑛𝜎𝐾
4𝑅(𝑓′′)

)

1/5

, (E.1) 

where 𝐾(⋅) is the kernel density function, 𝜎𝐾 is the corresponding standard deviation, 𝑅(𝐾) =

∫ 𝐾2(𝑧)𝑑𝑧, 𝑛 is the sample size, and 𝑓 is the unknown density function to be estimated, with 𝑓′′ 

being the second derivative of 𝑓. Since 𝑓 is unknown, 𝑅(𝑓′′) needs to be estimated. Silverman (1986), 

and Scott (1992) approximate 𝑓 by a normal density with the sample estimates �̂�, and �̂� used for the 

mean and standard deviation. After some calculation, it can be shown that 𝑅(𝑓′′) =
3

8
�̂�−5/√𝜋.  

 As shown by the formula (E.1), the optimal bandwidth ℎopt will change based on the given 

kernel function 𝐾(⋅). Here we give two examples of kernel functions: a normal density with mean 0 

and standard deviation 𝜎𝐾, 𝑁(0, 𝜎𝐾), and a symmetric triangular density on the support of (−𝑡, 𝑡), 

𝑇(−𝑡, 𝑡, 0). 

E.1 𝑁(0, 𝜎𝐾) 

It can be shown that 𝑅(𝐾) =
1

2√𝜋𝜎𝐾
. Then the optimal bandwidth is  

 ℎopt = (

1

2√𝜋𝜎𝐾

𝑛𝜎𝐾
4 ⋅
3
8 �̂�

−5/√𝜋
)

1/5

≈ 1.06
�̂�

𝜎𝐾
⋅ 𝑛−

1
5, (E.2) 

 

Silverman’s rule of thumb (Silverman, 1986) and Scott’s method (Scott, 1992) used the smaller value 

of  �̂� and 
𝐼𝑄𝑅

1.34
 where IQR is the interquartile range of the sample. Silverman (1986) further 

recommended reducing the constant 1.06 in Equality (E.2) to 0.9 to avoid missing bimodality. 

When 𝜎𝐾 = 1, i.e., 𝐾(⋅) is the density function of a standard normal distribution (i.e., 𝜎𝐾 =

1), Silverman’s rule of thumb and Scott’s method give the bandwidth ℎsilverman = 0.9 ⋅

min (�̂�,
𝐼𝑄𝑅

1.34
) ⋅ 𝑛−1/5, and ℎscott = 1.06 ⋅ min (�̂�,

𝐼𝑄𝑅

1.34
) ⋅ 𝑛−1/5 respectively.  
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E.2 𝑇(−𝑡, 𝑡, 0) 

With 𝐾(⋅) being the density function of a symmetric triangular distribution, 𝑇(−𝑡, 𝑡, 0), we have the 

standard deviation 𝜎𝐾 =
𝑡

√6
, and 𝑅(𝐾) =

2

3𝑡
. As before, the normal density is assumed for 𝑓. The 

optimal bandwidth is  

ℎopt =

(

 

2

3√6𝜎𝐾

𝑛𝜎𝐾
4 ⋅
3
8 �̂�

−5/√𝜋
)

 

1/5

≈ 1.05
�̂�

𝜎𝐾
⋅ 𝑛−

1
5, 

or, 2.57
�̂�

𝑡
⋅ 𝑛−

1

5. Following the same logic of Silverman (1986) and Scott (1992), we use the smaller 

one of �̂� and 
𝐼𝑄𝑅

1.34
 to replace �̂�. The resulting optimal bandwidth is ℎ𝑇(𝑡) = 2.57

�̂�

𝑡
⋅ min (�̂�,

𝐼𝑄𝑅

1.34
) ⋅ 𝑛−

1

5. 

As can be seen in the two examples, E.1 and E.2, the optimal bandwidth ℎopt changes with 

the value of the scale parameter of the kernel density function. However, the corresponding kernel 

density 𝐾 (𝑑(𝒙𝑖
(𝑠), 𝒙𝑗

(𝑐))/ℎ𝑜𝑝𝑡) remains invariant to changes in the value of the scale parameter, 

which results in the kernel weight (defined in (2.2.1) in the main text) being also unaffected by scale 

parameter.  
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Web Appendix F. Supplementary Tables 

Web Table 3 

Simulation results from 1,000 simulated cohorts and survey samples with each cohort and survey sample 

fitted to the correct propensity score model and six misspecified propensity score models. 

