Supplementary Information for 'Sequence-Dependent Interfacial Adsorption and Permeation of Dipeptides across Phospholipid Membranes'

Chenyu Wei^{1,2*} and Andrew Pohorille^{1,2*}

¹ NASA Ames Research Center, Mail Stop 239-4, Moffett Field, CA 94035, USA

² Department of Pharmaceutical Chemistry, University of California San Francisco

* Corresponding authors:

chenyu.wei@nasa.gov; andrew.pohorille@nasa.gov

Table S1. The coordination number $\langle CN \rangle$ from the nearest neighboring water and the oxygen atoms on lipid headgroup around a selected atom on dipeptide at the POPC membrane interface.

$\langle CN \rangle$ (from water)	Ace-Ser-Leu-NMe	Ace-Phe-Leu-NMe		
O (Ser or Phe backbone)	1.0	1.4		
O (Leu backbone)	1.1	1.0		
N (Ser or Phe backbone)	0.6	0.7		
N (Leu backbone)	0.6	0.3		
OG (Ser side chain)	1.8	/		

$\langle CN \rangle$ (from lipid headgroup)	Ace-Ser-Leu-NMe	Ace-Phe-Leu-NMe	
N (Ser or Phe backbone)	0.6	0.3	
N (Leu backbone)	0.4	0.1	
OG (on Ser side chain)	0.5	/	

$D(\ge 10^{-6} \text{ cm}^2/\text{s})$	0 Å	-6 Å	-12 Å
Ace-Ser-Ser-NMe	0.45	0.47	0.36
Ace-Ser-Leu-NMe	0.41	0.42	0.22
Ace-Phe-Leu-NMe	0.40	0.60	0.14

Table S2. Position dependent diffusion coefficient for the three dipetides inside POPC membrane at various z position, which is calculated from autocorrelation function of random forces.¹

Figure S1. Ramachandran map for the backbone conformation of Ace-Phe-Leu-NMe in aqueous solution.

Figure S2. Ramachandran map for the backbone conformation of Ace-Phe-Leu-NMe in decane solution (upper panel) and the center region of POPC membrane (lower panel).

Figure S3. The distribution for the orientation of the side chains on Ace-Phe-Leu-Nme (black) and Ace-Ser-Leu-Nme (red) dipeptide. The solid and dashed black curve is for Phe and Leu residue on Ace-Phe-Leu-Nme, respectively; and the solid and dashed red curve is for Ser residue at N-terminal and C-terminal on Ace-Ser-Ser-Nme, respectively.

Figure S4. (a) The illustration of the orientation angle θ between the vector $\vec{r}_{mol}^{Ser-Leu}$ and \mathbf{Z} axis. Schematic plot of Ace-Ser-Leu-Nme inside POPC membrane, with Ser side chain in closer promixity to the interface than Leu side chain is also shown (side chains are represented in balland-stick model and C_{α} atom is marked in yellow). (b) 2D distribution of Ace-Ser-Leu-NMe dipeptide orientation as a function of the distance *z* from the membrane center and the orientation angle θ , (c) 2D distribution of Ace-Phe-Leu-NMe dipeptide orientation as a function of the distance *z* from the membrane center and the orientation angle θ .

Figure S5. Free energy profile for Ace-Phe-NMe (solid black curve) and 3-methyl indole (red dashed curve) molecule as a function of the distance from the POPC membrane center (z = 0)

Bayesian estimate of populations of different states of Ace-Ser-Ser-NMe dipeptide near the middle of the membrane.

As argued in the main text, the probabilities, $p(s_0, z)$, $p(s_+, z)$, and $p(s_-, z)$ of observing the dipeptide in states s_0 , s_+ , and s_- at z near the center of the bilayer are:

$$p(s_0, z) = \frac{\exp(-\beta \Delta A_0)}{2\cosh(\beta f z) + \exp(-\beta \Delta A_0)}$$
(S1)

$$p(s_+, z) = \frac{\exp(\beta f z)}{2\cosh(\beta f z) + \exp(-\beta \Delta A_0)}$$
(S2)

$$p(s_{-},z) = \frac{\exp(-\beta fz)}{2\cosh(\beta fz) + \exp(-\beta \Delta A_0)},$$
(S3)

where *f* is the absolute value of the average force acting on the dipeptide in states s_+ and s_- in this range of *z*, and $\beta = 1/k_BT$. Here and ΔA_0 is a parameter that can be interpreted as the free energy difference between s_0 and s_+ or s_- state at z = 0. The free energies of s_+ and s_- are equal at this plane by symmetry.

We wish to find the probability distribution of different values of ΔA_0 , $P(\Delta A_0 | S)$, given the observed populations, *s*, of states s_0 , s_+ , and s_- at *n* different value of *z*. To do so, we follow a standard Bayesian approach². The posterior probability, $P(\Delta A_0 | M, S)$, where M is the probability model defined in Eq. (S1), Eq. (S2) and Eq. (S3), is expressed as:

$$P(\Delta A_0 \mid M, S) = \frac{P(S \mid \Delta A_0, M) P(\Delta A_0 \mid M)}{P(S \mid M)}.$$
 (S4)

If the prior, $P(\Delta A_0|M)$ is uniform, the posterior becomes proportional to the likelihood function.

