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Table S1. The coordination number CN   from the nearest neighboring water and the oxygen 

atoms on lipid headgroup around a selected atom on dipeptide at the POPC membrane interface. 

 

CN   ( from water) Ace-Ser-Leu-NMe Ace-Phe-Leu-NMe 

O (Ser or Phe backbone) 1.0 1.4 

O (Leu backbone) 1.1 1.0 

N (Ser or Phe backbone) 0.6 0.7 

N (Leu backbone) 0.6 0.3 

OG (Ser side chain) 1.8 / 

 

 

 

 

 

 

 

 

 

 

 

CN   (from lipid headgroup) Ace-Ser-Leu-NMe Ace-Phe-Leu-NMe 

N (Ser or Phe backbone) 0.6 0.3 

N ( Leu backbone) 0.4 0.1 

OG (on Ser side chain) 0.5 / 
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Table S2. Position dependent diffusion coefficient for the three dipetides inside POPC membrane 

at various z position, which is calculated from autocorrelation function of random forces.1  

D( x 10-6 cm2/s) 0 Å -6 Å -12 Å 

Ace-Ser-Ser-NMe 0.45 0.47 0.36 

Ace-Ser-Leu-NMe 0.41 0.42 0.22 

Ace-Phe-Leu-NMe 0.40 0.60 0.14 
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Figure S1. Ramachandran map for the backbone conformation of Ace-Phe-Leu-NMe in aqueous 

solution.  
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Figure S2. Ramachandran map for the backbone conformation of Ace-Phe-Leu-NMe in decane 

solution (upper panel) and the center region of POPC membrane (lower panel).   
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Figure S3. The distribution for the orientation of the side chains on Ace-Phe-Leu-Nme (black) and 

Ace-Ser-Leu-Nme (red) dipeptide. The solid and dashed black curve is for Phe and Leu residue on 

Ace-Phe-Leu-Nme, respectively; and the solid and dashed red curve is for Ser residue at N-

terminal and C-terminal on Ace-Ser-Ser-Nme, respectively.  
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                               (b)                                                                         (c)                                      

Figure S4. (a) The illustration of the orientation angle  between the vector and Z axis.  

Schematic plot of Ace-Ser-Leu-Nme inside POPC membrane, with Ser side chain in closer 

promixity to the interface than Leu side chain is also shown (side chains are represented in ball-

and-stick model and atom is marked in yellow). (b) 2D distribution of Ace-Ser-Leu-NMe 

dipeptide orientation as a funtion of the distance z from the membrane center and the orientation 

angle ; (c) 2D distribution of Ace-Phe-Leu-NMe dipeptide orientation as a funtion of the distance 

z from the membrane center and the orientaiton angle .  
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Figure S5. Free energy profile for Ace-Phe-NMe (solid black curve) and 3-methyl indole (red 

dashed curve) molecule as a function of the distance from the POPC membrane center (z = 0)  
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Bayesian estimate of populations of different states of Ace-Ser-Ser-NMe dipeptide near the 

middle of the membrane. 

As argued in the main text, the probabilities, 0( , )p s z , ( , )p s z , and ( , )p s z  of observing the 

dipeptide in states s0, s+, and s- at z near the center of the bilayer are:   

0
0

0

exp( )
( , )

2cosh( ) exp( )

A
p s z

fz A



 

 


  
 (S1) 

0

exp( )
( , )

2cosh( ) exp( )

fz
p s z

fz A



 
 

  
 (S2) 

0

exp( )
( , ) ,

2cosh( ) exp( )

fz
p s z

fz A



 





  
 (S3) 

where f is the absolute value of the average force acting on the dipeptide in states s+ and s- in this 

range of z, and β=1/kBT. Here and ΔA0 is a parameter that can be interpreted as the free energy 

difference between s0 and s+ or s- state at z = 0. The free energies of s+ and s- are equal at this plane 

by symmetry.  

We wish to find the probability distribution of different values of ΔA0, 0( | ),P A S given the 

observed populations, s, of states s0, s+, and s- at n different value of z. To do so, we follow a 

standard Bayesian approach2. The posterior probability, 0( | , ),P A M S where M is the probability 

model defined in Eq. (S1), Eq. (S2) and Eq. (S3), is expressed as: 
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If the prior, P(ΔA0|M) is uniform, the posterior becomes proportional to the likelihood function. 
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0 0( | , ) ( | , ).P A M S P S A M    (S5) 

Our goal is to estimate the probability, P(S | ΔA0, M), of generating data with the observed 

populations of the three states of interest at the given n values of z 
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where 0

0( | , )iP S A M , 
0( | , )iP S A M  and 

0( | , )iP S A M  are the probabilities of generating 

observed populations of states s0, s+ and s-, respectively, at position zi given a specific value of 

ΔA0. We wish to maximize this function with respect to ΔA0. Taking advantage of the monotonicity 

of logarithm, we maximize    0 0, ln | ,g S A P S A M    instead. 
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Taking advantage of Eq. (S1), Eq. (S2) and Eq. (S3),  0,g S A takes the form: 
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where αi
0, αi

+ and αi
- are proportional to the populations of states s0, s+ and s- at zi. Therefore,  

αi
0+ αi

+ + αi
- = C, where C is a constant independent of zi. Then 
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In this equation, C was taken as 1, since its specific value has no influence on the shape of g as a 

function of ΔA0. The last term in Eq. (S9) is independent of ΔA0 and, therefore, will contribute 

only to the normalization constant. This reflects the fact that ΔA0 in Eq. (S1), Eq. (S2) and Eq. (S3) 

changes only the proportion of S0 to S+ + S-, but not the proportion between S+ and S-. The latter 

is defined by the value of f and the symmetry requirement with respect to the plane at 

z = 0. Thus, the function that we need to consider is 

 0

0 0 0

1 1

( , ) ln 2cosh( ) exp( ) .
n n

i i

i i

h S A A fz A   
 

 
        

 
   (S10) 

Then, the posterior probability can be expressed as, 

 0 0( | , ) exp ( , ) / .P A M S h S A N    (S11) 

where N is the normalization constant obtained from integrating  0exp ( , )h S A over ΔA0. In this 

particular instance, the observed populations of S0 were 0.31, 0.10, 0.38, 0.11, 0.09, 0.12 0.10 and 

0.51 for simulations at z equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 Å, respectively. The length 

of molecular dynamics trajectory for each value of z was approximately 400 ns. This yielded 

0( | , )P A M S shown in Figure S6. As we can see that this distribution is fairly broad and Gaussian-

like, although the positive- ΔA0 tail decays slower that the negative-ΔA0 tail. The maximum 

likelihood ΔA0 is 0.05 kcal/mol, and the average ΔA0 is 0.18 kcal/mol with the standard deviation 

of 0.56 kcal/mol. 



S12 
 

 

Figure S6. Normalized posterior probability distribution 0( | , )P A M S , as a function of ΔA0. 
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