Model Method %RB 

V 

(× 10−5) 
VR  

(TL) 

VR  

(JK) 

CP 

(JK) 

MSEg 

(× 10−5) 

 CHT -42.48 2.39 0.19 NA NA 168.45 

 SVY -0.11 6.42 1.06 1.06 0.96 6.42 

T        

True model logit{Pr(𝒙)} ∼ 𝑎𝑔𝑒, ℎℎ_𝑖𝑛𝑐, 𝐸𝑛𝑣, 𝑧 
 IPSW -0.19 7.54 0.76 0.99 0.95 7.54 

 PSAS -9.37 5.05 0.93 1.03 0.71 13.12 

 KW (h=0.00943) -0.91 6.00 0.95 1.02 0.94 6.07 

U1  

Underfitted model 1 logit{Pr(𝒙)} ∼ 𝑎𝑔𝑒, 𝐸𝑛𝑣, 𝑧 

 IPSW -0.36 6.67 0.78 0.95 0.94 6.68 

 PSAS -9.40 4.90 0.92 1.02 0.70 13.02 

 KW (h =0.00990) -1.43 5.58 0.93 0.98 0.93 5.76 

U2        

Underfitted model 2 logit{Pr(𝒙)} ∼ 𝑎𝑔𝑒, 𝐸𝑛𝑣 

 IPSW  -5.10 5.71 0.84 0.96 0.85 8.10 

 PSAS -10.85 4.88 0.90 1.03 0.65 15.69 

 KW (h =0.01085) -2.68 5.49 0.92 0.99 0.91 6.14 

M        

Underfitted + logit{Pr(𝒙)} ∼ 𝑎𝑔𝑒, 𝐸𝑛𝑣,𝐻𝑖𝑠𝑝, 𝑠𝑒𝑥 

Overfitted model IPSW -4.59 5.96 0.81 0.96 0.87 7.89 

 PSAS -9.23 4.91 0.92 1.07 0.73 12.74 

 KW (h =0.01014) -1.72 5.54 0.92 1.01 0.93 5.81 

O1        

Overfitted model 1 logit{Pr(𝒙)} ∼ 𝑎𝑔𝑒, ℎℎ_𝑖𝑛𝑐, 𝐸𝑛𝑣, 𝑧, 𝐻𝑖𝑠𝑝 

 IPSW -0.02 7.66 0.75 0.99 0.95 7.65 

 PSAS -9.31 5.01 0.94 1.05 0.71 12.98 

 KW (h =0.00942) -0.76 6.01 0.96 1.04 0.95 6.06 

O2        

Overfitted model 2 logit{Pr(𝒙)} ∼ 𝑎𝑔𝑒, ℎℎ_𝑖𝑛𝑐, 𝐸𝑛𝑣, 𝑧, 𝐻𝑖𝑠𝑝, 𝑠𝑒𝑥 

 IPSW 0.13 7.82 0.74 0.99 0.95 7.81 

 PSAS -9.30 5.02 0.93 1.06 0.71 12.97 

 KW (h =0.00941) -0.71 6.03 0.96 1.05 0.95 6.07 

O3        

Overfitted model 3 logit{Pr(𝒙)} ∼ 𝑎𝑔𝑒, ℎℎ_𝑖𝑛𝑐, 𝐸𝑛𝑣, 𝑧, 𝑢𝑟𝑏 

 IPSW -0.10 7.66 0.75 0.99 0.95 7.65 

 PSAS -9.22 5.02 0.94 1.09 0.73 12.84 

 KW (h =0.00938) -0.79 5.96 0.97 1.08 0.95 6.01 
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Web Table 4 

Simulation results from 1,000 simulated cohorts and survey samples, comparing effects of two kernel 

functions and five bandwidth selection methods†  

Kernel 

Function 

Bandwidth  

(Method) 
%RB 

V 

(× 10−5) 
VR 

(TL) 

VR 

(JK) 

CP 

JK 

MSEi 

(× 10−5) 
 CHT -42.48 2.39 0.19 -- -- 168.45 

 SVY -0.11 6.42 1.06 1.06 0.96 6.42 

𝑁(0, 1)       

 0.00987 (Silv)    -0.26 6.18 0.96 1.08 0.95 6.18 

 0.01162 (Scott)  -0.42 6.13 0.96 1.05 0.95 6.14 

 0.00188 (UCV)  0.05 6.61 0.96 4.67 1.00 6.61 

 0.00775 (BCV)  -0.14 6.28 0.95 1.23 0.96 6.28 

 0.00149 (S&J)    0.03 6.70 0.96 7.60 1.00 6.79 

𝑇(−3, 3, 0)       