$P(\Delta A_0 | M, S) \propto P(S | \Delta A_0, M).$ (S5)

Our goal is to estimate the probability, $P(S \mid \Delta A_0, M)$, of generating data with the observed populations of the three states of interest at the given *n* values of *z*

$$P(S \mid \Delta A_0, M) = \prod_{i=1}^{n} P(S_i^0 \mid \Delta A_0, M) P(S_i^+ \mid \Delta A_0, M) P(S_i^- \mid \Delta A_0, M),$$
(S6)

where $P(S_i^0 | \Delta A_0, M)$, $P(S_i^+ | \Delta A_0, M)$ and $P(S_i^- | \Delta A_0, M)$ are the probabilities of generating observed populations of states s_0 , s_+ and s_- , respectively, at position z_i given a specific value of ΔA_0 . We wish to maximize this function with respect to ΔA_0 . Taking advantage of the monotonicity of logarithm, we maximize $g(S, \Delta A_0) = \ln P(S | \Delta A_0, M)$ instead.

$$g(S \mid \Delta A_0) = \sum_{i=1}^{n} \left[\ln P(S_i^0 \mid \Delta A_0, M) + \ln P(S_i^+ \mid \Delta A_0, M) + \ln P(S_i^- \mid \Delta A_0, M) \right].$$
(S7)

Taking advantage of Eq. (S1), Eq. (S2) and Eq. (S3), $g(S, \Delta A_0)$ takes the form:

$$g(s, \Delta A_{0}) = \sum_{i=1}^{n} \ln \left[\frac{\exp(fz / k_{B}T)}{2\cosh(fz / k_{B}T) + \exp(-\Delta A_{0} / k_{B}T)} \right]^{\alpha_{i}^{+}} + \sum_{i=1}^{n} \ln \left[\frac{\exp(-fz / k_{B}T)}{2\cosh(fz / k_{B}T) + \exp(-\Delta A_{0} / k_{B}T)} \right]^{\alpha_{i}^{-}}$$
(S8)
+
$$\sum_{i=1}^{n} \ln \left[\frac{\exp(-\Delta A_{0} / k_{B}T)}{2\cosh(fz / k_{B}T) + \exp(-\Delta A_{0} / k_{B}T)} \right]^{\alpha_{i}^{0}},$$

where α_i^0 , α_i^+ and α_i^- are proportional to the populations of states s_0 , s_+ and s_- at z_i . Therefore, $\alpha_i^0 + \alpha_i^+ + \alpha_i^- = C$, where *C* is a constant independent of z_i . Then

$$g(s, \Delta A_0) = -\left[\sum_{i=1}^n \alpha_i^0\right] \beta \Delta A_0 - \sum_{i=1}^n \ln\left[2\cosh(\beta f z_i) + \exp(-\beta \Delta A_0)\right] + \sum_{i=1}^n (\alpha_i^+ - \alpha_i^-)\beta f z_i.$$
(S9)

In this equation, *C* was taken as 1, since its specific value has no influence on the shape of *g* as a function of ΔA_0 . The last term in Eq. (S9) is independent of ΔA_0 and, therefore, will contribute only to the normalization constant. This reflects the fact that ΔA_0 in Eq. (S1), Eq. (S2) and Eq. (S3) changes only the proportion of S₀ to S₊ + S₋, but not the proportion between S₊ and S₋. The latter is defined by the value of *f* and the symmetry requirement with respect to the plane at

z = 0. Thus, the function that we need to consider is

$$h(S,\Delta A_0) = -\left[\sum_{i=1}^n \alpha_i^0\right] \beta \Delta A_0 - \sum_{i=1}^n \ln\left[2\cosh(\beta f z_i) + \exp(-\beta \Delta A_0)\right].$$
(S10)

Then, the posterior probability can be expressed as,

$$P(\Delta A_0 \mid M, S) = \exp[h(S, \Delta A_0)] / N.$$
(S11)

where *N* is the normalization constant obtained from integrating $\exp[h(S, \Delta A_0)]$ over ΔA_0 . In this particular instance, the observed populations of S₀ were 0.31, 0.10, 0.38, 0.11, 0.09, 0.12 0.10 and 0.51 for simulations at *z* equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 Å, respectively. The length of molecular dynamics trajectory for each value of *z* was approximately 400 ns. This yielded $P(\Delta A_0 | M, S)$ shown in Figure S6. As we can see that this distribution is fairly broad and Gaussian-like, although the positive- ΔA_0 tail decays slower that the negative- ΔA_0 tail. The maximum likelihood ΔA_0 is 0.05 kcal/mol, and the average ΔA_0 is 0.18 kcal/mol with the standard deviation of 0.56 kcal/mol.

Figure S6. Normalized posterior probability distribution $P(\Delta A_0 | M, S)$, as a function of ΔA_0 .

References.

(1.) Kubo, R. The Fluctuation-Dissipation Theorem. Rep. Prog. Phys. 1966, 29, 255–284.

(2.) Sivia, D. S. Data Analysis. A Bayesian Tutorial. Claredon Press, Oxford, 1996.