 0.00987 (Silv)j   -0.75 6.02 0.96 1.04 0.95 6.07 

 0.01162 (Scott)  -0.94 5.99 0.96 1.02 0.95 6.06 

 0.00188 (UCV)  -2.00 6.22 0.93 3.55 1.00 6.58 

 0.00775 (BCV)  -0.70 6.08 0.95 1.14 0.96 6.12 

 0.00149 (S&J)    -2.52 6.23 0.93 5.74 1.00 6.81 

†The fitted propensity model is logit{Pr(𝒙)} ∼ 𝑎𝑔𝑒, ℎℎ_𝑖𝑛𝑐, 𝐸𝑛𝑣, 𝑧, 𝐻𝑖𝑠𝑝, 𝑠𝑒𝑥, which includes two extra covariates 𝐻𝑖𝑠𝑝 

and 𝑠𝑒𝑥 compared to the true model. The bandwidth selection methods include Silverman’s rule of thumb (Silv), Scott’s 

method (Scott), unbiased cross validation (UCV), biased cross validation (BCV), and S&J’s method (S&J). Notice: these 

results are slightly different from those in Web Table 3 under Model O2 because the bandwidths were different.  
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Web Table 5 

Distribution of selected common variables in NIH-AARP and NHIS 

 NIH-AARP (1995-96)  NHIS (1997) 

  𝑛 %  𝑛 % weighted 𝑛 weighted % 

Total 529708  100  9306  100 49761895 100 

DEMOGRAPHIC           

Age in years           

  50-54 69207 13.07  2637 28.34 15064732 30.27 

  55-59 117417 22.17  2091 22.47 11480359 23.07 

  60-64 148726 28.08  1861 20.00 9995586 20.09 

  65-69 174567 32.96  1944 20.89 9474745 19.04 

  70-71 19791 3.74  773 8.31 3746473 7.53 

Gender           

  Male 314269 59.33  4059 43.62 23528092 47.28 

  Female 215439 40.67  5247 56.38 26233803 52.72 

Race           

  NH-White 485486 91.65  6693 71.92 39565812 79.51 

  NH-Black 19576 3.70  1249 13.42 4758442 9.56 

  Hispanic 9628 1.82  1055 11.34 3468003 6.97 

  NH-Other 15018 2.84  309 3.32 1969638 3.96 

Marital Status           

  Married or living as married 366327 69.16  5381 57.82 35937686 72.61 

  Widowed 58296 11.01  1365 14.67 4765959 9.58 

  Divorced or Separated 79545 15.02  1919 20.62 5613727 13.26 

  Never married 25540 4.82  641 6.89 2267497 4.56 

SOCIOECONOMIC 

STATUS 
          

Education           

  High school or less 200498 37.85  5382 57.83 27564686 55.39 

  Post-high school/some college 123325 23.28  2052 22.05 11440010 22.99 

  College graduate/postgraduate 205885 38.87  1872 20.12 10757199 21.62 

HEALTH BEHAVIOR           

BMI         

  <18.5 4233 0.80  130 1.40 654914 1.32 

   18.5-24.9 182946 34.54  3208 34.47 17143743 34.45 

  >=25 342529 64.66  5968 64.13 31963238 64.23 

Smoking (quit years or dose)           

  Never   184416 34.81  4026 43.26 21264038 42.73 

  Former, quit>=10 years 213657 40.33  2235 24.02 12747525 25.62 

  Former, quit<10 years 69108 13.05  935 10.05 4926262 9.90 

  Current, <=1 pack/day 40396 7.63  1644 17.67 8215497 16.51 

  Current, >1 pack/day 22131 4.18  466 5.01 2608573 5.24 

Physical Activity           

  <3 times/week 286822 54.15  7775 83.55 40930891 82.25 

  >=3 times/week 242886 45.85  1531 16.45 8831004 17.75 

Health Status (Self-reported)           

  Excellent 87439 16.51  1837 19.74 10954418 22.04 

  Very good 191114 36.08  2578 27.70 14943138 30.06 
  Good 182621 34.48  2664 28.63 14738240 29.65 

  Fair 58741 11.09  1273 13.68 6597770 13.27 

  Poor 9793 1.85  540 5.80 2471456 4.97 
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Web Table 6 

Distribution of self-reported diseases at baseline and nine-year mortality in NIH-AARP and NHIS 

 NIH-AARP (1995-96)  NHIS (1997) 

  𝑛 %  𝑛 % weighted 𝑛 weighted 

Total 529708   9306   49761895 % 

Self-Reported Diseases           

  Diabetes 48471 9.15  1064 11.43 5215661 10.48 

  Emphysema 14530 2.74  325 3.49 1794778 3.61 

  Stroke 11272 2.13  377 4.05 1879697 3.78 

  Heart Disease 74532 14.07  660 7.09 3608156 7.25 

  Stroke or Heart Disease 81468 15.38  930 9.99 4920432 9.89 

  Colon Cancer 4797 0.91  67 0.72 344287 0.69 

  Breast Cancer (Female) 10285 4.77  187 3.56 903296 3.44 

  Prostate Cancer (Male) 10154 3.23  83 2.04 493470 2.10 

Nine-Year Mortality           

All-Cause Mortality           

  Overall 65732 12.41  1324 14.89 6794116 13.67 

  Age 50-54 2863 4.85  167 6.65 945836 6.27 

  Age 55-59 8226 7.19  215 10.73 1116271 9.71 

  Age 60-64 16489 11.39  296 16.55 1563759 15.66 

  Age 65-72 38154 18.04  646 24.97 3168250 24.09 

All-Cancer Mortality              

  Overall 42458 8.02  499 5.61 2688875 5.41 

  Age 50-54 2366 4.01  72 2.87 61728 2.83 

  Age 55-59 6607 5.77  79 3.94 56952 3.92 

  Age 60-64 12181 8.41  119 6.65 67972 6.80 

  Age 65-72 24641 11.65  229 8.85 81622 8.61 

  Male 29775 9.47  267 6.82 1540510 6.56 

  Female 16020 7.44  232 4.66 1148365 4.38 

  Age 50-54, male 1409 4.27  39 3.38 254351 3.47 

  Age 55-59, male 4072 6.12  48 5.36 286824 5.36 

  Age 60-64, male 7758 9.10  62 7.52 362227 7.41 

  Age 65-72, male 16536 12.77  118 11.32 637110 10.78 

  Age 50-54, female 957 3.68  33 2.43 172198 2.23 

  Age 55-59, female 2535 5.29  31 2.80 164006 2.67 

  Age 60-64, female 4423 7.43  57 5.91 316953 6.22 

  Age 65-72, female 8105 9.89  111 7.18 495208 6.84 
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Web Table 7 

Main effects of the fitted propensity model with (�̂�𝑤) or without (�̂�) NHIS sample weights† 

 �̂�  �̂�𝑤  

Coefficients: Estimates Std. Err.  Estimates Std. Err. 

Age -0.045 0.016**  -0.004 0.022 

Sex (ref: male)      

  Female -0.69 0.18***  -1.28 0.28*** 

Race/Ethnicity (ref: NH-White)      

  NH-Black -2.22 0.45***  -1.61 0.82* 

  Hispanic -6.20 0.51***  -3.06 1.06** 

  NH-Other -5.29 0.801  -2.91 1.19* 

Marital Status (ref: married or living as married)      

  Widowed   2.35 0.46***    0.47 0.70 

  Divorced or Separated -1.08 0.37**  -1.05 0.59. 

  Never married -1.02 0.57.  -0.36 0.96 

Education level -0.53 0.20**  -0.31 0.29 

BMI -0.15 0.027***  -0.11 0.043* 

Smoking (ref: Never)      

  Former, quit>=10 years   1.32 0.3993***    1.48 0.60* 

  Former, quit<10 years   0.31 0.5496    0.41 0.84 

  Current, <=1 pack/day -3.04 0.4655***  -1.46 0.79. 

  Current, >1 pack/day -3.75 0.7680**  -2.64 1.06* 

Physical Activity (ref: <3 times/week)      

  >=3 times/week -1.62 0.4337***  0.15 0.54 

Self-reported health status   0.93 0.1557***  0.51 0.23* 

†The 31 pairwise interactions included in the model are age:race/ethnicity, age:marital status, age:education, age:bmi, 

age:smoking, age:physical activities, age:health status, sex:race/ethnicity, sex:matrital status, sex:education, sex:bmi, 

sex:smoking, sex:physical activities, sex:health status, race/ethnicity:marital status, race/ethnicity:education, 

race/ethnicity:smoking, race/ethnicity:physical activities, race/ethnicity:health status, marital status:education, marital 

status:physical activities, marital status:health status, education:bmi, education:smoking education:physical activities,, 

education:health status, bmi:smoking, bmi:physical activities, smoking:physical activities, smoking:health status, 

physical activities:health status. The magnitude of the p-values are represented by ‘***’ p-value< 0.001; ‘**’ p-value< 

0.01; ‘*’ p-value< 0.05; ‘.’ p-value< 0.1. 
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